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Abstract

We present in this paper a method to incre-
mentally estimate the heading of a robot using
panoramic images grabbed while the robot moves
in its environment. We present results that show
a performance similar to a magnetic compass. In
particular, the heading measured by the visual
compass does not drift as normal odometry does.
We discuss the performance of the system as well
as its limitations. We also briefly give examples
of applications where the visual compass could be
used and constitute an improvement.

1 Introduction

One of the very important tasks of mobile robot navi-
gation is to somehow learn where the robot is, i.e. what
the current position and/or orientation of the robot is.
Some methods only provide the position or the orienta-
tion, the other being inferred by integration.

One of the approaches uses a system, made of ex-
ternal devices and usually a device mounted on the
robot, that allows the precise localisation of the robot.
The Global Positioning System (GPS) is such a system.
Sometimes, the system doesn’t provide an absolute po-
sition/orientation but only one that is relative to the
desired path of the robot for example. This is the case
of visible (for example reflective), or otherwise (for ex-
ample induction loops), guides. That approach suffers
from the fact that the environment of the robot must be
equipped with such a system, which is not always possi-
ble, is often expensive and sometimes constraining. For
example, GPS needs a set of satellites orbiting above the
robot in direct view of the robot, which thus cannot be
indoors or in any closed environment. Guides need to be
fitted in the environment and the robot is restricted to
the area covered by the guides.

Another approach uses some map of the environment
as well as a way of finding where on the map the robot
currently is. This has the advantage of not needing any
external apparatus, although the localisation often in-
volves external beacons sometimes fitted to the environ-

ment. The approach however needs a precise and accu-
rate knowledge of the environment, knowledge not avail-
able when exploring the environment. The localisation
procedure often involves iterative mechanisms, especially
when the robot’s position is initially unknown.

A final approach only uses sensors on board the robot
and their interaction with the environment of the robot.
Some sensors provide an immediate position and/or ori-
entation that is either absolute or relative to the envi-
ronment. This is for example sensors such as altime-
ters, range finders (laser, sonar), and compasses. Other
sensors provide a position and/or orientation that is rel-
ative to the previous position/orientation of the robot.
The simplest sensors simply measure the rotation of the
wheels of the robot (in the case of a wheeled robot)
and work out the displacement of the robot by odom-
etry. More sophisticated methods use accelerometers.
These sensors all suffer from limitations. For example,
a compass needs a well known and predictable magnetic
field, which does not always exist (for example on Mars).
Odometers are typically unreliable as soon as there is
some slippage of the wheels, which almost always hap-
pens to some extend. Lasers need surfaces having “good”
reflective properties and only work if the atmosphere sur-
rounding the robot is clean enough.

In this paper, we propose to use images of the environ-
ment gathered by the robot while it moves to estimate
the heading (orientation) of the robot relative to either
an absolute reference (if available) or a starting orienta-
tion. In order to provide a full view of the robot’s sur-
roundings, we use panoramic images that are un-rotated
to match as best as possible the previous image in the se-
quence. The amount of un-rotation needed corresponds
to the rotation the robot underwent between the two
images.

The work reported in this paper is one of the many
projects undertaken by the author and colleagues on
mobile robot navigation and localisation and map build-
ing using raw images only (Neal and Labrosse, 2004b,
Mitchell and Labrosse, 2004), by opposition to extract-
ing features from the images and using the features,
as for example in (Winters and Santos-Victor, 2002,



Regini et al., 2002).

Section 2 discusses panoramic images and their rota-
tion invariance properties. Section 3 discusses the basis
of our method: distance between images. Section 4 de-
scribes the presented work while Sections 5 and 6 present
the experimental setup and the results of some experi-
ments. Finally, a conclusion and some discussion of the
proposed method is presented in Section 7.

2 Panoramic images and their rotation

invariance

In this work we use panoramic images of the envi-
ronment1, Figure 1. Panoramic images are appealing

Figure 1: A typical panoramic image

as they capture in one image everything that is vis-
ible from the current view point. This makes them
ideal for localisation and map building tasks. More-
over, there is some evidence that insects use wide-
angle “images” of their environment to localise them-
selves with respect to a visual map of their environ-
ment. Furthermore, it seems that images are interpreted
as a whole, without requiring any feature extraction
(Collett, 1996, Judd and Collett, 1998).

Another advantage of panoramic images, often
used in the literature (Pajdla and Hlaváč, 1999,
Jogan and Leonardis, 2001, Neal and Labrosse, 2004b),
is that they explicitly contain information about the
orientation of the camera. All images taken from the
same position but with different orientations can indeed
be transformed one into another. This can be performed
efficiently by just shifting columns of the images. This
property has been used to extract rotation invariant
representations of places, for example the Zero Phase
Representation in (Pajdla and Hlaváč, 1999). However,
this assumes that the robot can indeed rotate around
the optical axis of the panoramic camera, which is often
not the case, at least not in uncontrolled environments.
The robot used in these experiments (Section 5) is not
circular and turns using skid steering. Combined with
the fact that we usually use it outdoors, there is no
guarantee that the robot rotates around the optical axis
of the camera or that it is even possible to do that given
the uneven terrain.

1Section 5 describes the hardware and software setup to pro-
duce such images.

3 Distance in the image space

Another interesting property of panoramic images is that
they smoothly change from places to nearby places. This
property is fundamental to all the purely image-based
methods.

Let us formalise this. Grey-level n × m pixels images
can be viewed as points in an n × m dimensional space
that thus can represent all possible images. This high-
dimensional space is called the image space. With the
case of colour images, the image space has a dimension of
n × m × 3 for three-components colours (we used RGB
images in this case)2. When a robot moves in its en-
vironment, all the images grabbed are organised on a
1D curve embedded in the image space. In more gen-
eral cases, particularly if the robot has a trajectory that
cannot be assimilated to a 1D trajectory, the curve be-
comes a manifold of dimensionality dependent on the
actual trajectory of the robot and possibly factors such
as lighting conditions.

Geometrical properties of these manifolds have been
studied in (Lu, 1998, Lu et al., 1998). In particu-
lar, it has been shown, and nicely exemplified in
(Bichsel and Pentland, 1994), that the manifolds are
highly curved. The consequence is that the Euclidean
distance is not necessarily a good measure of the sim-
ilarity between images (the image midway, using Eu-
clidean distance, between two images is not the im-
age midway between the two corresponding positions
of the robot). Figure 2 shows the distance between

Figure 2: Distance between several images and a target image

an image taken in our lab close to one side of a pen
and images taken from different places in the pen.
Figure 7 shows such images. More can be found in
(Mitchell and Labrosse, 2004). As can be seen, there is
a clear relationship between Euclidean distance between
points in the image space (in other words between im-
ages) and distance in Cartesian space. This has also been

2Note that the RGB colour space is not the best colour space
but is enough for this work. A better colour space would be the
CIE L∗a∗b∗ colour space as it is perceptually linear, a property
that is very important when it comes to measuring distances be-
tween colours (Fairchild, 1998, Labrosse and Willis, 2001).



used in (Neal and Labrosse, 2004a) to build topological
networks of places.

4 The visual compass

Having shown that panoramic images contain informa-
tion about the orientation of the robot and that it makes
sense to measure the Euclidean distance between images
(points in the image space), we show how we can extract
the heading of the robot.

The robot regularly grabs panoramic images while it
moves. Each pair of successive images is used as follows.
The current image is compared to the previous one and
un-rotated so that it matches as best as possible the pre-
vious image (lowest distance in the image space). The
un-rotation is performed by shifting columns of the im-
age and corresponds to rotating to robot in the opposite
direction of its real rotation. The column shift giving the
lowest distance between the two images is thus related to
the rotation of the robot. Because we use images having
one column per degree of rotation, the shift is actually
equal to the angle of rotation. By keeping track of the
relative shifts (rotations of the robot) between consec-
utive images, the current heading of the robot can be
integrated3.

Figure 3 shows the pseudo-code of the algorithm.

5 Experimental setup

We used an all-terrain, four-wheel drive, skid steer-
ing, Pioneer2 AT robot. It is equipped with an omni-
directional camera made as follows. A “normal” cam-
era pointed upwards looks at a hyperbolic mirror4 which
gives circular images, Figure 4.

Images are then unwrapped, leaving out the pixels not
corresponding to the environment. The unwrapping is
done by scanning a line from the centre of the image
around the image. 360 lines are used, producing on col-
umn in the panoramic images per degree of angle. Pix-
els of the unwrapped image can be taken as the near-
est neighbour of the original image (not smooth version)
or using bilinear interpolation between the four nearest
neighbours in the original image (smooth version).

It is important to note that although the images could
be unwrapped to produce undistorted panoramic images,
we do not do that. The reasons are that the perspex tube
attaching the mirror to the camera is not perfect, the
process would need an accurate calibration and, more
importantly, the image-based approach allows us not to
use calibrated procedures.

Figure 5 shows the robot with the camera on top of it.
Figure 6 shows a close-up of the omni-directional camera

3The heading is only relative to a reference, usually the head-
ing of the robot when it started. However, if the heading at the
beginning is known, then the current heading can be absolute,
Section 5.

4The mirror comes from Neovision s.r.o., Czech Republic.

main

currentHeading = 0 // Or any reference.

grab(previousImage)

grab(currentImage)

while not finished

shift = bestMatch(previousImage,

currentImage)

currentHeading += shift

previousImage = currentImage

grab(currentImage)

endwhile

endmain

function bestMatch(image1, image2)

bestShift = 0

bestDist = infinity

forall shift in 0..359

shiftImage(image2, shift)

dist = distance(image1, image2)

if dist < bestDist

bestDist = dist

bestShift = shift

endif

endfor

return bestShift

endfunction

Figure 3: Pseudo-code of the algorithm for the visual compass

Figure 4: A panoramic image as grabbed and unwrapped

on which both the camera (bottom) and the mirror (top)
are visible.

Visible above the omni-directional camera on Figure 5



Figure 5: The mobile robot

is a small magnetic compass5 used to evaluate our csys-
tem. The compass is at the end of a 30cm long plas-
tic tube above the mirror so that it is as far away as
possible from any magnetic source on the robot (within
reasonable limits). The compass has been accurately
calibrated, both hardware and software driver, using a
third traditional compass. However, we did notice that
both indoors and outdoors, the compass was providing
headings that were not necessarily predictable. Indoors,
this was due to a large amount of metallic and electronic
components (metallic mesh, trunking in the floor, CRT
displays, etc.) as well as, to some extent, irregularities
of the floor. Outdoors, the variations were mainly due
to the very uneven terrain the robot was driving on (we
did notice variations of up to almost 20◦ when the robot
was not turning, Figure 11). Nevertheless, the compass
provides a non-drifting heading.

Images are grabbed on the robot, unwrapped on the
robot’s computer and transmitted over TCP sockets over
a wireless Ethernet connection to a laptop doing the re-
maining of the processing (the algorithm on Figure 3).
The wireless Ethernet can transmit in one way at speeds
of up to 1.5Mbps, which allows the transmission of about
1.2 frames per second. The compass is also read by the

5The model used is a CMPS03 from Devantech Ltd, England.

Figure 6: Close-up of the omni-directional camera

on-board computer and the values are also sent over TCP
sockets over the same wireless connection.

6 Results

We present four experiments, two indoors, two outdoors,
with smooth images and not smooth images, Section 5.
In each case, the visual heading is initialised with the
value returned by the magnetic compass so that the two
headings can be compared.

The indoors environment was a pen in our lab closed
on three of its sides about 5m by 5m in area. The inside
of the pen was free from obstacles but the lab was not
arranged in any way for the experiments. The outdoors
environment was a grassy area of about 20m by 20m
delimited on three sides by a road, a path and bushes
and containing a few trees in the middle, which implies
that not everything is visible from everywhere. More-
over, cars and people where moving by the area during
the experiments. The two environments present very dif-
ferent backgrounds: one is almost random clutter (the
lab) while the other, though still presenting variations,
is a lot more constant and smoothly varying, at least in
the images.

The indoors experiments were ran so that the heading
at the beginning and at the end were the same, around



Figure 7: Some images taken during the experiment in our

lab
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Figure 8: Results for the indoors experiment with smooth

images

68◦ as returned by the magnetic compass.

6.1 Indoors with smooth images

Figure 7 shows typical images grabbed during the ex-
periment. Figure 8(a) shows the headings, both from
the compass and visual, as the robot was moving (the
index of the x axis is the frame index). As can be seen,
the two compasses agree quite closely, apart from two
places, a few frames, where the large error is due to the
two headings being on different sides of the zero mark.
Figure 8(b) shows the error, corrected for when the head-
ings are on opposite sides of the zero mark.

The maximum error is of about 35◦, which seems to
be important. However, the magnetic compass is not
perfect due to different factors, Section 5. We have ob-
served error of up to 20◦ in the heading returned by the
magnetic compass and it is thus difficult to establish to

what extent the error we observe is due to the visual
compass or the magnetic compass6.

The graphs show an almost systematic error when the
robot turns right (heading increasing). Because the er-
ror does not increase, this is not due to an error in the
evaluation of the heading. We think that the error is
mainly due to the slowness of the wireless connection.
The problem is that the image and the compass reading
cannot be both downloaded at the same time. In other
words, they do not correspond to the same physical spa-
tial configuration of the robot. This is further discussed
in Section 7.

It is important to notice that the heading returned by
the visual compass does not drift. In particular. the
heading at the beginning of the trajectory was 68◦, as
returned by the magnetic compass, and was 60◦ at the
end of the trajectory, while the magnetic compass was
giving 68◦, so an error of 8◦.

6.2 Indoors with not smooth images

This experiment is more or less the same as the one in
Section 6.1. The trajectory of the robot is not exactly
the same but is similar. The difference is that we use not
smooth unwrapped images, Section 5. The images are
definitely different at the pixel level but the difference
is not visible enough when printed on paper at these
resolutions.

The graphs, Figures 9(a) and 9(b), show similar result
as with smooth images. The maximum error is higher,
about 50◦, which seems to show that smooth images are
better. This is however not very conclusive as this could
be due to different trajectories, especially since the head-
ings given by the visual compass was 67◦ at the begin-
ning of the trajectory and 66◦ at the end (compared to
respectively 67.6◦ and 68.1◦ given by the magnetic com-
pass).

6.3 Outdoors with smooth images

Figure 10 shows some typical views of the outdoors area
we used for this experiment.

The graphs shown on Figure 11 show similar results,
both in quality and in quantity. Two things need to
be noted however, both about the performance of the
magnetic compass. The first one is that the robot did
not turn at all during the first 14 images. The visual
compass accurately registers that. However, the mag-
netic compass shows non-negligible (up to almost 20◦)
but smooth variations. These are due to the fact that
the ground had a large bump where the robot started,
thus slowly changing the pitch and roll of the robot and
compass. The second fact is present in different places

6We could have used a third compass as during the calibration
procedure. However, for time and manipulation reasons, we did
not perform this test.
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Figure 9: Results for the indoors experiment with not smooth

images

Figure 10: Some images taken during the outdoors experi-

ment

on the graphs but particularly visible for image 52. A
sudden change in pitch and roll of the robot gives a spu-
rious magnetic compass reading.

6.4 Outdoors with not smooth images

Figure 12 gives the graphs for the outdoors experiment
with not smooth images. Again, they are both quantita-
tively and qualitatively similar to with smooth images,
both maximum errors being of about 56◦.

It is to be noted that this is only marginally worse that
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with the indoors experiments, the worse results probably
being only due to the worse performance of the magnetic
compass.



7 Conclusion and discussion

We have shown in this paper how to implement a vi-
sual compass. The compass works by estimating by how
much the robot rotates between each pair of consecu-
tive images grabbed while it is moving. The system is
in its nature very similar to traditional odometry using
wheel encoders. We have informally compared our visual
compass to the heading information given by the robot’s
odometry, and needless to say, but we say it anyway,
that the visual compass performs infinitely better.

We have shown both theoretically and practically that
it makes sense to use the Euclidean distance between im-
ages in the image space, due to the fact that the consec-
utive images show a strong correlation.

The image-based approach obviously has limitations.
The images need to have distinctive features. The pre-
sented experiments however show that both a random
clutter and a more constant smoothly varying back-
ground perform similarly. However, the system would
not work in places that are visually homogeneous or
repetitive, as when surrounded by a chessboard7.

The results we presented are promising. Although the
maximum errors can go up to around 50◦, the high errors
are only peak values, the error being most often in the
20◦ error band. More importantly, it is clear that the
visual compass does not drift. More experimentation
should allow us to statistically characterise the perfor-
mance of the visual compass.

We have also mentioned that most of the errors pre-
sented are due to the unreliable magnetic compass and to
the fact that due to hardware limitations of our setup, it
is not possible to measure both visual heading and mag-
netic heading at the same time (grabbing time to some
extent, but mainly downloading time). A way around
this would be to multi-thread the application and run it
on the robot’s computer.

Finally, we were able to process at speeds of about
1 frame per second, most of the time being taken by
the downloading of the images. The code in its current
state is not optimised at all. In particular, it always
looks for the absolute minimum when determining the
best shift, Figure 3. This can clearly be improved by
only searching for a nearby local minimum of the dis-
tance function first in the same direction of shift as for
the previous pair of images, on the grounds that the
robot usually does not change its direction of rotation
too quickly. Moreover, although the processing time
is not negligible, it is anyway needed for higher level
tasks performed by the robot, typically environment
mapping and navigation (Neal and Labrosse, 2004b,
Mitchell and Labrosse, 2004).

Despite all these possible improvements, we have
shown a system that performs well enough to, for ex-

7However, human beings and animals have similar limitations!

ample, disambiguate a re-localisation process. As pre-
sented in (Neal and Labrosse, 2004b), we have noticed
that blindly comparing in the image space panoramic
images taken from very different positions in Cartesian
space can lead to wrong matches. This system is an
obvious solution to this problem.
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