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Abstract

In this paper, we present a method that uses
panoramic images to perform local homing. Our
method is different from others in that it does
not extract any features from the images and
only performs simple image processing opera-
tions. Furthermore, it uses a method borrowed
from computer graphics to simulate the effect in
the images of translations of the robot to compute
local motion parameters.

1 Introduction

Visual navigation increasingly relies on local meth-
ods: paths are specified in terms of intermedi-
ate targets that need to be reached in succession
to perform the navigation task (Vassallo et al., 2002,
Neal and Labrosse, 2004, Gourichon, 2004). This task
can thus be reduced to a succession of homing steps.

Many homing methods that use vision require
the extraction of features from the images and
their matching between successive images. This
is for example the case for most methods derived
from the snapshot model (Cartwright and Collett, 1983,
Cartwright and Collett, 1987). A review and “geneal-
ogy” tree of such methods are given in (Gourichon, 2004)
and links between biology and computational mod-
els are given in (Ruchti, 2000). A snapshot is
a representation of the environment at the homing
position, often a one-dimensional black and white
image of landmarks and gaps between landmarks,
e.g. (Rofer, 1997, Moller et al., 1999), but also two-
dimensional images of landmarks such as corners, e.g.
(Vardy and Oppacher, 2003).  Most of these meth-
ods use panoramic snapshots. Although feature ex-
traction can be fast, it often requires assumptions
about the type of features being extracted and the
world in which the robot is, in particular its struc-
ture (Gonzales-Barbosa and Lacroix, 2002). Natural en-
vironments often present no obvious visual landmarks or
when these exist, they are not necessarily easy to distin-
guish from their surroundings. The matching of features
between successive images is often difficult and also re-
quires many assumptions (see (Gourichon, 2004) for a
discussion).

We propose to wuse the images as they are;
this is the appearance-based approach (Labrosse, 2006,
Mitchell and Labrosse, 2004, Neal and Labrosse, 2004).
This is also sometimes called the signal-based approach
(Cozman et al., 2000). Using whole two-dimensional im-
ages rather than a few landmarks extracted from images
reduces aliasing problems; indeed, different places can
look similar, especially if “seen” using only a few ele-
ments of their appearance.

Not many published papers propose to use raw images;
a few examples follow. A one-dimensional panoramic
image is used by (Rofer, 1997), from which the optic
flow is extracted between successive images to control
the robot. An array of light sensitive sensors (typically
eight) is used by (Bisset et al., 2003) to represent and
recognise places; a process similar to the one described in
(Neal and Labrosse, 2004) is used to provide rotation in-
dependence. In (Gonzales-Barbosa and Lacroix, 2002),
histograms of Gaussian derivative filtered images are
used. A detailed study of the pixel-wise comparison (Eu-
clidean distance) between panoramic images captured in
outdoors environments is done in (Zeil et al., 2003).

In this paper we address the problem of returning to a
homing position from a not too distant starting point
in real, unmodified environments. The method uses
panoramic images captured using an omni-directional
camera (a “normal” camera pointing up at a hyper-
bolic mirror) and simple image processing as well as
algorithms borrowed from computer graphics. Note
that a similar method was proposed in (Zeil et al., 2003)
but implemented in an unrealistic setting: the robot
was not rotating and it was moving along trajecto-
ries that were neither efficient nor possible with a mo-
bile robot (the “robot” was a camera mounted on a
gantry). Similar work and methods have been presented
in (Franz et al., 1998), the important differences being
that (1) they use 1D panoramic images and (2) they use
features that are “warped” on the 1D ring, while we use
complete 2D images without any feature extraction.

Section 2 describes the method used to perform the
homing by first describing what the problem is and then
our solution to the problem while Section 3 describes
the whole homing procedure. Section 4 presents some
results. A discussion of the results and a conclusion is
provided in Section 5.



2 Method
2.1 The problem

The method relies on the fact that changes in images
grabbed by the robot when it moves are progressive and
that there is thus a clear mapping between images and
the environment of the robot. This mapping however
can break in some circumstances, typically when distinct
places look similar (i.e. have the same appearance). In
the case of homing, this is not a problem because the
robot starts from a position that is not too remote from
its destination. The mapping is however made more ro-
bust by the use of panoramic images (Figure 2 gives
some examples and the procedure to obtain these images
is detailed in (Labrosse, 2006)). Because such images
show everything that is visible from a given view point
in one image, less tends to appear and disappear com-
pared to “traditional” (non-panoramic) images when the
robot moves. Moreover, because everything is visible, it
is more difficult to create two different places having the
same appearance.

The problem is to compare images in a way that is
both fast and reliable. As mentioned in Section 1, we
do not want to use visible features of the environment
but rather use simple pixel-wise comparisons of the im-
ages. An h x w pixels image with ¢ colour components
per pixel is a point in the image space, a space hav-
ing h X w x ¢ dimensions representing all possible im-
ages of the given size. Images can thus be compared
by measuring the distance between them in that image
space. A number of distance metrics are possible and
we have tried in previous work an L! norm (Manhat-
tan distance) and an L? norm (Euclidean distance) not
showing any difference in the results obtained by either
(Mitchell and Labrosse, 2004). For no other reason than
simplicity, continuity and smoothness, the Euclidean dis-
tance is used in this work. The distance between two
images is thus defined as
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where Z;(k, 1) and Z; (k, ) are the [*!' colour component of
the k™ pixel of images Z; and Z; respectively. Pixels are
enumerated, without loss of generality, in scan-line order
from top-left corner to bottom-right corner. We used for
this work the RGB (Red Green Blue) colour space, thus
having three components per pixel. The combination
of Euclidean distance and RGB space is not necessarily
the best to use but it is sufficient for our purposes (see
(Labrosse, 2006) for a discussion).

Performing such image comparisons is only useful if it
can lead to information that is pertinent to the task. Fig-
ure 1 shows the distance between a number of grabbed
images and a “target” image, in our Lab. The images
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Figure 1: The distance between images grabbed from a num-
ber of regular positions and a target image (the coordinates
only reflect image index, not coordinates in Cartesian space)

Figure 2: Some of the images used for the experiment on

Figure 1: target image (top) and positions (2, —3) (middle)
and (—4,4) (bottom)

were grabbed from positions on a regular grid (81 im-
ages in total) and the target image was grabbed from
approximately the centre of the grid. The grid size in
Cartesian space is approximately 5 m x 5 m (coordi-
nates on the figure show position on the grid). For
all the images the robot was facing in the same direc-
tion. Images corresponding to positions on the grid on
Figure 1 around (—4,4) were grabbed while the robot
was almost touching large objects (Figure 2, bottom),
hence producing larger and faster varying distance values
compared to other places where the robot was far from
any object. This is consistent with results presented in
(Zeil et al., 2003) for an outdoor environment in a large
variety of spatial configurations such as far from objects
or on the contrary close to objects.

It is clearly visible that the homing position corre-
sponds to the minimum of the distance as a function of
space, which in a real situation is not available. It is also
clear that a gradient descent on this function will lead to
the minimum. This however implies two problems: com-
puting the gradient of the distance function and knowing
the heading of the robot relative to the target.

Computing the gradient of the distance function at
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Figure 3: The four images needed to compute the gradient
of the distance function at a given position

any point requires four images: the target image Z;, the
current image Z. and two images Zs, and Zs, taken af-
ter two displacements from the current position corre-
sponding to the orthogonal directions X and Y, Fig-
ure 3. A solution to that problem was proposed in
(Zeil et al., 2003): physically moving the robot to ob-
tain the images Zs, and Zs,. However, in the context
of mobile robotics this is not desirable or even possible.
It could be argued that only a small triangular trajec-
tory from the current position is needed to obtain the
three images. However, such a trajectory is difficult to
accurately perform in all but contrived cases and is im-
possible with many robots (but not with the one we used
in this work). Moreover, such a procedure would not be
efficient, which is important in many situations.

The problem of knowing the orientation of the robot
relative to that of the target can be solved in a number
of ways (and as such has been assumed to be available
in many papers). One solution is to use an additional
sensor such as a magnetic compass. Another is to in-
corporate the orientation finding in the process. This
is possible to some extent for example as part of the
feature matching process (Moller et al., 1999) or optical
flow computation (Roéfer, 1997).

We propose in the next section our solution to these
two problems.

2.2  Owur solution

The heading of the robot can be estimated using the
panoramic images themselves. This is what we use here.
For each new image grabbed, the heading is computed
by measuring column shifts between the previous images
and the current image (Labrosse, 2006). This procedure
provides the heading of the robot at each new image
with an error within 20° after a long trajectory. For
short trajectories involved in homing, the typical error
is below 5°. Note that the robot does not need to be
physically aligned with the target. This can be simulated
by horizontally shifting the images (Labrosse, 2006).
Once the orientation of the robot relative to that of
the target is known, the direction of the two transla-
tions needed for the gradient computation becomes spec-
ified. In this paper we propose to simulate the trans-
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Figure 4: Projection of the environment of the robot onto
panoramic images
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Figure 5: Deformations introduced in panoramic images by
forward (top) and sideways to the right (bottom) translation
of the robot

lations by synthesising the corresponding images from
the current image Z.. There is a large number of pa-
pers in the literature on image-based rendering in gen-
eral and simulation of viewpoint in particular. Most
of these methods tackle the more general and theoret-
ical problems (Ullman and Basri, 1991, Lu et al., 1998,
Tenenbaum, 1998, Shum et al., 2002). In this paper we
adopt a more purposive approach because we are only in-
terested in simulating specific short displacements: for-
ward and sideways translations.

The environment of the robot projects onto the
panoramic images from left-to-right in the images as the
areas corresponding to the left of the robot (column 0),
the back (column at 25% of the width), the right (col-
umn at 50%), the front (column at 75%) and finally the
left again (column at 100%), Figure 4. When the robot
moves forward, the part of the image corresponding to
the front of the robot expands while the part correspond-
ing to the back contracts. The parts corresponding to
the sides move from front to back, Figure 5. A simi-
lar deformation happens when the robot moves sideways
(to the right). An exact transformation could be com-
puted using the characteristics of the camera if the 3D
structure of the environment was available. Indeed, the
exact apparent motion of objects in the images depends
on their position in the environment relative to the cam-
era. For example, objects close to the camera will move
more than objects far away from the camera. Since the
3D structure of the environment is not available only an
approximation of the transformation is possible. More-
over, parts of the environment are not visible from the



Figure 6: Three images used to determine the parameters of
the warping: Z. (top), Zs, (middle) and Zs, (bottom)

Figure 7: The two images simulating the translation respec-

tively corresponding to Zs, (top) and Zs, (bottom)

current position but should be visible from the trans-
lated position. These parts cannot be recovered by any
transformation of the images.

We perform the transformation by warping the im-
ages using bilinear Coons patches (Heckbert, 1994). The
method only needs the boundary of the area of the orig-
inal images that need to be transformed into the new
rectangular image, this for both translations. To ob-
tain these boundaries, the rectangle corresponding to the
boundary of the image is transformed as follows:

e the top and bottom edges of the rectangle are reg-
ularly sampled into a number of positions (20 in all
the experiments reported here);

e cach position is shifted horizontally (d,) and verti-
cally (d,) according to its position using functions
described below;

e the new positions are used as control points for the
Coons patches of the top and bottom parts of the
boundaries;

e the right and left sides are defined by the extremities
of the top and bottom edges and are straight lines.

The two functions are piece-wise polynomials. The de-
gree of the polynomials was determined arbitrarily to be
3 and 1 respectively for the horizontal and vertical shifts
of the positions. Other values of the degree have been
tried but they have only very limited effect on the perfor-
mance of the system. The amplitude of the polynomials
is more critical as they reflect the amount of simulated
translation. These values have been determined experi-
mentally by grabbing three images in a typical homing
place corresponding to images Z., Z5, and Zs, on Fig-
ure 3. An example of these is shown in Figure 6. The
centre image 7. has then been transformed into the im-
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Figure 8: The functions used for the horizontal (top) and
vertical (bottom) shifts of positions to obtain the top of the
boundary used by the warping to simulate the forward trans-
lation. For the bottom part of the boundary, the same func-
tions were used but inverting the column index.

Forward translation

Right translation

Figure 9: The boundaries used by the warping to simulate
the translations (solid) that map onto the image (dashed)

ages simulating the corresponding translations using the
method described above with various values of the am-
plitudes until images visually similar to the real ones
where obtained. These images are shown in Figure 7.
Similarity was assessed by comparing the position and
size of the visible features in the images in front and on
the right of the robot. The retained amplitude values
are 9 and 4 respectively for the horizontal and vertical
shifts. Figure 8 shows the resulting functions that were
used to simulate the forward translations of the robot.
The sideways translation functions are the same shifted
column-wise by 90. Figure 9 shows the resulting bound-
aries used by the warping.

Once the images simulating the translation of the
robot are obtained, the gradient of the distance func-
tion in image space corresponding to the position of the
robot can be computed using the current image 7., the
two simulated images Zj, and I, and the target im-
age Z;. Figure 10 shows the gradient computed using
the method for each image used to compute the distance
function in Figure 1. This clearly shows that the method
works in most cases. In particular, the computed gra-
dient is not as good on the top-left corner of the figure.
That position corresponds to a place in the environment
of the robot which was changing rapidly as a function
of the displacement of the robot because of the proxim-
ity of large objects, Figure 2 (bottom). This is further



Figure 10: The computed gradient for the images used in
Figure 1 using the simulation of the translation

discussed in Section 5. It is interesting to note that the
magnitude of the gradient increases dramatically as the
robot gets closer to the target.

3 Homing procedure

As previously stated, the heading of the robot relative to
that of the target must be known at all times. Using the
visual compass (Labrosse, 2006), we must have the head-
ing of the robot at the beginning of the process. This
is not too constraining in the context of global naviga-
tion where the robot would follow a succession of targets,
thus having the possibility of knowing its heading from
the previous target.
The algorithm is as follows:

1. Grab a new image Z.

2. Produce the two images Zj, and T, .

3. From these images and the target image Z;, compute
the gradient at the current position.

4. Use the orientation of the gradient vector to control
the heading of the robot and the magnitude of the
gradient vector to adjust the forward speed.

5. Repeat 1. until the target is reached.

6. Align the robot with the target.

A simple proportional controller was used for the ori-
entation of the robot. The speed was set to a proportion
of the inverse of the gradient magnitude plus one, al-
though in a more general navigation context a constant
speed might be better.

Determining when the target is reached can be done

in a number of ways. For example, as previously noted,
the magnitude of the gradient increases dramatically at
the target. A threshold on the magnitude, or its rate of
change, or on the distance itself could be used. However,
such thresholds are difficult to establish and their value
depends on a number of factors such as the pixel values
of the images, themselves depending on many factors (il-
lumination, environment, etc.). Instead we use a sudden
change in gradient orientation, a method that has been
used by others, e.g. (Rofer, 1997). Apart from possibly
at the beginning of the process where the robot might
not be moving towards the target, the orientation of the
gradient should remain constant, or at least not change
dramatically until the robot passes the target. However,
as can be seen in Figure 10, the gradient at the target
can be oriented similarly to the gradient nearby. This
results in detecting the target too late or too early de-
pending on where the robot is coming from. As will be
seen in the results presented bellow, this contributes to
a systematic bias in the homing position.

4 Results

We report here a number of experiments performed in
our lab. A motion tracking system VICON 512 was used
to track the position and orientation of the robot during
the experiments to assess the precision, repeatability and
robustness to various parameters. All distances are given
in centimetres.

For the first experiment we set up the target position
near one side of the play area and started the homing
procedure from fifteen different well separated positions.
In all cases the robot started with the same orientation as
the target. Figure 11 shows the trajectories of the robot
for the 15 runs. The orientation of the robot is shown
with short thin lines. The target is shown as a star.
Apart from two cases, all final positions are in a square
20 cm wide. The centre of the square is 28 cm away
from the target. The final orientation is within 5° of the
target orientation, although this shows the performance
of the visual compass rather than that of the homing
procedure. The two failures are due to the fact that the
target was close to the limit of the play area with large
objects in the top right and left corners in Figure 11. As
previously noted this is a situation where the simulation
of the translation of the robot does not work well.

The repeatability of the final position of the homing
is thus good. However, the accuracy is not as good since
the final position is systematically biased even for differ-
ent targets. Part of the reason is the stopping criterion
used, Section 3. The main reason however is probably
that the parameters of the warping were not determined
with the same images nor the same environment. This
is discussed further in Section 5.

The next experiment shows the repeatability of the
trajectories. The homing procedure was performed sev-
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Figure 11: Homing from 15 different initial positions. The
initial and final orientations of the robot are show by short
thin lines. The target is marked by a star.

eral times from the same starting pose (within 5 mm in
the z direction, 8 mm in the y direction and 1°). Fig-
ure 12 shows the results of the experiment for five trials.
All the trajectories finish less than 8 cm from each other
and the largest distance between trajectories is about
10 cm. A similar bias as in the previous experiment is
observed.

The effect of the heading of the robot at the beginning
of the procedure is evaluated in the next experiment.
Using the same target as the previous experiment, the
homing was started from roughly the same position as
before (within 5 cm in the z direction and 13 cm in the
y direction, except for one case, see below) but with four
different orientations relative to that of the target: 40°,
4+90° +180° and +270° all correctly specified at the be-
ginning of the procedure. For the case of +180° we had
to start from a slightly different position (about 65 cm
in the = direction from the other starting positions) be-
cause of space constraints. Obviously the trajectories
are different, but again good repeatability of the final
position is obtained with a bias similar to the previous
experiments.

An assumption made in Section 2.2 is that the heading
of the robot is known at all times. As previously stated,
we used the visual compass that incrementally estimates
the change in heading. An initial error in the heading
is thus significant for the heading values as the robot
progresses. This is tested in the following experiment
where the homing procedure was started from the same
position with varying orientations while the robot was
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Figure 12: Repeatability of the homing procedure: five runs
of the experiment

told that its starting orientation was that of the target.
These initial real orientations are given in Table 1 and
the resulting trajectories are shown in Figure 14. The
three trajectories in dotted line did not finish (were in-
terrupted before the robot stopped). All the others did
finish. As expected, the orientation at the end matches
that at the beginning (because the visual compass works
as expected). The trajectories with an error in head-
ing of less than 4° to the right and 6° to the left still
stop at the expected position (with the same bias as in
previous experiments). The procedure fails with larger
errors. However, the general direction of the trajectory
is right and the x position is fairly accurate. This is
probably due to a strong visual cue that was present ap-
proximately at position (100, —100) and was contribut-
ing mostly in translations along the x direction (a long
but thin polystyrene sheet standing there to limit the
play area).

5 Discussion and conclusion

All the results show good performance of the visual hom-
ing procedure proposed here. In particular, very good
repeatability has been demonstrated and the method
proves more robust than expected when the robot is
given erroneous information about its initial heading
(the only information required).

The method makes a number of assumptions. The
first is that, at least for the final stage of the homing,
the robot must be able to turn on the spot. This is
because no trajectory planning has been incorporated in
the procedure to ensure that the robot arrives at the tar-



Table 1: Wrong initial heading values for the different trajectories of Figure 14

Index target 0 1 2 3

Heading 179 179 188 183 175

4 5 6 7 8 9 10
173 169 162 149 141 131 113

200 T T T T T

150 |- —

100 — —

I | I | I | I | I |
-50 0 50 100 150

Figure 13: Effect of the orientation of the robot at the be-
ginning of the homing procedure

get with the correct heading. This is obviously a problem
that needs to be solved should the method be applied to
a car-like robot. However, in the context of global navi-
gation, i.e. “homing” on a number of successive targets,
reaching the correct orientation at each target is not nec-
essarily important and correct orientation could be eas-
ily reached for the final target by specifying a number of
close sub-targets just before the end of the path.

The second assumption made by the method is that
the parameters of the warping simulating the transla-
tion of the robot for the gradient computation work in
all situations. This is obviously wrong. For example,
the apparent motion of the objects in the images is more
important for objects that are close to the robot. This
is even truer for objects that lie on a line perpendicu-
lar to the direction of the translation. In other words,
we use the “equal distance assumption” that others have
also used (Franz et al., 1998). However, the parameters
used in these experiments have been obtained in an en-
vironment that was different (objects placed differently
around the play area) and for a position that was dif-
ferent than the target positions used here. Despite this,
the performance shown is good. However, this might be
the reason for the systematically encountered bias. Be-
cause targets can be in very different locations for global
navigation, establishing parameters on a per target basis
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Figure 14: Effect of giving the wrong heading value to the
robot at the beginning of the homing procedure (the values
are given in Table 1)

might be a good idea and this should be done automat-
ically from real images grabbed after a short (forward)
translation. This automatic method would use a min-
imisation of the distance between the real image and the
image simulating the translation. Moreover, in the case
of asymmetrical environments different warping param-
eters should be used to simulate the forward and side-
ways translations. However, automatically determining
the parameters of the sideways translation might be a
problem as many robots cannot reliably perform that
translation. Finally, the actual directions of the sim-
ulated translations should probably be such that they
align with visual symmetries of the environment. Such
symmetries are however difficult to establish.

The third assumption is that the target image can still
be obtained, which is not necessarily the case. For ex-
ample if the overall illumination changes between the
target acquisition and the homing, then it is probable
that the performance will decrease. It is however pos-
sible to solve that kind of problem by using different
colour spaces (Woodland and Labrosse, 2005) and using
shadow removal or colour constancy methods.

To conclude, we have described a method that uses
simple image comparisons and techniques borrowed from
computer graphics to perform visual homing of a robot.



The performance of the method has been evaluated in
a number of situations and shown to be good, despite
presenting a systematic bias in the final position. More
tests need to be performed to assess the catchment area
of the method around the target. It is however expected
that the result of such a study will be highly dependent
on the actual environments, for example producing large
catchment areas in wide uncluttered spaces and smaller
areas in the presence of many obstacles.
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