

Derivations and local multipliers of C^* -algebras

Martin Mathieu

(Queen's University Belfast)

Aberystwyth, 19 September 2013

Martin Mathieu

(Queen's University Belfast)

Derivations A C^* -algebra $d: A \to A$ linear, derivation if d(xy) = x(dy) + (dx)y $(x, y \in A)$ Sakai 1960: d bounded d inner if $dx = xa - ax = [x, a] = d_a(x)$ for all x and some a; Sakai 1968: d is inner if A simple, unital in general, d not inner; e.g., A = K(H), $d = d_{a|K(H)}$ where $a \notin K(H) + \mathbb{C}$; Sakai 1971: d is inner in M(A) if A simple, where M(A) multiplier algebra of A.

Derivations	Local Multipliers	Two Questions	Back to Derivations	
A sep	arable C*-alg	ebra		
	- 0			

Theorem (Akemann-Elliott-Pedersen-Tomiyama 1976/1979)

Every derivation $d: A \rightarrow A$ is inner in M(A) if and only if A is the direct sum of a continuous trace C*-algebra and a C*-algebra with discrete spectrum.

Theorem (Pedersen 1978)

Every derivation $d: A \to A$ extends uniquely to a derivation $\overline{d}: M_{loc}(A) \to M_{loc}(A)$ and there is $a \in M_{loc}(A)$ such that $\overline{d} = d_a$.

here, $M_{loc}(A)$ denotes the local multiplier algebra.

Martin Mathieu

ations Local Multipliers	Two Questions			
1978 Pedersen int	roduces $M_{\rm loc}(A)$			
as "algebra of ess	sential multipliers	5"		
Definition				
For every C^* -alge	ebra <i>A</i> ,			
	$M_{ m loc}(A) = \varinjlim$	$I_{I\in\mathscr{I}_{ce}(A)}M(I)$,	
is its <i>local multip</i>	<i>lier algebra</i> , whe	re J	→ M(.	J)
$\mathscr{I}_{ce}(A)$ the filter $M(I) = \{y \in B(I)\}$	ot all closed esset H) $yI + Iy \subseteq I$ }	ential ideals o <i>multiplier al</i>	t A; lgebra of I.	

joint work with Pere Ara (Barcelona)

P. ARA AND M. MATHIEU, Local multipliers of C*-algebras, Springer-Verlag, London, 2003.

- Automorphisms
- Derivations
- Elementary Operators
- Jordan Homomorphisms
- Lie Derivations, Lie Isomorphisms
- Centralising and Commuting Mappings
- Bi-derivations
- Commutativity Preserving Mapping

joint work with Pere Ara (Barcelona)

Our algebraic approach to $M_{loc}(A)$ enables us to solve complicated operator equations, e.g.,

$$\left(\left([x, z]y[z, q(x)] - [z, q(x)]y[x, z] \right) r \left([x^2, z]y[x, z] - [x, z]y[x^2, z] \right) \right. \\ \left. - \left([x^2, z]y[x, z] - [x, z]y[x^2, z] \right) r \left([x, z]y[z, q(x)] - [z, q(x)]y[x, z] \right) \right) \times \right. \\ \left. \times u \left([w^2, v]t[w, v] - [w, v]t[w^2, v] \right) = 0$$

for fixed $x, y, z \in A$ and all $r, t, u, v, w \in A$.

Martin Mathieu

joint work with Pere Ara (Barcelona)

P. ARA AND M. MATHIEU, A not so simple local multiplier algebra, J. Funct. Analysis **237** (2006), 721–737.

P. ARA AND M. MATHIEU, Maximal C*-algebras of quotients and injective envelopes of C*-algebras, Houston J. Math. 34 (2008), 827–872.

P. ARA AND M. MATHIEU, *Sheaves of C*-algebras*, Math. Nachrichten 283 (2010), 21–39.

P. ARA AND M. MATHIEU, When is the second local multiplier algebra of a C^* -algebra equal to the first?, Bull. London Math. Soc. **43** (2011), 1167–1180.

	Two Questions		

Theorem (Pedersen 1978)

Every derivation $d: A \to A$ extends uniquely to a derivation $\overline{d}: M_{loc}(A) \to M_{loc}(A)$. If A is separable, there is $a \in M_{loc}(A)$ such that $\overline{d} = d_a$.

Question 1

Is every derivation
$$d: M_{loc}(A) \rightarrow M_{loc}(A)$$
 inner?

Question 2

Is
$$M_{\rm loc}(M_{\rm loc}(A)) = M_{\rm loc}(A)$$
 for every C*-algebra A?

in general,
$$A \subseteq M_{loc}(A) \subseteq M_{loc}(M_{loc}(A)) \subseteq \ldots \subseteq I(A)$$

Martin Mathieu

Theorem (Ara–Mathieu 2006)

There exist unital, separable, primitive AF-algebras A such that $M_{loc}(M_{loc}(A)) \neq M_{loc}(A)$.

Theorem (Somerset 2000)

Let A be a unital separable C*-algebra such that Prim(A)contains a dense G_{δ} subset consisting of closed points. Then $M_{loc}(M_{loc}(A)) = M_{loc}(A)$. Moreover, every derivation on $M_{loc}(A)$ is inner.

Theorem (Gogič 2013)

Let A be a C*-algebra such that every irreducible representation of A is finite dimensional. Then $M_{loc}(M_{loc}(A)) = M_{loc}(A)$. Moreover, every derivation on $M_{loc}(A)$ is inner.

Derivations Local Multipliers Two Questions Back to Derivations New Results Sheaf Approach

More on Q2

from Somerset,

A unital, separable, type $I \implies M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) = M_{\mathrm{loc}}(A)$.

Argerami, Farenick, Massey 2009: $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$ if $A = C[0, 1] \otimes K(H)$.

Ara-Mathieu 2008:

 $M_{
m loc}(M_{
m loc}(A))
eq M_{
m loc}(A)$ if $A = C(X) \otimes B(H)$ where

X Stonean with some additional properties.

- X perfect compact metric space
- *B* separable simple (nuclear) *C**-algebra (Elliott's programme)

		Two Questions	Back to Derivations				
More on (every	Q1 7 derivation on	$M_{ m loc}(A)$ is i	nner if				
 (i) M_{loc}(A) = A and every derivation on A is inner: A von Neumann algebra (Kadison–Sakai); A AW*-algebra (Olesen); A simple unital (Sakai). 							
 (ii) M_{loc}(A) = M(A) and every derivation on A is inner in M(A): A simple (Sakai). 							
(iii)	$M_{\rm loc}(A)$ simpl	e (possible	by Ara–Mathieu	1999!)			
(iv)	$M_{\rm loc}(A) AW^*$	-algebra: tative:	-	,			
	 A unital second 	eparable type l	(Somerset);				

• A with all irred. representations finite dimensional (Gogič);

in all these cases $M_{\rm loc}(M_{\rm loc}(A)) = M_{\rm loc}(A)$

Summary

- we have no example in which $M_{loc}(M_{loc}(A)) = M_{loc}(A)$ and we do not know that every derivation of $M_{loc}(A)$ is inner;
- we have no example in which $M_{loc}(M_{loc}(A)) \neq M_{loc}(A)$ and we know every derivation of $M_{loc}(A)$ is inner.

An if-and-only-if condition

Theorem 1 (Ara–MM, 2011)

Let B and C be separable C*-algebras and suppose that at least one of them is nuclear. Suppose further that B is simple and non-unital and that Prim(C) contains a dense G_{δ} subset consisting of closed points. Let $A = C \otimes B$. Then

$$M_{
m loc}(A) = M_{
m loc}(M_{
m loc}(A))$$

if and only if Prim(A) contains a dense subset of isolated points.

		Two Questions	New Results	
A sufficie	nt condition			

Theorem 2 (Ara-MM, 2011)

Let A be a quasi-central separable C*-algebra such that Prim(A) contains a dense G_{δ} subset consisting of closed points. Let B be a C*-subalgebra of $M_{loc}(A)$ containing A. Then $M_{loc}(B) \subseteq M_{loc}(A)$. In particular, $M_{loc}(M_{loc}(A)) = M_{loc}(A)$.

A quasi-central if no primitive ideal of A contains Z(A);

e.g., A unital or A commutative

B simple; *B* quasi-central \iff *B* unital.

Corollary

Let A be a quasi-central separable C*-algebra such that Prim(A) contains a dense G_{δ} subset consisting of closed points. Then every derivation of $M_{loc}(A)$ is inner.

$$d_{I(M_{\text{loc}}(A))} = d_{I(B)} = d_{I(M_{\text{loc}}(B))}.$$

$$\stackrel{\text{Pedersen}}{\Longrightarrow} d_{M_{\text{loc}}(B)} = d_y \text{ some } y \in M_{\text{loc}}(B) \stackrel{\text{Theorem 2}}{\subseteq} M_{\text{loc}}(A);$$

consequently, $d = d_y$ on $M_{\text{loc}}(A)$. \Box

Martin Mathieu

	Two Questions		Sheaf Approach

New Formulas for $M_{loc}(A)$ and I(A)

A C*-algebra

$$M_{\rm loc}(A) = \operatorname{alg\,lim}_{T \in \mathcal{T}} \Gamma_b(T, A_{\mathfrak{M}_A})$$

$$I(A) = \operatorname{alg\,lim}_{T \in \mathcal{T}} \Gamma_b(T, A_{\mathfrak{I}_A})$$

where $A_{\mathfrak{M}_A}$ and $A_{\mathfrak{I}_A}$ are the upper semicontinuous C^* -bundles associated to the multiplier sheaf \mathfrak{M}_A and the injective envelope sheaf \mathfrak{I}_A of A, respectively;

 \mathcal{T} is the downwards directed family of dense G_{δ} subsets of Prim(A); $\Gamma_b(\mathcal{T}, -)$ denotes the bounded continuous local sections on \mathcal{T} .

	Two Questions		Sheaf Approach

New Formulas for $M_{loc}(A)$ and I(A)

A C*-algebra

$$M_{
m loc}(A) = \operatorname{alg\,lim}_{\mathcal{T}\in\mathcal{T}} \Gamma_b(\mathcal{T}, A_{\mathfrak{M}_A})$$

$$I(A) = \operatorname{alg\,lim}_{T \in \mathcal{T}} \Gamma_b(T, A_{\mathfrak{I}_A})$$

these descriptions are compatible: $A_{\mathfrak{M}_A} \hookrightarrow A_{\mathfrak{I}_A}$

Consequence:

 $y \in M_{\text{loc}}(M_{\text{loc}}(A)) \subseteq I(A)$ is contained in some C*-subalgebra $\Gamma_b(T, A_{\mathfrak{I}_A})$ and will belong to $M_{\text{loc}}(A)$ once we find $T' \subseteq T$, $T' \in \mathcal{T}$ such that $y \in \Gamma_b(T', A_{\mathfrak{M}_A})$.

P. ARA, M. MATHIEU, Sheaves of C*-algebras, Math. Nachrichten 283 (2010), 21-39.

X a topological space; \mathcal{O}_X category of open subsets (with open subsets U as objects and $V \to U$ if and only if $V \subseteq U$).

 \mathcal{C}^* category of \mathcal{C}^* -algebras.

Definition

A presheaf of C^* -algebras is a contravariant functor $\mathfrak{A}: \mathcal{O}_X \to \mathcal{C}^*$. A sheaf of C^* -algebras is a presheaf \mathfrak{A} such that $\mathfrak{A}(\emptyset) = 0$ and, for every open subset U of X and every open cover $U = \bigcup_i U_i$, the maps $\mathfrak{A}(U) \to \mathfrak{A}(U_i)$ are the limit of the diagrams $\mathfrak{A}(U_i) \to \mathfrak{A}(U_i \cap U_j)$ for all i, j.

Universal Property:

$$\mathfrak{A}(U) \xrightarrow{\rho} \prod_{i} \mathfrak{A}(U_{i}) \xrightarrow{\nu} \prod_{i,j} \mathfrak{A}(U_{i} \cap U_{j})$$

$$\bigwedge_{B} \sigma$$

 $\begin{array}{l} U_i \cap U_j \longrightarrow U_i \text{ yields } \rho_{ji} \colon \mathfrak{A}(U_i) \longrightarrow \mathfrak{A}(U_i \cap U_j);\\ \text{similarly, } \rho_i \colon \mathfrak{A}(U) \longrightarrow \mathfrak{A}(U_i)\\ \text{requirement} \quad \nu \circ \rho = \mu \circ \rho;\\ \text{if } (B, \sigma) \text{ has like properties as } (\mathfrak{A}(U), \rho) \text{ then } \exists ! B \longrightarrow \mathfrak{A}(U). \end{array}$

Martin Mathieu

Notation and Terminology:

the C*-algebra $\mathfrak{A}(U)$ is the section algebra over $U \in \mathcal{O}_X$;

by $s_{|V}$, $V \subseteq U$ open, we mean the "restriction" of $s \in \mathfrak{A}(U)$ to V; i.e., the image of s in $\mathfrak{A}(V)$ under $\mathfrak{A}(U) \to \mathfrak{A}(V)$;

the unique gluing property of a sheaf can be expressed as follows:

for each compatible family of sections $s_i \in \mathfrak{A}(U_i)$, i.e., $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all i, j, there is a unique section $s \in \mathfrak{A}(U)$ such that $s_{|U_i} = s_i$ for all i.

Example 1. Sheaves from bundles

Let (A, π, X) be an upper semicontinuous C*-bundle. Then

$$\Gamma_b(-,\mathsf{A})\colon \mathcal{O}_X o \mathcal{C}_1^*, \quad U \mapsto \Gamma_b(U,\mathsf{A})$$

defines the *sheaf of bounded continuous local sections of* A, where C_1^* is the category of unital C^* -algebras.

 $\Gamma_b(U, A) \rightarrow \Gamma_b(V, A)$, $V \subseteq U$, is the usual restriction map.

Example 2. The multiplier sheaf

A C*-algebra with primitive ideal space Prim(A);

$$\mathfrak{M}_A : \mathcal{O}_{\operatorname{Prim}(A)} \to \mathcal{C}_1^*, \quad \mathfrak{M}_A(U) = M(A(U)),$$

where M(A(U)) denotes the multiplier algebra of the closed ideal A(U) of A associated to the open subset $U \subseteq Prim(A)$. $M(A(U)) \rightarrow M(A(V)), V \subseteq U$, the restriction homomorphisms.

Proposition

The above functor \mathfrak{M}_A defines a sheaf of C*-algebras.

Example 3. The injective envelope sheaf

let I(B) denote the *injective envelope* of B;

$$\mathfrak{I}_A \colon \mathcal{O}_{\mathrm{Prim}(A)} \to \mathcal{C}_1^*, \quad \mathfrak{I}_A(U) = p_U I(A) = I(A(U)),$$

where $p_U = p_{A(U)}$ denotes the unique central open projection in I(A) such that $p_{A(U)}I(A)$ is the injective envelope of A(U). $I(A(U)) \rightarrow I(A(V)), V \subseteq U$, given by multiplication by p_V (as $p_V \leq p_U$).

 $\{p_U \mid U \in \mathcal{O}_{\operatorname{Prim}(A)}\}\$ is a complete Boolean algebra isomorphic to the Boolean algebra of regular open subsets of $\operatorname{Prim}(A)$, and it is precisely the set of projections of the AW^* -algebra Z(I(A)).

	Two Questions		Sheaf Approach

from sheaves to bundles

Theorem

Given a presheaf \mathfrak{A} of C*-algebras over X, there is a canonically associated upper semicontinuous C*-bundle (A, π, X) over X.

Idea:

$$x \in X$$
, define $A_x := \lim_{x \in U} \mathfrak{A}(U)$ (stalk at x)
let $A := \bigsqcup_{x \in X} A_x$ and define a topology on A by
 $V(U, s, \varepsilon) = \{a \in A \mid \pi(a) \in U \text{ and } \|a - s(\pi(a))\| < \varepsilon\}$

is a basic open set, where $\varepsilon > 0$, $U \in \mathcal{O}_X$, $s \in \mathfrak{A}(U)$ and s(x) the image under $\mathfrak{A}(U) \to A_x$.

	Two Questions		Sheaf Approach

Theorem 2 (simplified version)

Let A be a quasi-central separable C*-algebra such that Prim(A) contains a dense G_{δ} subset consisting of closed points. Then $M_{loc}(M_{loc}(A)) = M_{loc}(A)$. Outline of proof of Theorem 2

take $y \in M(J)$ for some closed essential ideal J of $M_{loc}(A)$; let $T \in T$ be such that $y \in \Gamma_b(T, A_{\mathfrak{I}_A})$; WLOG T consists of closed separated points of Prim(A).

recall: $t \in Prim(A)$ is *separated* if t and every point $t' \notin \overline{\{t\}}$ can be separated by disjoint neighbourhoods.

Dixmier 1968 Sep(A), the set of all separated points, dense G_{δ} subset of Prim(A) as well as a Polish space;

Lemma: There is $h \in J$ such that $h(t) \neq 0$ for all $t \in T$. **Lemma:** There is a separable *C**-subalgebra $B \subseteq J$ with $AhA \subseteq B$ and $y \in M(B)$.

Outline of proof of Theorem 2

take countable dense subset $\{b_n \mid n \in \mathbb{N}\}$ in B and $T_n \in \mathcal{T}$ such that $b_n \in \Gamma_b(T_n, A_{\mathfrak{M}_A})$; put $A = A_{\mathfrak{M}_A}$; letting $T' = \bigcap_n T_n \cap T \in \mathcal{T}$, we have $B \subseteq \Gamma_b(T', A)$, hence

$$B_t = \{b(t) \mid b \in B\} \subseteq A_t \qquad (t \in T').$$

in general, $\exists \varphi_t \colon \mathsf{A}_t \to M_{\mathrm{loc}}(A/t)$

$$egin{array}{ccc} {\sf A} & {\sf quasicentral} & \Rightarrow & {\sf A}/t \ {\sf unital} & \ & t \ {\sf closed} & \Rightarrow & {\sf A}/t \ {\sf simple} \end{array} iggree \Rightarrow & {\sf M}_{
m loc}({\sf A}/t) = {\sf A}/t.$$

Main Lemma: A quasicentral, $t \in Prim(A)$ closed, separated $\Rightarrow \varphi_t$ isomorphism.

(Rests on existence of local identities in quasicentral C^* -algebras:

$$\begin{array}{l} \forall \ t \in \operatorname{Prim}(A) \quad \exists \ U_1 \subseteq \operatorname{Prim}(A) \ \mathsf{open}, t \in U_1, \\ \\ \exists \ z \in Z(A)_+, \ \|z\| = 1 \colon \ z + A(U_2) = \mathbb{1}_{A/A(U_2)}, \end{array}$$

where $U_2 = Prim(A) \setminus \overline{U_1}$.) As a consequence,

$$A_t = A_t h(t) A_t = (A/t)h(t)(A/t) = (AhA)_t \subseteq B_t \subseteq A_t \quad (t \in T').$$

$$\Rightarrow \exists \ b_t \in B \colon b_t(t) = 1_{\mathsf{A}_t} \ \Rightarrow y(t) = y(t) \, 1_{\mathsf{A}_t} = (yb_t)(t) \in \mathsf{A}_t \quad (t \in T').$$

It follows that $y \in \Gamma_b(T', A_{\mathfrak{M}_A})$ with $T' \subseteq T$, proving that $y \in M_{\text{loc}}(A)$. \Box