Derivations and local multipliers of C^*-algebras

Martin Mathieu

(Queen’s University Belfast)

Aberystwyth, 19 September 2013
A C^*-algebra

$d : A \rightarrow A$ linear, derivation if $d(xy) = x(dy) + (dx)y$ $(x, y \in A)$

Sakai 1960: d bounded

d inner if $dx = xa - ax = [x, a] = d_a(x)$ for all x and some a;

Sakai 1968: d is inner if A simple, unital

in general, d not inner;
e.g., $A = K(H)$, $d = d_a|_{K(H)}$ where $a \notin K(H) + \mathbb{C}$;

Sakai 1971: d is inner in $M(A)$ if A simple,
where $M(A)$ multiplier algebra of A.
A separable C^*-algebra

Every derivation $d : A \to A$ is inner in $M(A)$ if and only if A is the direct sum of a continuous trace C^*-algebra and a C^*-algebra with discrete spectrum.

Theorem (Pedersen 1978)

Every derivation $d : A \to A$ extends uniquely to a derivation $\bar{d} : M_{loc}(A) \to M_{loc}(A)$ and there is $a \in M_{loc}(A)$ such that $\bar{d} = d_{a}$.

here, $M_{loc}(A)$ denotes the local multiplier algebra.
1978 Pedersen introduces $M_{\text{loc}}(A)$

as “algebra of essential multipliers”

Definition
For every C^*-algebra A,

$$M_{\text{loc}}(A) = \lim_{\longrightarrow} I \in \mathcal{I}_{\text{ce}}(A) M(I),$$

is its \textit{local multiplier algebra}, where

\[M(I) = \{ y \in B(H) \mid yI + Iy \subseteq I \} \text{ multiplier algebra of } I. \]
joint work with Pere Ara (Barcelona)

- Automorphisms
- Derivations
- Elementary Operators
- Jordan Homomorphisms
- Lie Derivations, Lie Isomorphisms
- Centralising and Commuting Mappings
- Bi-derivations
- Commutativity Preserving Mapping
Our **algebraic approach** to $M_{\text{loc}}(A)$ enables us to solve complicated operator equations, e.g.,

\[
\left(([x, z]y[z, q(x)] - [z, q(x)]y[x, z]) r ([x^2, z]y[x, z] - [x, z]y[x^2, z]) \\
- ([x^2, z]y[x, z] - [x, z]y[x^2, z]) r ([x, z]y[z, q(x)] - [z, q(x)]y[x, z]) \right) \times \\
\times u \left([w^2, v] t[w, v] - [w, v] t[w^2, v] \right) = 0
\]

for fixed $x, y, z \in A$ and all $r, t, u, v, w \in A$.
joint work with Pere Ara (Barcelona)

Theorem (Pedersen 1978)

Every derivation $d : A \to A$ extends uniquely to a derivation $\bar{d} : M_{\text{loc}}(A) \to M_{\text{loc}}(A)$.
If A is separable, there is $a \in M_{\text{loc}}(A)$ such that $\bar{d} = da$.

Question 1

Is every derivation $d : M_{\text{loc}}(A) \to M_{\text{loc}}(A)$ inner?

Question 2

Is $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$ for every C^*-algebra A?

in general, $A \subseteq M_{\text{loc}}(A) \subseteq M_{\text{loc}}(M_{\text{loc}}(A)) \subseteq \ldots \subseteq I(A)$
Theorem (Ara–Mathieu 2006)

There exist unital, separable, primitive AF-algebras A such that $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$.

Theorem (Somerset 2000)

Let A be a unital separable C*-algebra such that $\text{Prim}(A)$ contains a dense G_δ subset consisting of closed points.

Then $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$.

Moreover, every derivation on $M_{\text{loc}}(A)$ is inner.

Theorem (Gogič 2013)

Let A be a C*-algebra such that every irreducible representation of A is finite dimensional. Then $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$.

Moreover, every derivation on $M_{\text{loc}}(A)$ is inner.
More on Q2

from Somerset,

A \textit{unital, separable, type I} \implies M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A).

Argerami, Farenick, Massey 2009:

\(M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A) \) if \(A = C[0, 1] \otimes K(H) \).

Ara–Mathieu 2008:

\(M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A) \) if \(A = C(X) \otimes B(H) \) where \(X \) Stonean with some additional properties.
A dichotomy answer to Pedersen’s question

\[X \text{ perfect compact metric space} \]
\[B \text{ separable simple (nuclear) } C^*\text{-algebra} \]
(Elliott’s programme)

\[A = C(X) \otimes B \]

\[B \text{ unital} \]
\[M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A) \]

\[B \text{ non-unital} \]
\[M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A) \]
More on Q1

every derivation on $M_{\text{loc}}(A)$ is inner if

(i) $M_{\text{loc}}(A) = A$ and every derivation on A is inner:
 - A von Neumann algebra (Kadison–Sakai);
 - A AW*-algebra (Olesen);
 - A simple unital (Sakai).

(ii) $M_{\text{loc}}(A) = M(A)$ and every derivation on A is inner in $M(A)$:
 - A simple (Sakai).

(iii) $M_{\text{loc}}(A)$ simple (possible by Ara–Mathieu 1999!)

(iv) $M_{\text{loc}}(A)$ AW*-algebra:
 - A commutative;
 - A unital separable type I (Somerset);
 - A with all irred. representations finite dimensional (Gogič);

in all these cases $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$
Summary

- we have no example in which $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$ and we do not know that every derivation of $M_{\text{loc}}(A)$ is inner;

- we have no example in which $M_{\text{loc}}(M_{\text{loc}}(A)) \neq M_{\text{loc}}(A)$ and we know every derivation of $M_{\text{loc}}(A)$ is inner.
An if-and-only-if condition

Theorem 1 (Ara–MM, 2011)

Let B and C be separable C^*-algebras and suppose that at least one of them is nuclear. Suppose further that B is simple and non-unital and that $\text{Prim}(C)$ contains a dense $G_δ$ subset consisting of closed points. Let $A = C \otimes B$. Then

$$M_{\text{loc}}(A) = M_{\text{loc}}(M_{\text{loc}}(A))$$

if and only if $\text{Prim}(A)$ contains a dense subset of isolated points.
A sufficient condition

Theorem 2 (Ara–MM, 2011)

Let A be a quasi-central separable C^*-algebra such that $\text{Prim}(A)$ contains a dense G_δ subset consisting of closed points. Let B be a C^*-subalgebra of $M_{\text{loc}}(A)$ containing A. Then $M_{\text{loc}}(B) \subseteq M_{\text{loc}}(A)$. In particular, $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$.

A quasi-central if no primitive ideal of A contains $Z(A)$; e.g., A unital or A commutative

B simple; B quasi-central $\iff B$ unital.

Corollary

Let A be a quasi-central separable C^*-algebra such that $\text{Prim}(A)$ contains a dense G_δ subset consisting of closed points. Then every derivation of $M_{\text{loc}}(A)$ is inner.
Outline of the argument

let $d : M_{\text{loc}}(A) \to M_{\text{loc}}(A)$, let $A \subseteq B \subseteq M_{\text{loc}}(A)$ separable C^*-subalgebra such that $dB \subseteq B$;
extend $d|_B$ uniquely to $d_{M_{\text{loc}}(B)} : M_{\text{loc}}(B) \to M_{\text{loc}}(B)$;

next extend both these derivations to the respective injective envelopes, but since $I(B) = I(M_{\text{loc}}(B))$ we have $d_{I(B)} = d_{I(M_{\text{loc}}(B))}$;
now extend d to $I(M_{\text{loc}}(A))$; since $I(B) = I(A) = I(M_{\text{loc}}(A))$,

$$d_{I(M_{\text{loc}}(A))] = d_{I(B)} = d_{I(M_{\text{loc}}(B))}. \tag{Theorem 2}$$

$\overset{\text{Pedersen}}{\Longrightarrow} d_{M_{\text{loc}}(B)} = dy$ some $y \in M_{\text{loc}}(B)$

consequently, $d = dy$ on $M_{\text{loc}}(A)$. \square
New Formulas for $M_{loc}(A)$ and $I(A)$

A C^*-algebra

\[M_{loc}(A) = \text{alg lim}_{T \in T} \Gamma_b(T, A_{\mathcal{M}_A}) \]

\[I(A) = \text{alg lim}_{T \in T} \Gamma_b(T, A_{\mathcal{J}_A}) \]

where $A_{\mathcal{M}_A}$ and $A_{\mathcal{J}_A}$ are the upper semicontinuous C^*-bundles associated to the multiplier sheaf \mathcal{M}_A and the injective envelope sheaf \mathcal{J}_A of A, respectively;

T is the downwards directed family of dense G_δ subsets of $\text{Prim}(A)$;

$\Gamma_b(T, -)$ denotes the bounded continuous local sections on T.

Martin Mathieu (Queen’s University Belfast)

Derivations and local multipliers of C^*-algebras
New Formulas for $M_{\text{loc}}(A)$ and $I(A)$

A C^*-algebra

$$M_{\text{loc}}(A) = \text{alg lim}_{T \in \mathcal{T}} \Gamma_b(T, A_m A)$$

$$I(A) = \text{alg lim}_{T \in \mathcal{T}} \Gamma_b(T, A_J A)$$

these descriptions are compatible: $A_m A \hookrightarrow A_J A$

Consequence:

$y \in M_{\text{loc}}(M_{\text{loc}}(A)) \subseteq I(A)$ is contained in some C^*-subalgebra $\Gamma_b(T, A_J A)$ and will belong to $M_{\text{loc}}(A)$ once we find $T' \subseteq T$, $T' \in \mathcal{T}$ such that $y \in \Gamma_b(T', A_m A)$.

Sheaves of C^*-algebras

X a topological space;
\mathcal{O}_X category of open subsets (with open subsets U as objects and $V \to U$ if and only if $V \subseteq U$).

C^* category of C^*-algebras.

Definition

A **presheaf of C^*-algebras** is a contravariant functor $\mathbb{A}: \mathcal{O}_X \to C^*$.
A **sheaf of C^*-algebras** is a presheaf \mathbb{A} such that $\mathbb{A}(\emptyset) = 0$ and, for every open subset U of X and every open cover $U = \bigcup_i U_i$, the maps $\mathbb{A}(U) \to \mathbb{A}(U_i)$ are the limit of the diagrams $\mathbb{A}(U_i) \to \mathbb{A}(U_i \cap U_j)$ for all i, j.
Sheaves of C^*-algebras

Universal Property:

$$
\mathcal{A}(U) \xrightarrow{\rho} \prod_i \mathcal{A}(U_i) \xrightarrow{\nu} \prod_{i,j} \mathcal{A}(U_i \cap U_j)
$$

$U_i \cap U_j \rightarrow U_i$ yields $\rho_{ji} : \mathcal{A}(U_i) \rightarrow \mathcal{A}(U_i \cap U_j)$; similarly, $\rho_i : \mathcal{A}(U) \rightarrow \mathcal{A}(U_i)$

requirement $\nu \circ \rho = \mu \circ \rho$;

if (B, σ) has like properties as $(\mathcal{A}(U), \rho)$ then $\exists! B \rightarrow \mathcal{A}(U)$.

Martin Mathieu (Queen’s University Belfast)

Derivations and local multipliers of C^*-algebras
Sheaves of C^*-algebras

Notation and Terminology:

the C^*-algebra $\mathcal{A}(U)$ is the *section algebra* over $U \in \mathcal{O}_X$;
by $s|_V$, $V \subseteq U$ open, we mean the “restriction” of $s \in \mathcal{A}(U)$ to V;
i.e., the image of s in $\mathcal{A}(V)$ under $\mathcal{A}(U) \to \mathcal{A}(V)$;
the **unique gluing property** of a sheaf can be expressed as follows:

for each compatible family of sections $s_i \in \mathcal{A}(U_i)$, i.e.,
$s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ for all i, j, there is a unique section $s \in \mathcal{A}(U)$
such that $s|_{U_i} = s_i$ for all i.
Sheaves of C^*-algebras

Example 1. Sheaves from bundles

Let (A, π, X) be an upper semicontinuous C^*-bundle. Then

$$\Gamma_b(-, A): \mathcal{O}_X \to C_1^*, \quad U \mapsto \Gamma_b(U, A)$$

defines the sheaf of bounded continuous local sections of A, where C_1^* is the category of unital C^*-algebras.

$$\Gamma_b(U, A) \to \Gamma_b(V, A), \ V \subseteq U,$$ is the usual restriction map.
Sheaves of C^*-algebras

Example 2. *The multiplier sheaf*

A C^*-algebra with primitive ideal space $\text{Prim}(A)$;

$$\mathcal{M}_A : \mathcal{O}_{\text{Prim}(A)} \rightarrow C^*_1, \quad \mathcal{M}_A(U) = M(A(U)),$$

where $M(A(U))$ denotes the multiplier algebra of the closed ideal $A(U)$ of A associated to the open subset $U \subseteq \text{Prim}(A)$. $M(A(U)) \rightarrow M(A(V))$, $V \subseteq U$, the restriction homomorphisms.

Proposition

The above functor \mathcal{M}_A defines a sheaf of C^-algebras.*
Sheaves of C^*-algebras

Example 3. *The injective envelope sheaf*

Let $I(B)$ denote the *injective envelope* of B;

$$
\mathcal{I}_A : \mathcal{O}_{\text{Prim}(A)} \to C_1^*, \quad \mathcal{I}_A(U) = p_U I(A) = I(A(U)),
$$

where $p_U = p_{A(U)}$ denotes the unique central open projection in $I(A)$ such that $p_{A(U)} I(A)$ is the injective envelope of $A(U)$. $I(A(U)) \to I(A(V))$, $V \subseteq U$, given by multiplication by p_V (as $p_V \leq p_U$).

$$
\{ p_U \mid U \in \mathcal{O}_{\text{Prim}(A)} \} 	ext{ is a complete Boolean algebra isomorphic to the Boolean algebra of regular open subsets of Prim}(A), \text{ and it is precisely the set of projections of the AW*-algebra } Z(I(A)).
$$
from sheaves to bundles

Theorem

Given a presheaf \mathcal{A} of C*-algebras over X, there is a canonically associated upper semicontinuous C*-bundle (A, π, X) over X.

Idea:

$x \in X$, define $A_x := \lim_{\to} \mathcal{A}(U)$ (stalk at x)

let $A := \bigsqcup_{x \in X} A_x$ and define a topology on A by

$$V(U, s, \varepsilon) = \{a \in A \mid \pi(a) \in U \text{ and } \|a - s(\pi(a))\| < \varepsilon\}$$

is a basic open set, where $\varepsilon > 0$, $U \in \mathcal{O}_X$, $s \in \mathcal{A}(U)$ and $s(x)$ the image under $\mathcal{A}(U) \to A_x$.

Martin Mathieu (Queen’s University Belfast)

Derivations and local multipliers of C*-algebras
Theorem 2 (simplified version)

Let A be a quasi-central separable C^*-algebra such that $\text{Prim}(A)$ contains a dense G_δ subset consisting of closed points. Then $M_{\text{loc}}(M_{\text{loc}}(A)) = M_{\text{loc}}(A)$.
Outline of proof of Theorem 2

take \(y \in M(J) \) for some closed essential ideal \(J \) of \(M_{loc}(A) \);
let \(T \in \mathcal{T} \) be such that \(y \in \Gamma_b(T, A_{\overline{J}_A}) \);
\textit{WLOG} \(T \) consists of closed separated points of \(\text{Prim}(A) \).

recall: \(t \in \text{Prim}(A) \) is \textit{separated} if \(t \) and every point \(t' \notin \{t\} \) can be separated by disjoint neighbourhoods.

Dixmier 1968 \(\text{Sep}(A) \), the set of all separated points, dense \(G_\delta \) subset of \(\text{Prim}(A) \) as well as a Polish space;

\textbf{Lemma:} There is \(h \in J \) such that \(h(t) \neq 0 \) for all \(t \in T \).

\textbf{Lemma:} There is a separable \(C^* \)-subalgebra \(B \subseteq J \) with \(AhA \subseteq B \) and \(y \in M(B) \).
Outline of proof of Theorem 2

take countable dense subset \(\{ b_n \mid n \in \mathbb{N} \} \) in \(B \) and \(T_n \in \mathcal{T} \) such that \(b_n \in \Gamma_b(T_n, A_{\mathcal{M}_A}) \); put \(A = A_{\mathcal{M}_A} \);
letting \(T' = \bigcap_n T_n \cap T \in \mathcal{T} \), we have \(B \subseteq \Gamma_b(T', A) \), hence

\[
B_t = \{ b(t) \mid b \in B \} \subseteq A_t \quad (t \in T').
\]

in general, \(\exists \varphi_t : A_t \to M_{\text{loc}}(A/t) \)

\[
\begin{align*}
A \text{ quasicentral} & \Rightarrow A/t \text{ unital} \\
t \text{ closed} & \Rightarrow A/t \text{ simple}
\end{align*}
\]

\[
\Rightarrow M_{\text{loc}}(A/t) = A/t.
\]
Outline of proof of Theorem 2

Main Lemma: A quasicentral, \(t \in \text{Prim}(A) \) closed, separated \(\Rightarrow \varphi_t \) isomorphism.

(Rests on existence of local identities in quasicentral \(C^* \)-algebras:

\[
\forall \ t \in \text{Prim}(A) \quad \exists \ U_1 \subseteq \text{Prim}(A) \text{ open, } t \in U_1,
\exists \ z \in Z(A)_+, \|z\| = 1: \ z + A(U_2) = 1_{A/A(U_2)},
\]

where \(U_2 = \text{Prim}(A) \setminus \overline{U_1}. \)) As a consequence,

\[
A_t = A_t h(t) A_t = (A/t)h(t)(A/t) = (AhA)_t \subseteq B_t \subseteq A_t \quad (t \in T').
\]

\[
\Rightarrow \exists \ b_t \in B: b_t(t) = 1_{A_t}
\]

\[
\Rightarrow y(t) = y(t) 1_{A_t} = (yb_t)(t) \in A_t \quad (t \in T').
\]

It follows that \(y \in \Gamma_b(T', A_{\mathfrak{M}_A}) \) with \(T' \subseteq T \), proving

that \(y \in M_{\text{loc}}(A). \) \(\Box\)