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A C*-algebra

d : A→ A linear, derivation if d(xy) = x(dy) + (dx)y (x , y ∈ A)

Sakai 1960: d bounded

d inner if dx = xa− ax = [x , a] = da(x) for all x and some a;

Sakai 1968: d is inner if A simple, unital

in general, d not inner;
e.g., A = K (H), d = da|K(H) where a /∈ K (H) + C;

Sakai 1971: d is inner in M(A) if A simple,
where M(A) multiplier algebra of A.
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A separable C*-algebra

Theorem (Akemann–Elliott–Pedersen–Tomiyama 1976/1979)

Every derivation d : A→ A is inner in M(A) if and only if A is
the direct sum of a continuous trace C*-algebra and a C*-algebra
with discrete spectrum.

Theorem (Pedersen 1978)

Every derivation d : A→ A extends uniquely to a derivation
d̄ : Mloc(A)→ Mloc(A) and there is a ∈ Mloc(A) such that d̄ = da.

here, Mloc(A) denotes the local multiplier algebra.
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1978 Pedersen introduces Mloc(A)

as “algebra of essential multipliers”

Definition

For every C*-algebra A,

Mloc(A) = lim−→ I∈Ice(A)M(I ),

is its local multiplier algebra, where J //

  B
BB

BB
BB

B M(J)

M(I )

;;x
x

x
x

for J ⊆ I

Ice(A) the filter of all closed essential ideals of A;

M(I ) = {y ∈ B(H) | yI + Iy ⊆ I} multiplier algebra of I .
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joint work with Pere Ara (Barcelona)

P. Ara and M. Mathieu, Local multipliers of C*-algebras,
Springer-Verlag, London, 2003.

• Automorphisms

• Derivations

• Elementary Operators

• Jordan Homomorphisms

• Lie Derivations, Lie Isomorphisms

• Centralising and Commuting Mappings

• Bi-derivations

• Commutativity Preserving Mapping
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joint work with Pere Ara (Barcelona)

Our algebraic approach to Mloc(A) enables us to solve complicated operator
equations, e.g.,((

[x , z]y [z , q(x)]− [z , q(x)]y [x , z]
)
r
(
[x2, z]y [x , z]− [x , z]y [x2, z]

)
−

(
[x2, z]y [x , z]− [x , z]y [x2, z]

)
r
(
[x , z]y [z , q(x)]− [z , q(x)]y [x , z]

))
×

× u
(
[w 2, v ]t[w , v ]− [w , v ]t[w 2, v ]

)
= 0

for fixed x , y , z ∈ A and all r , t, u, v , w ∈ A.
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joint work with Pere Ara (Barcelona)

 

P. Ara and M. Mathieu, A not so simple local multiplier algebra, J. Funct.
Analysis 237 (2006), 721–737.

P. Ara and M. Mathieu, Maximal C*-algebras of quotients and injective
envelopes of C*-algebras, Houston J. Math. 34 (2008), 827–872.

P. Ara and M. Mathieu, Sheaves of C*-algebras, Math. Nachrichten 283
(2010), 21–39.

P. Ara and M. Mathieu, When is the second local multiplier algebra of a
C*-algebra equal to the first?, Bull. London Math. Soc. 43 (2011), 1167–1180.
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Theorem (Pedersen 1978)

Every derivation d : A→ A extends uniquely to a derivation
d̄ : Mloc(A)→ Mloc(A).
If A is separable, there is a ∈ Mloc(A) such that d̄ = da.

Question 1

Is every derivation d : Mloc(A)→ Mloc(A) inner?

Question 2

Is Mloc(Mloc(A)) = Mloc(A) for every C*-algebra A?

in general, A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ . . . ⊆ I (A)
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Theorem (Ara–Mathieu 2006)

There exist unital, separable, primitive AF-algebras A such
that Mloc(Mloc(A)) 6= Mloc(A).

Theorem (Somerset 2000)

Let A be a unital separable C*-algebra such that Prim(A)
contains a dense Gδ subset consisting of closed points.
Then Mloc(Mloc(A)) = Mloc(A).
Moreover, every derivation on Mloc(A) is inner.

Theorem (Gogič 2013)

Let A be a C*-algebra such that every irreducible representation
of A is finite dimensional. Then Mloc(Mloc(A)) = Mloc(A).
Moreover, every derivation on Mloc(A) is inner.
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More on Q2

from Somerset,

A unital, separable, type I =⇒ Mloc(Mloc(A)) = Mloc(A).

Argerami, Farenick, Massey 2009:

Mloc(Mloc(A)) 6= Mloc(A) if A = C [0, 1]⊗ K (H).

Ara–Mathieu 2008:

Mloc(Mloc(A)) 6= Mloc(A) if A = C (X )⊗ B(H) where

X Stonean with some additional properties.
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A dichotomy answer to Pedersen’s question

X perfect compact metric space

B separable simple (nuclear) C*-algebra

(Elliott’s programme)

=⇒
A = C (X )⊗ B

B unital

sssssssssssssssssssss

B non-unital

GGGGGGGGGGGGGGGGGG

Mloc(Mloc(A)) = Mloc(A) Mloc(Mloc(A)) 6= Mloc(A)

Martin Mathieu (Queen’s University Belfast)

Derivations and local multipliers of C* -algebras



Derivations Local Multipliers Two Questions Back to Derivations New Results Sheaf Approach

More on Q1

every derivation on Mloc(A) is inner if

(i) Mloc(A) = A and every derivation on A is inner:

A von Neumann algebra (Kadison–Sakai);
A AW*-algebra (Olesen);
A simple unital (Sakai).

(ii) Mloc(A) = M(A) and every derivation on A is inner in M(A):

A simple (Sakai).

(iii) Mloc(A) simple (possible by Ara–Mathieu 1999!)

(iv) Mloc(A) AW*-algebra:

A commutative;
A unital separable type I (Somerset);
A with all irred. representations finite dimensional (Gogič);

in all these cases Mloc(Mloc(A)) = Mloc(A)
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Summary

we have no example in which Mloc(Mloc(A)) = Mloc(A) and
we do not know that every derivation of Mloc(A) is inner;

we have no example in which Mloc(Mloc(A)) 6= Mloc(A) and
we know every derivation of Mloc(A) is inner.
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An if-and-only-if condition

Theorem 1 (Ara–MM, 2011)

Let B and C be separable C*-algebras and suppose that at least
one of them is nuclear. Suppose further that B is simple and
non-unital and that Prim(C ) contains a dense Gδ subset
consisting of closed points. Let A = C ⊗ B. Then

Mloc(A) = Mloc(Mloc(A))

if and only if Prim(A) contains a dense subset of isolated points.

Martin Mathieu (Queen’s University Belfast)

Derivations and local multipliers of C* -algebras



Derivations Local Multipliers Two Questions Back to Derivations New Results Sheaf Approach

A sufficient condition

Theorem 2 (Ara–MM, 2011)

Let A be a quasi-central separable C*-algebra such that Prim(A)
contains a dense Gδ subset consisting of closed points. Let B be a
C*-subalgebra of Mloc(A) containing A. Then Mloc(B) ⊆ Mloc(A).
In particular, Mloc(Mloc(A)) = Mloc(A).

A quasi-central if no primitive ideal of A contains Z (A);

e.g., A unital or A commutative

B simple; B quasi-central ⇐⇒ B unital.

Corollary

Let A be a quasi-central separable C*-algebra such that Prim(A)
contains a dense Gδ subset consisting of closed points. Then every
derivation of Mloc(A) is inner.
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Outline of the argument

let d : Mloc(A) → Mloc(A), let A ⊆ B ⊆ Mloc(A) separable
C*-subalgebra such that dB ⊆ B;
extend d|B uniquely to dMloc(B) : Mloc(B)→ Mloc(B);

next extend both these derivations to the respective injective
envelopes, but since
I (B) = I (Mloc(B)) we have dI (B) = dI (Mloc(B));

now extend d to I (Mloc(A)); since I (B) = I (A) = I (Mloc(A)),

dI (Mloc(A)) = dI (B) = dI (Mloc(B)).

Pedersen
=⇒ dMloc(B) = dy some y ∈ Mloc(B)

Theorem 2
⊆ Mloc(A);

consequently, d = dy on Mloc(A). �
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New Formulas for Mloc(A) and I (A)

A C*-algebra

Mloc(A) = alg lim
−→ T∈T Γb(T ,AMA

)

I (A) = alg lim
−→ T∈T Γb(T ,AIA

)

where AMA
and AIA

are the upper semicontinuous C*-bundles
associated to the multiplier sheaf MA and the injective envelope
sheaf IA of A, respectively;

T is the downwards directed family of dense Gδ subsets of Prim(A);

Γb(T ,−) denotes the bounded continuous local sections on T .
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New Formulas for Mloc(A) and I (A)

A C*-algebra

Mloc(A) = alg lim
−→ T∈T Γb(T ,AMA

)

I (A) = alg lim
−→ T∈T Γb(T ,AIA

)

these descriptions are compatible: AMA
↪→ AIA

Consequence:

y ∈ Mloc(Mloc(A)) ⊆ I (A) is contained in some C*-subalgebra
Γb(T ,AIA

) and will belong to Mloc(A) once we find T ′ ⊆ T ,
T ′ ∈ T such that y ∈ Γb(T ′,AMA

).

P. Ara, M. Mathieu, Sheaves of C*-algebras, Math. Nachrichten 283 (2010), 21–39.
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Sheaves of C*-algebras

X a topological space;
OX category of open subsets (with open subsets U as objects
and V → U if and only if V ⊆ U).

C∗ category of C*-algebras.

Definition

A presheaf of C*-algebras is a contravariant functor A : OX → C∗.
A sheaf of C*-algebras is a presheaf A such that A(∅) = 0 and,
for every open subset U of X and every open cover U =

⋃
i Ui ,

the maps A(U)→ A(Ui ) are the limit of the diagrams
A(Ui )→ A(Ui ∩ Uj) for all i , j .
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Sheaves of C*-algebras

Universal Property:

A(U)
ρ //
∏

i A(Ui )
ν //
µ
//
∏

i ,j A(Ui ∩ Uj)

B

OO

σ

99sssssssssss

Ui ∩ Uj −→ Ui yields ρji : A(Ui ) −→ A(Ui ∩ Uj);

similarly, ρi : A(U) −→ A(Ui )

requirement ν ◦ ρ = µ ◦ ρ;

if (B, σ) has like properties as (A(U), ρ) then ∃! B −→ A(U).

Martin Mathieu (Queen’s University Belfast)

Derivations and local multipliers of C* -algebras



Derivations Local Multipliers Two Questions Back to Derivations New Results Sheaf Approach

Sheaves of C*-algebras

Notation and Terminology:

the C*-algebra A(U) is the section algebra over U ∈ OX ;

by s|V , V ⊆ U open, we mean the “restriction” of s ∈ A(U) to V ;
i.e., the image of s in A(V ) under A(U)→ A(V );

the unique gluing property of a sheaf can be expressed as follows:

for each compatible family of sections si ∈ A(Ui ), i.e.,
si |Ui∩Uj

= sj |Ui∩Uj
for all i , j , there is a unique section s ∈ A(U)

such that s|Ui
= si for all i .
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Sheaves of C*-algebras

Example 1. Sheaves from bundles

Let (A, π,X ) be an upper semicontinuous C*-bundle. Then

Γb(−,A): OX → C∗1 , U 7→ Γb(U,A)

defines the sheaf of bounded continuous local sections of A,
where C∗1 is the category of unital C*-algebras.

Γb(U,A)→ Γb(V ,A), V ⊆ U, is the usual restriction map.
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Sheaves of C*-algebras

Example 2. The multiplier sheaf

A C*-algebra with primitive ideal space Prim(A);

MA : OPrim(A) → C∗1 , MA(U) = M(A(U)),

where M(A(U)) denotes the multiplier algebra of the closed
ideal A(U) of A associated to the open subset U ⊆ Prim(A).

M(A(U))→ M(A(V )), V ⊆ U, the restriction homomorphisms.

Proposition

The above functor MA defines a sheaf of C*-algebras.
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Sheaves of C*-algebras

Example 3. The injective envelope sheaf

let I (B) denote the injective envelope of B;

IA : OPrim(A) → C∗1 , IA(U) = pU I (A) = I (A(U)),

where pU = pA(U) denotes the unique central open projection
in I (A) such that pA(U)I (A) is the injective envelope of A(U).

I (A(U))→ I (A(V )), V ⊆ U, given by multiplication by pV

(as pV ≤ pU).

{pU | U ∈ OPrim(A)} is a complete Boolean algebra isomorphic to
the Boolean algebra of regular open subsets of Prim(A), and it is
precisely the set of projections of the AW*-algebra Z (I (A)).
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from sheaves to bundles

Theorem

Given a presheaf A of C*-algebras over X , there is a canonically
associated upper semicontinuous C*-bundle (A, π,X ) over X .

Idea:

x ∈ X , define Ax := lim−→x∈U
A(U) (stalk at x)

let A :=
⊔

x∈X Ax and define a topology on A by

V (U, s, ε) = {a ∈ A | π(a) ∈ U and ‖a− s(π(a))‖ < ε}

is a basic open set, where ε > 0, U ∈ OX , s ∈ A(U) and s(x) the
image under A(U)→ Ax .
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Theorem 2 (simplified version)

Let A be a quasi-central separable C*-algebra such that Prim(A)
contains a dense Gδ subset consisting of closed points.
Then Mloc(Mloc(A)) = Mloc(A).
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Outline of proof of Theorem 2

take y ∈ M(J) for some closed essential ideal J of Mloc(A);
let T ∈ T be such that y ∈ Γb(T ,AIA

);
WLOG T consists of closed separated points of Prim(A).

recall: t ∈ Prim(A) is separated if t and every point t ′ /∈ {t} can
be separated by disjoint neighbourhoods.

Dixmier 1968 Sep(A), the set of all separated points, dense
Gδ subset of Prim(A) as well as a Polish space;

Lemma: There is h ∈ J such that h(t) 6= 0 for all t ∈ T .

Lemma: There is a separable C*-subalgebra B ⊆ J with
AhA ⊆ B and y ∈ M(B).
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Outline of proof of Theorem 2

take countable dense subset {bn | n ∈ N} in B and Tn ∈ T such
that bn ∈ Γb(Tn,AMA

); put A = AMA
;

letting T ′ =
⋂

n Tn ∩ T ∈ T , we have B ⊆ Γb(T ′,A), hence

Bt = {b(t) | b ∈ B} ⊆ At (t ∈ T ′).

in general, ∃ ϕt : At → Mloc(A/t)

A quasicentral ⇒ A/t unital
t closed ⇒ A/t simple

}
⇒ Mloc(A/t) = A/t.
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Outline of proof of Theorem 2

Main Lemma: A quasicentral, t ∈ Prim(A) closed, separated
⇒ ϕt isomorphism.

(Rests on existence of local identities in quasicentral C*-algebras:

∀ t ∈ Prim(A) ∃ U1 ⊆ Prim(A) open, t ∈ U1,

∃ z ∈ Z (A)+, ‖z‖ = 1: z + A(U2) = 1A/A(U2),

where U2 = Prim(A) \ U1.) As a consequence,

At = At h(t) At = (A/t)h(t)(A/t) = (AhA)t ⊆ Bt ⊆ At (t ∈ T ′).

⇒ ∃ bt ∈ B : bt(t) = 1At

⇒ y(t) = y(t) 1At = (ybt)(t) ∈ At (t ∈ T ′).

It follows that y ∈ Γb(T ′,AMA
) with T ′ ⊆ T , proving

that y ∈ Mloc(A). �
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