C*-algebras associated to graphs, path spaces and equilibrium states

Nadia S. Larsen

University of Oslo

"Classifying Structures for Operator Algebras and Dynamical Systems"
Aberystwyth, 16-20 September 2013
Joint work with Toke M. Carlsen (Trondheim)
• The formalism of finite quantum systems and the KMS condition
• The formalism of finite quantum systems and the KMS condition
• Early examples. Graph algebras.
• The formalism of finite quantum systems and the KMS condition
• Early examples. Graph algebras.
• The Exel-Laca strategy. Graph algebras as partial crossed products.
Outline

• The formalism of finite quantum systems and the KMS condition
• Early examples. Graph algebras.
• The Exel-Laca strategy. Graph algebras as partial crossed products.
• KMS states on graph algebras and measures on the path space.
Outline

• The formalism of finite quantum systems and the KMS condition
• Early examples. Graph algebras.
• The Exel-Laca strategy. Graph algebras as partial crossed products.
• KMS states on graph algebras and measures on the path space.
• Examples
Finite quantum systems: a time evolution on $M_n(\mathbb{C})$ is (always) given by a one-parameter group of automorphisms

$$\sigma_t(a) = e^{itH}ae^{-itH},$$

where $t \in \mathbb{R}$, $a \in M_n(\mathbb{C})$ and H is a self-adjoint matrix.
The origins of the KMS condition

Finite quantum systems: a time evolution on $M_n(\mathbb{C})$ is (always) given by a one-parameter group of automorphisms

$$\sigma_t(a) = e^{itH}ae^{-itH},$$

where $t \in \mathbb{R}$, $a \in M_n(\mathbb{C})$ and H is a self-adjoint matrix. The Gibbs state at $\beta > 0$ is $\varphi_G(a) = \frac{\text{Tr}(ae^{-\beta H})}{\text{Tr}(e^{-\beta H})}$. It minimizes a certain quantity (the free energy) and satisfies

$$\varphi_G(ab) = \varphi_G(b\sigma_i \beta(a)),$$ \hfill (1)

for $a, b \in M_n(\mathbb{C})$ analytic, i.e. allowing $\sigma_z(a), \sigma_z(b)$ for $z \in \mathbb{C}$.

References: Bratteli-Robinson, Pedersen.
The origins of the KMS condition

Finite quantum systems: a time evolution on $M_n(\mathbb{C})$ is (always) given by a one-parameter group of automorphisms

$$
\sigma_t(a) = e^{itH}ae^{-itH},
$$

where $t \in \mathbb{R}$, $a \in M_n(\mathbb{C})$ and H is a self-adjoint matrix.

The Gibbs state at $\beta > 0$ is $\varphi_G(a) = \frac{\text{Tr}(ae^{-\beta H})}{\text{Tr}(e^{-\beta H})}$. It minimizes a certain quantity (the free energy) and satisfies

$$
\varphi_G(ab) = \varphi_G(b\sigma_i\beta(a)),
$$

for $a, b \in M_n(\mathbb{C})$ analytic, i.e. allowing $\sigma_z(a), \sigma_z(b)$ for $z \in \mathbb{C}$.

Haag-Hugenholtz-Winnick (1967) proposed (1), the KMS condition (Kubo-Martin-Schwinger), as the equilibrium for a state on a C^*-algebra A with a time evolution σ. The partition function of $(M_n(\mathbb{C}), \sigma)$ is $\beta \mapsto \text{Tr}(e^{-\beta H})$.

References: Bratteli-Robinson, Pedersen.
KMS states

By analogy with $M_n(\mathbb{C})$ and the Gibbs state, extend the notions of KMS$_\beta$ state, partition function, inverse temperature.
KMS states

By analogy with $M_n(\mathbb{C})$ and the Gibbs state, extend the notions of KMS_β state, partition function, inverse temperature. Given A a C^*-algebra and a time evolution (dynamics) σ from \mathbb{R} to $\text{Aut}(A)$, a σ-KMS state at inverse temperature $\beta \in [0, \infty)$ is a state φ such that

$$\varphi(ab) = \varphi(b\sigma_{i\beta}(a))$$

for all a, b in A with b analytic, i.e. $t \rightarrow \sigma_t(b)$ extends to an entire function on \mathbb{C}.
KMS states

By analogy with $M_n(\mathbb{C})$ and the Gibbs state, extend the notions of KMS$_\beta$ state, partition function, inverse temperature. Given A a C^*-algebra and a time evolution (dynamics) σ from \mathbb{R} to $\text{Aut}(A)$, a σ-KMS state at inverse temperature $\beta \in [0, \infty)$ is a state φ such that

$$\varphi(ab) = \varphi(b \sigma_{i\beta}(a))$$

for all a, b in A with b analytic, i.e. $t \to \sigma_t(b)$ extends to an entire function on \mathbb{C}.

A state φ is a ground state if for all a, b analytic, the function $z \to \varphi(a \sigma_z(b))$ is bounded in the upper-half plane.
By analogy with $M_n(\mathbb{C})$ and the Gibbs state, extend the notions of KMS$_\beta$ state, partition function, inverse temperature. Given A a C^*-algebra and a time evolution (dynamics) σ from \mathbb{R} to $\text{Aut}(A)$, a σ-KMS state at inverse temperature $\beta \in [0, \infty)$ is a state φ such that

$$\varphi(ab) = \varphi(b\sigma_{i\beta}(a))$$

for all a, b in A with b analytic, i.e. $t \to \sigma_t(b)$ extends to an entire function on \mathbb{C}.

A state φ is a ground state if for all a, b analytic, the function $z \to \varphi(a\sigma_z(b))$ is bounded in the upper-half plane.

Verifications can often be reduced to a, b in a norm-dense $*$-subalgebra of analytic elements.
First examples

The Toeplitz algebra $\mathcal{T} = C^*(s)$ has dynamics $\sigma_t(s) = e^{it}s$, $t \in \mathbb{R}$. It has a unique KMS$_\beta$ state $\varphi(s^m s^{n*}) = e^{-n\beta}\delta_{n,m}$ at $0 \leq \beta < \infty$. References: Olesen-Pedersen (1978), Evans (1980) for non-periodic case. Similar results are known for O_n, cf. later slide. Our interest will be in C^*-algebras associated to countable directed graphs.
First examples

The Toeplitz algebra $\mathcal{T} = C^*(s)$ has dynamics $\sigma_t(s) = e^{it}s$, $t \in \mathbb{R}$. It has a unique KMS_β state $\varphi(s^m s^* n) = e^{-n\beta}\delta_{n,m}$ at $0 \leq \beta < \infty$.

The Toeplitz-Cuntz algebra $\mathcal{T}\mathcal{O}_n$ is generated by isometries $s_1, \ldots s_n$ with $\sum_{j=1}^{n} s_j s_j^* < 1$. The periodic gauge action is $\sigma_t(s_j) = e^{it}s_j$, $t \in \mathbb{R}$. Form $s_\mu = s_{i_1} \ldots s_{i_m}$, $m \geq 1$. Then

$$\varphi_\beta(s_\mu s_\nu^*) = e^{-|\mu|\beta}\delta_{\mu,\nu}$$

is the unique KMS_β state for each $\beta \geq \log n$. References: Olesen-Pedersen (1978), Evans (1980) for non-periodic case. Similar results are known for \mathcal{O}_n, cf. later slide.
First examples

The Toeplitz algebra $\mathcal{T} = C^*(s)$ has dynamics $\sigma_t(s) = e^{it}s$, $t \in \mathbb{R}$. It has a unique KMS$_\beta$ state $\varphi(s^m s^* n) = e^{-n\beta} \delta_{n,m}$ at $0 \leq \beta < \infty$.

The Toeplitz-Cuntz algebra $\mathcal{T} \mathcal{O}_n$ is generated by isometries $s_1, \ldots s_n$ with $\sum_{j=1}^n s_j s_j^* < 1$. The periodic gauge action is $\sigma_t(s_j) = e^{it}s_j$, $t \in \mathbb{R}$. Form $s_\mu = s_{i_1} \ldots s_{i_m}$, $m \geq 1$. Then

$$\varphi_\beta(s_\mu s_\nu^*) = e^{-|\mu|\beta} \delta_{\mu,\nu}$$

is the unique KMS$_\beta$ state for each $\beta \geq \log n$. References: Olesen-Pedersen (1978), Evans (1980) for non-periodic case. Similar results are known for \mathcal{O}_n, cf. later slide.

Our interest will be in C^*-algebras associated to countable directed graphs.
A directed graph $E = (E^0, E^1, s, r)$ consists of

- E^0 (countable) set of vertices v;
- E^1 (countable) set of edges e;
- $s, r : E^1 \to E^0$ the source and range map.
A directed graph $E = (E^0, E^1, s, r)$ consists of

- E^0 (countable) set of vertices v;
- E^1 (countable) set of edges e;
- $s, r : E^1 \to E^0$ the source and range map.

The graph C^*-algebra $C^*(E)$ is the universal C^*-algebra with generators $G = \{s_e, p_v\}_{e \in E^1, v \in E^0}$, where s_e are partial isometries with mutually orthogonal range projections and p_v are mutually orthogonal projections, subject to the Cuntz-Krieger relations

- $s_e^* s_e = p_{r(e)}$ for all $e \in E^1$,

...
A directed graph $E = (E^0, E^1, s, r)$ consists of

- E^0 (countable) set of vertices v;
- E^1 (countable) set of edges e;
- $s, r : E^1 \to E^0$ the source and range map.

The graph C^*-algebra $C^*(E)$ is the universal C^*-algebra with generators $G = \{s_e, p_v\}_{e \in E^1, v \in E^0}$, where s_e are partial isometries with mutually orthogonal range projections and p_v are mutually orthogonal projections, subject to the Cuntz-Krieger relations

- $s_e^*s_e = p_{r(e)}$ for all $e \in E^1$,
- $s_es_e^* \leq p_{s(e)}$ for all $e \in E^1$,

A directed graph $E = (E^0, E^1, s, r)$ consists of

- E^0 (countable) set of vertices v;
- E^1 (countable) set of edges e;
- $s, r : E^1 \to E^0$ the source and range map.

The graph C^*-algebra $C^*(E)$ is the universal C^*-algebra with generators $G = \{ s_e, p_v \}_{e \in E^1, v \in E^0}$, where s_e are partial isometries with mutually orthogonal range projections and p_v are mutually orthogonal projections, subject to the Cuntz-Krieger relations

- $s_e^* s_e = p_{r(e)}$ for all $e \in E^1$,
- $s_e s_e^* \leq p_{s(e)}$ for all $e \in E^1$,
- $p_v = \sum_{e \in vE^1} s_e s_e^*$ when $vE^1 = \{ f \in E^1 \mid s(f) = v \}$ is non-empty and finite.
A directed graph $E = (E^0, E^1, s, r)$ consists of
 - E^0 (countable) set of vertices v;
 - E^1 (countable) set of edges e;
 - $s, r : E^1 \to E^0$ the source and range map.

The graph C^*-algebra $C^*(E)$ is the universal C^*-algebra with generators $G = \{s_e, p_v\}_{e \in E^1, v \in E^0}$, where s_e are partial isometries with mutually orthogonal range projections and p_v are mutually orthogonal projections, subject to the Cuntz-Krieger relations
 - $s^*_e s_e = p_{r(e)}$ for all $e \in E^1$,
 - $s_e s^*_e \leq p_{s(e)}$ for all $e \in E^1$,
 - $p_v = \sum_{e \in vE^1} s_e s^*_e$ when $vE^1 = \{f \in E^1 \mid s(f) = v\}$ is non-empty and finite.

Enomoto-Watatani, Kumjian-Pask-Raeburn-Renault, Fowler-Raeburn, Bates-Hong-Raeburn-Szymański, ...
The *Toeplitz graph algebra* $\mathcal{T} C^*(E)$ is the universal C^*-algebra with generators $(\tilde{s}_e, \tilde{p}_v)_{e \in E^1, v \in E^0}$ consisting of

- \tilde{s}_e, $e \in E^1$: partial isometries with mutually orthogonal range projections, and
- \tilde{p}_v, $v \in E^0$: mutually orthogonal projections satisfying the Toeplitz-Cuntz-Krieger relations
The *Toeplitz graph algebra* $\mathcal{T} C^*(E)$ is the universal C^*-algebra with generators $(\tilde{s}_e, \tilde{p}_v)_{e \in E^1, v \in E^0}$ consisting of

- $\tilde{s}_e, e \in E^1$: partial isometries with mutually orthogonal range projections, and

- $\tilde{p}_v, v \in E^0$: mutually orthogonal projections

satisfying the Toeplitz-Cuntz-Krieger relations

1. $\tilde{s}_e^* \tilde{s}_e = \tilde{p}_{r(e)}$ for all $e \in E^1$ and

2. $\tilde{p}_v \geq \sum_{e \in F} \tilde{s}_e \tilde{s}_e^*$ for every finite subset F of vE^1.
The *Toeplitz graph algebra* $\mathcal{T} C^*(E)$ is the universal C^*-algebra with generators $(\tilde{s}_e, \tilde{p}_v)_{e \in E^1, v \in E^0}$ consisting of

- $\tilde{s}_e, e \in E^1$: partial isometries with mutually orthogonal range projections, and
- $\tilde{p}_v, v \in E^0$: mutually orthogonal projections satisfying the Toeplitz-Cuntz-Krieger relations

\begin{align*}
\text{1) } & \tilde{s}_e^* \tilde{s}_e = \tilde{p}_{r(e)} \text{ for all } e \in E^1 \text{ and} \\
\text{2) } & \tilde{p}_v \geq \sum_{e \in F} \tilde{s}_e \tilde{s}_e^* \text{ for every finite subset } F \text{ of } vE^1.
\end{align*}

There is a surjective homomorphism $q: \mathcal{T} C^*(E) \to C^*(E)$ which sends \tilde{s}_e to s_e and \tilde{p}_v to p_v for all $e \in E^1$ and $v \in E^0$.
KMS states on graph C^*-algebras

- Basic examples: $\mathcal{T}\mathcal{O}_n$ and \mathcal{O}_n with the gauge action (periodic or not necessarily so) cf. Olesen-Pedersen (1978) and Evans (1980); the Cuntz-Krieger algebra \mathcal{O}_A of an irreducible matrix with the gauge action (periodic or not), cf. Enomoto-Fujii-Watatani (1984) and Zacharias (2000).

- an Huef-Laca-Raeburn-Sims (2012): finite (strongly connected) graphs; proved sharp existence results for both $\mathcal{T}C^*(E)$ and $C^*(E)$.

Goal: analyse KMS states for $\mathcal{T}C^*(E)$ and $C^*(E)$ for countable E.
KMS states on graph C^*-algebras

- Basic examples: $\mathcal{T}O_n$ and O_n with the gauge action (periodic or not necessarily so) cf. Olesen-Pedersen (1978) and Evans (1980); the Cuntz-Krieger algebra O_A of an irreducible matrix with the gauge action (periodic or not), cf. Enomoto-Fujii-Watatani (1984) and Zacharias (2000).
- an Huef-Laca-Raeburn-Sims (2012): finite (strongly connected) graphs; proved sharp existence results for both $\mathcal{T}C^*(E)$ and $C^*(E)$.

Goal: analyse KMS states for $\mathcal{T}C^*(E)$ and $C^*(E)$ for countable E.

KMS states on \(C^* \)-algebras associated to finite \(E \)

Proposition (an Huef-Laca-Raeburn-Sims, 2012) Let \(E \) be a finite graph, \(E^* \) the set of paths and \(\alpha \) the dynamics on \(TC^*(E) \) determined by the gauge action, i.e. for \(\mu, \nu \in E^* \),

\[
\alpha_t(s_\mu s_\nu^*) = \exp(it(|\mu| - |\nu|))s_\mu s_\nu^*,
\]

where \(\text{span}\{s_\mu s_\nu^*\} \) is a dense subspace of analytic elements.

A state \(\phi \) of \(TC^*(E) \) is KMS at \(\beta \in (0, \infty) \) if and only if

\[
\phi(s_\mu s_\nu^*) = \delta_{\mu,\nu} \exp(-\beta |\mu|)\phi(p_{s(\mu)}).
\]
KMS states on C^*-algebras associated to finite E

Proposition (an Huef-Laca-Raeburn-Sims, 2012) Let E be a finite graph, E^* the set of paths and α the dynamics on $\mathcal{T}C^*(E)$ determined by the gauge action, i.e. for $\mu, \nu \in E^*$, $\alpha_t(s_\mu s_\nu^*) = \exp(it(|\mu| - |\nu|))s_\mu s_\nu^*$, where $\text{span}\{s_\mu s_\nu^*\}$ is a dense subspace of analytic elements.

A state ϕ of $\mathcal{T}C^*(E)$ is KMS at $\beta \in (0, \infty)$ if and only if

$$\phi(s_\mu s_\nu^*) = \delta_{\mu,\nu} \exp(-\beta|\mu|)\phi(p_{s(\mu)}).$$

Theorem (an Huef-Laca-Raeburn-Sims, 2012)

Let A be the vertex matrix of E. Consider $\mathcal{T}C^*(E)$ and $C^*(E)$ with the gauge action.

(a) If E is strongly connected (i.e. A is irreducible), then there is a unique KMS$_\beta$ state at $\ln(\rho(A))$.

(b) In general, for $\beta > \ln(\rho(A))$, the simplex of KMS$_\beta$ states of $C^*(E)$ has dimension equal to the set of sources (sinks.)
Exel-Laca’s strategy

Exel and Laca (2003) studied KMS states for non-periodic dynamics on C^*-algebras associated to a countably infinite $0 - 1$ matrix A. Of the six algebras $\mathcal{T} \mathcal{O}_A$, \mathcal{T}_A, \mathcal{O}_A (and three unitised versions), best results are for \mathcal{T}_A and A irreducible.
Exel-Laca’s strategy

Exel and Laca (2003) studied KMS states for non-periodic dynamics on C^*-algebras associated to a countably infinite 0 – 1 matrix A. Of the six algebras $\mathcal{T}\mathcal{O}_A$, \mathcal{T}_A, \mathcal{O}_A (and three unitised versions), best results are for \mathcal{T}_A and A irreducible. Key is: obtain \mathcal{T}_A from a partial action

\[F \bowtie \Omega \]

with Ω locally compact "path" space; identify scaling measures on Ω of finite type (supported on finite "paths") and of infinite type (supported on infinite "paths"); introduce partition functions and identify convergence regions depending on critical inverse temperatures:
Exel-Laca’s strategy

Exel and Laca (2003) studied KMS states for non-periodic dynamics on C^*-algebras associated to a countably infinite $0 - 1$ matrix A. Of the six algebras TO_A, T_A, OA (and three unitised versions), best results are for T_A and A irreducible. Key is: obtain T_A from a partial action

$$F \curvearrowright \Omega$$

with Ω locally compact "path" space; identify scaling measures on Ω of finite type (supported on finite "paths") and of infinite type (supported on infinite "paths"); introduce partition functions and identify convergence regions depending on critical inverse temperatures:

<table>
<thead>
<tr>
<th>β</th>
<th>$(-\infty, \beta'')$</th>
<th>(β'', β')</th>
<th>(β', β)</th>
<th>(β, ∞)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KMS states</td>
<td>none</td>
<td>infinite type</td>
<td>?</td>
<td>finite type</td>
</tr>
</tbody>
</table>
Partial actions of discrete groups

A *partial action* of a discrete group G on a C^*-algebra A is

$$\Theta = (\{D_g\}_{g \in G}, \{\theta_g\}_{g \in G}),$$

where D_g is a closed two-sided ideal of A for all $g \in G$ s.t.
Partial actions of discrete groups

A partial action of a discrete group G on a C^*-algebra A is

$$\Theta = \left(\{D_g\}_{g \in G}, \{\theta_g\}_{g \in G} \right),$$

where D_g is a closed two-sided ideal of A for all $g \in G$ s.t.

1. $D_e = A$ and $\theta_e = \text{id}_A$.

References: Exel, McClanahan, Quigg-Raeburn.
A partial action of a discrete group G on a C^*-algebra A is

$$\Theta = \left(\{D_g\}_{g \in G}, \{\theta_g\}_{g \in G} \right),$$

where D_g is a closed two-sided ideal of A for all $g \in G$ s.t.

1. $D_e = A$ and $\theta_e = \text{id}_A$.
2. $\theta_g : D_{g^{-1}} \rightarrow D_g$ is an isomorphism;
A partial action of a discrete group G on a C^*-algebra A is

$$\Theta = \left(\{D_g\}_{g \in G}, \{\theta_g\}_{g \in G} \right),$$

where D_g is a closed two-sided ideal of A for all $g \in G$ s.t.

1. $D_e = A$ and $\theta_e = \text{id}_A$.
2. $\theta_g : D_{g^{-1}} \to D_g$ is an isomorphism;
3. $\theta_g(D_{g^{-1}} \cap D_h) = D_g \cap D_{gh}$ and
A partial action of a discrete group G on a C^*-algebra A is

$$\Theta = \left(\{D_g\}_{g \in G}, \{\theta_g\}_{g \in G} \right),$$

where D_g is a closed two-sided ideal of A for all $g \in G$ s.t.

1. $D_e = A$ and $\theta_e = \text{id}_A$.
2. $\theta_g : D_{g^{-1}} \to D_g$ is an isomorphism;
3. $\theta_g(D_{g^{-1}} \cap D_h) = D_g \cap D_{gh}$ and
4. $\theta_{gh} = \theta_g \theta_h$ on $D_{(gh)^{-1}} \cap D_{h^{-1}}$, $g, h \in G$.

The crossed product $A \rtimes G$ is the enveloping C^*-algebra of the space \{\(f : G \to A\) | \(f(g) \in D_g, g \in G, \sum_g \|f(g)\| < \infty\)\} endowed with suitable convolution and involution. Write \(f = \sum_g a_g \delta_g\) where \(f(g) = a_g \in D_g\).

References: Exel, McClanahan, Quigg-Raeburn.
Partial actions of the free group \mathbb{F}

$A \rtimes \mathbb{F}$ has a grading with subspaces $D_g \delta_g$, for $g \in \mathbb{F}$. There is a canonical conditional expectation $E : A \rtimes \mathbb{F} \rightarrow D_e \delta_e$, where $D_e \delta_e \cong A$.

Let $|g|$ denote the length of $g \in \mathbb{F}$, i.e. the number of generators in the reduced form of g. The action is semi-saturated: $D_{gh} \subset D_g$ when $|gh| = |g| + |h|$.

Orthogonal: $D_x \cap D_y = \{0\}$ when $|x| = |y| = 1$ and $x \neq y$.

If $A = C_0(X)$ with X a locally compact Hausdorff space, $D_g = C_0(U_g)$ for open and closed subspaces U_g of X, semi-saturation and orthogonality take the form (Exel): $U_{gh} \subset U_g$, $U_x \cap U_y = \emptyset$.

Exel-Laca: $TA = C_0(\Omega) \rtimes \mathbb{F}$ for a semi-saturated orthogonal action.
Partial actions of the free group \mathbb{F}

$A \rtimes \mathbb{F}$ has a grading with subspaces $D_g \delta_g$, for $g \in \mathbb{F}$. There is a canonical conditional expectation $E : A \rtimes \mathbb{F} \to D_e \delta_e$, where $D_e \delta_e \cong A$.

Let $|g|$ denote the length of $g \in \mathbb{F}$, i.e. the number of generators in the reduced form of g. The action is
Partial actions of the free group \mathbb{F}

$A \rtimes \mathbb{F}$ has a grading with subspaces $D_g \delta_g$, for $g \in \mathbb{F}$. There is a canonical conditional expectation $E : A \rtimes \mathbb{F} \to D_e \delta_e$, where $D_e \delta_e \cong A$.

Let $|g|$ denote the length of $g \in \mathbb{F}$, i.e. the number of generators in the reduced form of g. The action is

1. semi-saturated: $D_{gh} \subset D_g$ when $|gh| = |g| + |h|$.
Partial actions of the free group \mathbb{F}

$A \rtimes \mathbb{F}$ has a grading with subspaces $D_g\delta_g$, for $g \in \mathbb{F}$. There is a canonical conditional expectation $E : A \rtimes \mathbb{F} \to D_e\delta_e$, where $D_e\delta_e \cong A$.

Let $|g|$ denote the length of $g \in \mathbb{F}$, i.e. the number of generators in the reduced form of g. The action is

1. **semi-saturated**: $D_{gh} \subset D_g$ when $|gh| = |g| + |h|$.
2. **orthogonal**: $D_x \cap D_y = \{0\}$ when $|x| = |y| = 1$ and $x \neq y$.

If $A = C^0(X)$ with X a locally compact Hausdorff space, $D_g = C^0(U_g)$ for open and closed subspaces U_g of X, semi-saturation and orthogonality take the form (Exel):

$U_{gh} \subset U_g$, $U_x \cap U_y = \emptyset$.

Exel-Laca: $TA = C^0(\Omega) \rtimes F$ for a semi-saturated orthogonal action.
Partial actions of the free group \mathbb{F}

$A \rtimes \mathbb{F}$ has a grading with subspaces $D_g \delta_g$, for $g \in \mathbb{F}$. There is a canonical conditional expectation $E : A \rtimes \mathbb{F} \rightarrow D_e \delta_e$, where $D_e \delta_e \cong A$.

Let $|g|$ denote the length of $g \in \mathbb{F}$, i.e. the number of generators in the reduced form of g. The action is

1. semi-saturated: $D_{gh} \subset D_g$ when $|gh| = |g| + |h|$.
2. orthogonal: $D_x \cap D_y = \{0\}$ when $|x| = |y| = 1$ and $x \neq y$.

If $A = C_0(X)$ with X a locally compact Hausdorff space, $D_g = C_0(U_g)$ for open and closed subspaces U_g of X, semi-saturation and orthogonality take the form (Exel):

$$U_{gh} \subset U_g, \quad U_x \cap U_y = \emptyset.$$
Partial actions of the free group \mathbb{F}

$A \rtimes \mathbb{F}$ has a grading with subspaces $D_g \delta_g$, for $g \in \mathbb{F}$. There is a canonical conditional expectation $E : A \rtimes \mathbb{F} \to D_e \delta_e$, where $D_e \delta_e \cong A$.

Let $|g|$ denote the length of $g \in \mathbb{F}$, i.e. the number of generators in the reduced form of g. The action is

1. semi-saturated: $D_{gh} \subset D_g$ when $|gh| = |g| + |h|$.
2. orthogonal: $D_x \cap D_y = \{0\}$ when $|x| = |y| = 1$ and $x \neq y$.

If $A = C_0(X)$ with X a locally compact Hausdorff space, $D_g = C_0(U_g)$ for open and closed subspaces U_g of X, semi-saturation and orthogonality take the form (Exel):

$$U_{gh} \subset U_g, \ U_x \cap U_y = \emptyset.$$

Exel-Laca: $\mathcal{T}_A = C_0(\Omega) \rtimes \mathbb{F}$ for a semi-saturated orthogonal action.
KMS states on partial crossed products

Theorem (Exel-Laca)

Let \((A, \mathcal{F}, \Theta)\) be a semi-saturated orthogonal partial action and \(N : \mathcal{F} \to (1, \infty)\) a homomorphism. There is a unique dynamics \(\sigma^N : \mathbb{R} \to \text{Aut}(A \ltimes \mathcal{F})\) s.t. \(\sigma^N_t(a\delta_g) = N(g)^{it} a\delta_g\) for \(a\delta_g \in D_g\delta_g\). The \(\sigma^N\)-KMS states at inverse temperature \(\beta \in (0, \infty)\) are given by \(\varphi = \psi \circ E\), where \(\psi\) is a state on \(A\) s.t.
Theorem (Exel-Laca)

Let \((A, \mathbb{F}, \Theta)\) be a semi-saturated orthogonal partial action and \(N : \mathbb{F} \to (1, \infty)\) a homomorphism. There is a unique dynamics \(\sigma^N : \mathbb{R} \to \text{Aut}(A \rtimes \mathbb{F})\) s.t. \(\sigma_t^N(a\delta_g) = N(g)^i a\delta_g\) for \(a\delta_g \in D_g\delta_g\). The \(\sigma^N\)-KMS states at inverse temperature \(\beta \in (0, \infty)\) are given by \(\varphi = \psi \circ E\), where \(\psi\) is a state on \(A\) s.t.

1. \(\psi\) is a trace on \(A\),

Note: \(\psi\) is a ground state if \(\psi |_{D_g\delta_g} = \{0\}\) for all generators \(x\). On \(C^*\)-algebras of etale principal groupoids, KMS states are given by quasi-invariant probability measures on the unit space via a Radon-Nikodym cocycle \(e^{-\beta c}\), Renault (1980). Neshveyev (2011): non-principal groupoids.
KMS states on partial crossed products

Theorem (Exel-Laca)

Let \((A, F, \Theta) \) be a semi-saturated orthogonal partial action and \(N : F \to (1, \infty) \) a homomorphism. There is a unique dynamics \(\sigma^N : \mathbb{R} \to \text{Aut}(A \rtimes F) \) s.t. \(\sigma^N_t(a\delta_g) = N(g)^it a\delta_g \) for \(a\delta_g \in D_g\delta_g \). The \(\sigma^N \)-KMS states at inverse temperature \(\beta \in (0, \infty) \) are given by \(\varphi = \psi \circ E \), where \(\psi \) is a state on \(A \) s.t.

1. \(\psi \) is a trace on \(A \),

2. \(\psi(\theta_x(f)) = N(x)^{-\beta}\psi(f) \) for \(x \in F, \ |x| = 1, \ f \in D_{x^{-1}}. \)
KMS states on partial crossed products

Theorem (Exel-Laca)

Let \((A, F, \Theta)\) be a semi-saturated orthogonal partial action and \(N : F \to (1, \infty)\) a homomorphism. There is a unique dynamics \(\sigma^N : \mathbb{R} \to \text{Aut}(A \rtimes F)\) s.t. \(\sigma^N_t(a\delta_g) = N(g)^{it}a\delta_g\) for \(a\delta_g \in D_g\delta_g\). The \(\sigma^N\)-KMS states at inverse temperature \(\beta \in (0, \infty)\) are given by \(\varphi = \psi \circ E\), where \(\psi\) is a state on \(A\) s.t.

1. \(\psi\) is a trace on \(A\),
2. \(\psi(\theta_x(f)) = N(x)^{-\beta}\psi(f)\) for \(x \in F, \ |x| = 1, f \in D_{x^{-1}}\).

Note: \(\varphi\) is a ground state if \(\varphi|_{D_x} = \{0\}\) for all generators \(x\).
Theorem (Exel-Laca)

Let \((A, F, \Theta)\) be a semi-saturated orthogonal partial action and \(N : F \to (1, \infty)\) a homomorphism. There is a unique dynamics \(\sigma^N : \mathbb{R} \to \text{Aut}(A \rtimes F)\) s.t. \(\sigma^N_t(a\delta_g) = N(g)^{it}a\delta_g\) for \(a\delta_g \in D_g\delta_g\). The \(\sigma^N\)-KMS states at inverse temperature \(\beta \in (0, \infty)\) are given by \(\varphi = \psi \circ E\), where \(\psi\) is a state on \(A\) s.t.

1. \(\psi\) is a trace on \(A\),
2. \(\psi(\theta_x(f)) = N(x)^{-\beta}\psi(f)\) for \(x \in F\), \(|x| = 1\), \(f \in D_{x^{-1}}\).

Note: \(\varphi\) is a ground state if \(\varphi|_{D_x} = \{0\}\) for all generators \(x\).

On \(C^*\)-algebras of etale principal groupoids, KMS states are given by quasi-invariant probability measures on the unit space via a Radon-Nikodym cocycle \(e^{-\beta c}\), Renault (1980). Neshveyev (2011): non-principal groupoids.
Given graph $E = (E^0, E^1, s, r)$, call $v \in E^0$ regular if $vE^1 = \{ f \in E^1 | s(f) = v \}$ is non-empty and finite, i.e. v emits at least one and at most finitely many edges. Fix R a subset of the regular vertices E^0_{reg}.
Given graph $E = (E^0, E^1, s, r)$, call $v \in E^0$ regular if $vE^1 = \{ f \in E^1 | s(f) = v \}$ is non-empty and finite, i.e. v emits at least one and at most finitely many edges. Fix R a subset of the regular vertices E^0_{reg}.

The relative graph algebra (Muhly-Tomforde) $C^*(E, R)$ is the universal C^*-algebra generated by partial isometries $s_e, e \in E^1$ with mutually orthogonal range projections and mutually orthogonal projections $p_v, v \in E^0$, subject to

1. $s_e^*s_e = p_{r(e)}$ for all $e \in E^1$,

C*-algebras associated to graphs revisited

Given graph \(E = (E^0, E^1, s, r) \), call \(v \in E^0 \) regular if \(vE^1 = \{ f \in E^1 \mid s(f) = v \} \) is non-empty and finite, i.e. \(v \) emits at least one and at most finitely many edges. Fix \(R \) a subset of the regular vertices \(E^0_{\text{reg}} \).

The relative graph algebra (Muhly-Tomforde) \(C^*(E, R) \) is the universal C*-algebra generated by partial isometries \(s_e, e \in E^1 \) with mutually orthogonal range projections and mutually orthogonal projections \(p_v, v \in E^0 \), subject to

1. \(s_e^*s_e = p_{r(e)} \) for all \(e \in E^1 \),
2. \(s_es_e^* \leq p_{s(e)} \) for all \(e \in E^1 \).
Given graph $E = (E^0, E^1, s, r)$, call $v \in E^0$ regular if $vE^1 = \{ f \in E^1 \mid s(f) = v \}$ is non-empty and finite, i.e. v emits at least one and at most finitely many edges. Fix R a subset of the regular vertices E^0_{reg}.

The relative graph algebra (Muhly-Tomforde) $C^*(E, R)$ is the universal C^*-algebra generated by partial isometries $s_e, e \in E^1$ with mutually orthogonal range projections and mutually orthogonal projections $p_v, v \in E^0$, subject to

1. $s_e^*s_e = p_{r(e)}$ for all $e \in E^1$,
2. $s_es_e^* \leq p_{s(e)}$ for all $e \in E^1$,
3. $p_v = \sum_{e \in vE^1} s_es_e^*$ when $v \in R$.

Note:
- $C^*(E)$ corresponds to $R = E^0_{\text{reg}}$.
- T $C^*(E)$ corresponds to $R = \emptyset$.

Given graph $E = (E^0, E^1, s, r)$, call $v \in E^0$ regular if $vE^1 = \{ f \in E^1 \mid s(f) = v \}$ is non-empty and finite, i.e. v emits at least one and at most finitely many edges. Fix R a subset of the regular vertices E^0_{reg}.

The relative graph algebra (Muhly-Tomforde) $C^*(E, R)$ is the universal C^*-algebra generated by partial isometries $s_e, e \in E^1$ with mutually orthogonal range projections and mutually orthogonal projections $p_v, v \in E^0$, subject to

1. $s_e^* s_e = p_{r(e)}$ for all $e \in E^1$,
2. $s_e s_e^* \leq p_{s(e)}$ for all $e \in E^1$,
3. $p_v = \sum_{e \in vE^1} s_e s_e^*$ when $v \in R$.

Note:

- $C^*(E)$ corresponds to $R = E^0_{\text{reg}}$.
- $\mathcal{T} C^*(E)$ corresponds to $R = \emptyset$.
$E = (E^0, E^1, s, r)$ is a countable graph and $R \subset E^0_{\text{reg}}$.
$E = (E^0, E^1, s, r)$ is a countable graph and $R \subset E^0_{\text{reg}}$. A path of length $n \geq 1$ in E^* is $u = e_1 e_2 \ldots e_n$ where $s(e_{j+1}) = r(e_j)$ for $j = 1, \ldots, n - 1$.
$E = (E^0, E^1, s, r)$ is a countable graph and $R \subset E^0_{\text{reg}}$. A path of length $n \geq 1$ in E^* is $u = e_1 e_2 \ldots e_n$ where $s(e_{j+1}) = r(e_j)$ for $j = 1, \ldots, n - 1$. Infinite paths in E^∞ have form $e_1 e_2 \ldots$ with $s(e_{j+1}) = r(e_j)$.
C*-algebras associated to graphs III

$E = (E^0, E^1, s, r)$ is a countable graph and $R \subset E^0_{\text{reg}}$. A path of length $n \geq 1$ in E^* is $u = e_1 e_2 \ldots e_n$ where $s(e_{j+1}) = r(e_j)$ for $j = 1, \ldots, n - 1$. Infinite paths in E^∞ have form $e_1 e_2 \ldots$ with $s(e_{j+1}) = r(e_j)$.

The total path space $E^{\leq \infty}$ consisting of finite and infinite paths is a totally disconnected locally compact Hausdorff space: if cylinder sets are $Z(u) = \{ x \in E^{\leq \infty} \mid u \leq x \}$ for $u \in E^*$, then a basis of open and compact subsets is given by

$$Z_F(u) = Z(u) \setminus \left(\bigcup_{u' \in F, u \leq u'} Z(u') \right),$$

for F finite subset of the finite paths, see e.g. Webster (2011).

The (relative) boundary path space is

$$\partial_R E = E^\infty \cup \{ u \in E^* \mid r(u) \notin R \}.$$
$E = (E^0, E^1, s, r)$ is a countable graph and $R \subset E^0_{\text{reg}}$. A path of length $n \geq 1$ in E^* is $u = e_1 e_2 \ldots e_n$ where $s(e_{j+1}) = r(e_j)$ for $j = 1, \ldots, n-1$. Infinite paths in E^∞ have form $e_1 e_2 \ldots$ with $s(e_{j+1}) = r(e_j)$.

The total path space $E^{\leq \infty}$ consisting of finite and infinite paths is a totally disconnected locally compact Hausdorff space: if cylinder sets are $Z(u) = \{x \in E^{\leq \infty} | u \leq x\}$ for $u \in E^*$, then a basis of open and compact subsets is given by

$$Z_F(u) = Z(u) \setminus \left(\bigcup_{u' \in F, u \leq u'} Z(u') \right),$$

for F finite subset of the finite paths, see e.g. Webster (2011).

The (relative) boundary path space is

$$\partial_R E = E^\infty \cup \{u \in E^* | r(u) \notin R\}.$$
$E = (E^0, E^1, s, r)$ is a countable graph and $R \subset E^0_{\text{reg}}$. A path of length $n \geq 1$ in E^* is $u = e_1 e_2 \ldots e_n$ where $s(e_{j+1}) = r(e_j)$ for $j = 1, \ldots, n - 1$. Infinite paths in E^∞ have form $e_1 e_2 \ldots$ with $s(e_{j+1}) = r(e_j)$.

The total path space $E^{\leq \infty}$ consisting of finite and infinite paths is a totally disconnected locally compact Hausdorff space: if cylinder sets are $Z(u) = \{ x \in E^{\leq \infty} \mid u \leq x \}$ for $u \in E^*$, then a basis of open and compact subsets is given by

$$Z_F(u) = Z(u) \setminus \left(\bigcup_{u' \in F, u \leq u'} Z(u') \right),$$

for F finite subset of the finite paths, see e.g. Webster (2011).

The (relative) boundary path space is

$$\partial_R E = E^\infty \cup \{ u \in E^* \mid r(u) \notin R \}.$$

Note: $\partial_R E = E^{\leq \infty}$ when $R = \emptyset$.
A partial action of \mathbb{F} on paths

Given E countable, let \mathbb{F} be the free group on $|E^1|$-generators. Let 1 be the identity element in \mathbb{F} and $e \in E^1$.
A partial action of \mathbb{F} on paths

Given E countable, let \mathbb{F} be the free group on $|E^1|$-generators. Let 1 be the identity element in \mathbb{F} and $e \in E^1$. Define open and compact subsets $U(g^{-1})$ and $U(g)$ of $E^{\leq \infty}$ (or of $\partial_R E$ upon intersecting with it) as follows: for $e, e^{-1} \in \mathbb{F}$,

- $U(1) = E^{\leq \infty}$
- $U(e) = Z(e) = \{ x \in E^{\leq \infty} \mid x = ex', x' \text{ path} \}$,
- $U(e^{-1}) = Z(r(e)) = \{ x \in E^{\leq \infty} \mid ex \in E^{\leq \infty} \}$,
A partial action of \mathbb{F} on paths

Given E countable, let \mathbb{F} be the free group on $|E^1|$-generators. Let 1 be the identity element in \mathbb{F} and $e \in E^1$. Define open and compact subsets $U(g^{-1})$ and $U(g)$ of $E^{\leq \infty}$ (or of $\partial_R E$ upon intersecting with it) as follows: for e, $e^{-1} \in \mathbb{F}$,

$$U(1) = E^{\leq \infty}$$

$$U(e) = Z(e) = \{ x \in E^{\leq \infty} \mid x = ex', x' \text{ path} \},$$

$$U(e^{-1}) = Z(r(e)) = \{ x \in E^{\leq \infty} \mid ex \in E^{\leq \infty} \},$$

and define continuous maps $\{ \phi_g \}_{g \in \mathbb{F}}$ by

$$\phi_1 = \text{id}$$

$$\phi_e(x) = ex, \; \phi_e : U(e^{-1}) \to E^{\leq \infty},$$

$$\phi_{e^{-1}}(ex') = x', \; \phi_{e^{-1}} : U(e) \to E^{\leq \infty}.$$
A partial action of \mathbb{F} on paths

Given E countable, let \mathbb{F} be the free group on $|E^1|$-generators. Let 1 be the identity element in \mathbb{F} and $e \in E^1$. Define open and compact subsets $U(g^{-1})$ and $U(g)$ of $E^{\leq \infty}$ (or of $\partial_R E$ upon intersecting with it) as follows: for $e, e^{-1} \in \mathbb{F}$,

$$U(1) = E^{\leq \infty}$$

$$U(e) = Z(e) = \{ x \in E^{\leq \infty} \mid x = ex', x' \text{ path}\},$$

$$U(e^{-1}) = Z(r(e)) = \{ x \in E^{\leq \infty} \mid ex \in E^{\leq \infty}\},$$

and define continuous maps $\{\phi_g\}_{g \in \mathbb{F}}$ by

$$\phi_1 = \text{id}$$

$$\phi_e(x) = ex, \quad \phi_e : U(e^{-1}) \to E^{\leq \infty},$$

$$\phi_{e^{-1}}(ex') = x', \quad \phi_{e^{-1}} : U(e) \to E^{\leq \infty}.$$

Thus $\phi_e(x)$ ”copies” the edge e to the left in x and $\phi_{e^{-1}}(ex')$ ”deletes” the edge e from x.
A partial action of F on paths

Define $\phi_g : U(g^{-1}) \rightarrow U(g)$ recursively:
for $g = a_ia_{i-1} \cdots a_1$ in F in reduced form let

$$\phi_{a_ia_{i-1} \cdots a_1}(x) = \phi_{a_i}(\phi_{a_{i-1} \cdots a_1}(x))$$

on $U((a_ia_{i-1} \cdots a_1)^{-1}) = \phi_{a_{i-1} \cdots a_1}(U(a_i^{-1})).$
A partial action of \mathbb{F} on paths

Define $\phi_g : U(g^{-1}) \to U(g)$ recursively:
for $g = a_ia_{i-1} \cdots a_1$ in \mathbb{F} in reduced form let

$$\phi_{a_ia_{i-1} \cdots a_1}(x) = \phi_{a_i}(\phi_{a_{i-1} \cdots a_1}(x))$$

on $U((a_ia_{i-1} \cdots a_1)^{-1}) = \phi_{a_{i-1} \cdots a_1}(U(a_i^{-1}))$.

Thus $\phi_{a_ia_{i-1} \cdots a_1}$ acts on a path x by adding or deleting edges according to the reduced word $a_ia_{i-1} \cdots a_1$.

Partial actions of \mathbb{F} on path spaces

Proposition

The maps ϕ_g for $g \in \mathbb{F}$ induce a semi-saturated and orthogonal partial action Θ of \mathbb{F} on $C_0(\partial_R E)$.

Theorem (Carlsen-L)

There is an isomorphism $\rho: C^*(E, R) \to C_0(\partial_R E) \rtimes \Theta F$ such that $\rho(p_{v}) = \chi_{Z(v)} \cap \partial_R E$ for $v \in E_0$ and $\rho(s_e) = \delta_e$ for $e \in E_1$.

Taking $R = \emptyset$ and $R = E_0$ reg gives:

1. $C_0(E_{\leq \infty}) \rtimes \Theta F \cong T$.
2. $C_0(\partial E) \rtimes \Theta F \cong C^*(E)$.
Partial actions of \mathbb{F} on path spaces

Proposition

The maps ϕ_g for $g \in \mathbb{F}$ induce a semi-saturated and orthogonal partial action Θ of \mathbb{F} on $C_0(\partial_R E)$.

Theorem (Carlsen-L)

There is an isomorphism $\rho : C^*(E, R) \to C_0(\partial_R E) \rtimes_\Theta \mathbb{F}$ such that

$$\rho(p_v) = \chi_{Z(v) \cap \partial_R E} \text{ for } v \in E^0$$
$$\rho(s_e) = \delta_e \text{ for } e \in E^1.$$
Partial actions of \mathbb{F} on path spaces

Proposition

The maps ϕ_g for $g \in \mathbb{F}$ induce a semi-saturated and orthogonal partial action Θ of \mathbb{F} on $C_0(\partial R E)$.

Theorem (Carlsen-L)

There is an isomorphism $\rho : C^*(E, R) \rightarrow C_0(\partial R E) \rtimes_\Theta \mathbb{F}$ such that

$$
\rho(p_v) = \chi_{Z(v) \cap \partial R E} \text{ for } v \in E^0 \\
\rho(s_e) = \delta_e \text{ for } e \in E^1.
$$

Taking $R = \emptyset$ and $R = E_{reg}^0$ gives:

1. $C_0(E^{\leq \infty}) \rtimes_\Theta \mathbb{F} \cong T C^*(E)$.
2. $C_0(\partial E) \rtimes_\Theta \mathbb{F} \cong C^*(E)$.
Proposition

Given E, $R \subseteq E_{\text{reg}}^0$ and a function $N : E^1 \rightarrow (1, \infty)$, let σ be the unique dynamics s.t. $\sigma_t(s_e) = N(e)^t s_e$ and $\sigma_t(p_v) = p_v$. For $\beta \in [0, \infty)$, there are isomorphisms of the convex sets of
Proposition

Given E, $R \subseteq E^0_{\text{reg}}$ and a function $N : E^1 \to (1, \infty)$, let σ be the unique dynamics s.t. $\sigma_t(s_e) = N(e)^{it}s_e$ and $\sigma_t(p_v) = p_v$. For $\beta \in [0, \infty)$, there are isomorphisms of the convex sets of 1 KMS$_\beta$ states of $C^*(E, R)$;
KMS states on $C^*(E, R)$

Proposition

Given $E, R \subseteq E^0_{\text{reg}}$ and a function $N : E^1 \to (1, \infty)$, let σ be the unique dynamics s.t. $\sigma_t(s_e) = N(e)^{it}s_e$ and $\sigma_t(p_v) = p_v$. For $\beta \in [0, \infty)$, there are isomorphisms of the convex sets of

1. KMS$_\beta$ states of $C^*(E, R)$;
2. regular Borel probability measures μ on $\partial_R E$ satisfying the scaling condition

$$\mu(\phi_e(A)) = N(e)^{-\beta}\mu(A)$$

for $e \in E^1$ and $A \subseteq Z(r(e)) \cap \partial_R E$ measurable;
KMS states on $C^*(E, R)$

Proposition

Given $E, R \subseteq E^0_{\text{reg}}$ and a function $N : E^1 \rightarrow (1, \infty)$, let σ be the unique dynamics s.t. $\sigma_t(s_e) = N(e)^{it}s_e$ and $\sigma_t(p_v) = p_v$. For $\beta \in [0, \infty)$, there are isomorphisms of the convex sets of

1. KMSβ states of $C^*(E, R)$;
2. regular Borel probability measures μ on $\partial_R E$ satisfying the scaling condition

$$\mu(\phi_e(A)) = N(e)^{-\beta}\mu(A)$$

for $e \in E^1$ and $A \subseteq Z(r(e)) \cap \partial_R E$ measurable;
3. states ω of $C_0(\partial_R E)$ satisfying

$$\omega(f \circ \phi_e^{-1}) = N(e)^{-\beta}\omega(f)$$

for $e \in E^1$ and $f \in C_0(Z(r(e)) \cap \partial_R E)$.

C*-algebras associated to graphs, path spaces and equilibrium states

Nadia S. Larsen
To get a characterisation useful in computations, need to exploit the graph a bit more. Suppose $\beta \in [0, \infty)$. Let C^β be the collection of functions $m : E^0 \to [0, 1]$ such that

1. $\sum_{v \in E^0} m(v) = 1$;
2. $m(v) \geq \sum_{e \in vE^1} N(e)^{-\beta} m(r(e))$ for all $v \in E^0$;
3. $m(v) = \sum_{e \in vE^1} N(e)^{-\beta} m(r(e))$ if $v \in R$.

Theorem (Carlsen-L) The set of KMS β states of $C^*(E, R)$ is isomorphic as a convex set to C^β. Explicitly, $m \in C^\beta$ corresponds to the measure μ on $\partial R E$ that satisfies the scaling condition via $m(v) = \mu(Z(v) \cap \partial R E)$, $v \in E^0$.
KMS states on $C^*(E, R)$

To get a characterisation useful in computations, need to exploit the graph a bit more. Suppose $\beta \in [0, \infty)$. Let C^β be the collection of functions $m : E^0 \to [0, 1]$ such that

1. $\sum_{v \in E^0} m(v) = 1$;
2. $m(v) \geq \sum_{e \in vE_1} N(e)^{-\beta} m(r(e))$ for all $v \in E^0$;
3. $m(v) = \sum_{e \in vE_1} N(e)^{-\beta} m(r(e))$ if $v \in R$.

Theorem (Carlsen-L)

The set of KMS$_\beta$ states of $C^*(E, R)$ is isomorphic as a convex set to C^β.
KMS states on $C^*(E, R)$

To get a characterisation useful in computations, need to exploit the graph a bit more. Suppose $\beta \in [0, \infty)$. Let C^β be the collection of functions $m : E^0 \to [0, 1]$ such that

- $\sum_{v \in E^0} m(v) = 1$;
- $m(v) \geq \sum_{e \in vE^1} N(e)^{-\beta} m(r(e))$ for all $v \in E^0$;
- $m(v) = \sum_{e \in vE^1} N(e)^{-\beta} m(r(e))$ if $v \in R$.

Theorem (Carlsen-L)

The set of KMS_β states of $C^*(E, R)$ is isomorphic as a convex set to C^β.

Explicitly, $m \in C^\beta$ corresponds to the measure μ on $\partial_R E$ that satisfies the scaling condition via

$$m(v) = \mu(Z(v) \cap \partial_R E), \ v \in E^0.$$
β-regular and critical points

Question: which $m \in C^\beta$ are extreme points?
Question: which $m \in C^\beta$ are extreme points?

For $v \in E^0$ consider sets of finite paths

- $E^*v_{aper} =$ paths that end properly in v (no finite initial subpath ends in v),
- $vE^*v_{aper} =$ proper loops at v (no subpath ends in v).
Question: which $m \in C^\beta$ are extreme points?

For $v \in E^0$ consider sets of finite paths

- $E^\ast v_{aper} = \text{paths that end properly in } v \text{ (no finite initial subpath ends in } v)$,
- $vE^\ast v_{aper} = \text{proper loops at } v \text{ (no subpath ends in } v)$.

Define *partition functions with fixed target* (a’la Exel-Laca)

- $Z_v(\beta) = \sum_{u \in E^\ast v_{aper}} N(u)^{-\beta}$,
- $Z_{vv}(\beta) = \sum_{u \in vE^\ast v_{aper}} N(u)^{-\beta}$,
β-regular and critical points

Question: which \(m \in C^\beta \) are extreme points?
For \(v \in E^0 \) consider sets of finite paths
\begin{itemize}
 \item \(E^* v_{aper} \) = paths that end properly in \(v \) (no finite initial subpath ends in \(v \)),
 \item \(vE^* v_{aper} \) = proper loops at \(v \) (no subpath ends in \(v \)).
\end{itemize}
Define partition functions with fixed target (a’la Exel-Laca)
\begin{itemize}
 \item \(Z_v(\beta) = \sum_{u \in E^* v_{aper}} N(u)^{-\beta} \),
 \item \(Z_{vv}(\beta) = \sum_{u \in vE^* v_{aper}} N(u)^{-\beta} \),
\end{itemize}
and define
\begin{itemize}
 \item \(v \) is \(\beta \)-regular iff \(Z_v(\beta) < \infty \) and \(Z_{vv}(\beta) < 1 \).
 \item \(v \) is \(\beta \)-critical iff \(Z_v(\beta) < \infty \) and \(Z_{vv}(\beta) = 1 \).
\end{itemize}
β-regular and critical points

Question: which \(m \in C^\beta \) are extreme points?

For \(v \in E^0 \) consider sets of finite paths

- \(E^* v_{aper} = \) paths that end properly in \(v \) (no finite initial subpath ends in \(v \)),
- \(vE^* v_{aper} = \) proper loops at \(v \) (no subpath ends in \(v \)).

Define *partition functions with fixed target* (a’la Exel-Laca)

\[
Z_v(\beta) = \sum_{u \in E^* v_{aper}} N(u)^{-\beta},
\]
\[
Z_{vv}(\beta) = \sum_{u \in vE^* v_{aper}} N(u)^{-\beta},
\]

and define

- \(v \) is \(\beta \)-regular iff \(Z_v(\beta) < \infty \) and \(Z_{vv}(\beta) < 1 \).
- \(v \) is \(\beta \)-critical iff \(Z_v(\beta) < \infty \) and \(Z_{vv}(\beta) = 1 \).

Let \(E_{\beta,r}^0 \) and \(E_{\beta,c}^0 \) be the sets of \(\beta \)-regular and \(\beta \)-critical vertices. Fact: if \(m \in C^\beta \) with \(m(v) \neq 0 \), then \(v \in E_{\beta,r}^0 \cup E_{\beta,c}^0 \).
Main results

For $v \in E_{\beta,r} \sqcup E_{\beta,c}^0$ define $m_v^\beta : E^0 \to [0, 1]$ by

$$m_v^\beta(v') = \frac{1}{Z_v(\beta)} \sum_{u \in v'E^*v_{aper}} N(u)^{-\beta}, \ v' \in E^0.$$
Main results

For \(v \in E_{\beta,r}^0 \sqcup E_{\beta,c}^0 \) define \(m^\beta_v : E^0 \to [0, 1] \) by

\[
m^\beta_v(v') = \frac{1}{Z_v(\beta)} \sum_{u \in v' E^*_v \text{aper}} N(u)^{-\beta}, \quad v' \in E^0.
\]

Theorem (Carlsen-L)

Let \(C_f^\beta \) consist of \(m \in C^\beta \) such the associated measure \(\mu \) is supported on the finite paths in \(\partial_R E \). Define

\[
\psi(m)(v) = \frac{Z_v(\beta)}{1 - Z_{vv}(\beta)} (m(v) - \sum_{e \in vE^1} N(e)^{-\beta} m(r(e))).
\]

Then \(\psi : C_f^\beta \to \{ \epsilon : E_{\beta,r}^0 \to [0, 1] \mid \sum \epsilon(v) = 1 \} \) is a convex isomorphism such that \(\psi(m^\beta_v) = \delta_v \) for \(v \in E_{\beta,r}^0 \).
Main results

Given vertices \(v_1 \neq v_2 \), write \(v_1 \sim v_2 \) if there exist finite paths between \(v_1 \) and \(v_2 \). Then \(m^\beta_{v_1} = m^\beta_{v_2} \) if and only if \(v_1, v_2 \in E^{0}_{\beta,c} \) and \(v_1 \sim v_2 \). Let \([v]\) denote the equivalence class of \(v \) with respect to \(\sim \).
Main results

Given vertices \(v_1 \neq v_2 \), write \(v_1 \sim v_2 \) if there exist finite paths between \(v_1 \) and \(v_2 \). Then \(m^\beta_{v_1} = m^\beta_{v_2} \) if and only if \(v_1, v_2 \in E^{0}_{\beta,c} \) and \(v_1 \sim v_2 \). Let \([v]\) denote the equivalence class of \(v \) with respect to \(\sim \).

Define \(E^\infty_{\text{rec}} \) to be the collection of infinite paths that meet a vertex of \(E \) infinitely often (\textit{recurrent} infinite paths).
Given vertices $v_1 \neq v_2$, write $v_1 \sim v_2$ if there exist finite paths between v_1 and v_2. Then $m_{v_1}^\beta = m_{v_2}^\beta$ if and only if $v_1, v_2 \in E_0^{\beta,c}$ and $v_1 \sim v_2$. Let $[v]$ denote the equivalence class of v with respect to \sim.

Define E_∞^{rec} to be the collection of infinite paths that meet a vertex of E infinitely often (recurrent infinite paths).

Theorem (Carlsen-L)

Let $C_{\inf,a}^\beta$ consist of $m \in C^\beta$ such the associated measure μ is supported on E_∞^{rec}. The map

$$\phi(m)(v) = m(v)Z_v(\beta)$$

is a well-defined isomorphism of convex sets from $C_{\inf,a}^\beta$ to $\{\epsilon : E_0^{\beta,c}/\sim \rightarrow [0, 1] \mid \sum[v] \epsilon([v]) = 1\}$. Moreover, $\phi(m_v^\beta) = \delta_v$ for all $v \in [v]$.
Examples

In case of $\mathcal{T}O_n$ we have $E^0 = \{v\}$ and $E^1 = \{e_1, e_2, \ldots, e_n\}$, where $s(e_i) = r(e_i) = v$ for all $i = 1, \ldots, n$.
In case of $\mathcal{T}O_n$ we have $E^0 = \{v\}$ and $E^1 = \{e_1, e_2, \ldots, e_n\}$, where $s(e_i) = r(e_i) = v$ for all $i = 1, \ldots, n$. For $n = 3$, the graph looks like

\begin{center}
\begin{tikzpicture}
 \node (v1) at (0,0) {v_1};
 \node (e1) at (-1,1) {e_1};
 \node (e2) at (1,1) {e_2};
 \node (e3) at (0,-1) {e_3};
 \draw[->] (v1) to (e1);
 \draw[->] (v1) to (e2);
 \draw[->] (v1) to (e3);
\end{tikzpicture}
\end{center}
Examples

In case of TO_n we have $E^0 = \{v\}$ and $E^1 = \{e_1, e_2, \ldots, e_n\}$, where $s(e_i) = r(e_i) = v$ for all $i = 1, \ldots, n$. For $n = 3$, the graph looks like

\[
\begin{array}{c}
\text{v}_1 \\
\text{e}_1 \\
\text{e}_2 \\
\text{e}_3
\end{array}
\]

The β-regular and critical points and the KMS states are as follows:
Examples

In case of $\mathcal{T}O_n$ we have $E^0 = \{v\}$ and $E^1 = \{e_1, e_2, \ldots, e_n\}$, where $s(e_i) = r(e_i) = v$ for all $i = 1, \ldots, n$. For $n = 3$, the graph looks like

![Graph](image)

The β-regular and critical points and the KMS states are as follows:

<table>
<thead>
<tr>
<th>β</th>
<th>$(0, \log n)$</th>
<th>$\log n$</th>
<th>$(\log n, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E^0_{\beta,r}$</td>
<td>\emptyset</td>
<td>\emptyset</td>
<td>$E^0 = {v_1}$</td>
</tr>
<tr>
<td>$E^0_{\beta,c}$</td>
<td>\emptyset</td>
<td>${v_1}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>KMS$_\beta$</td>
<td>\emptyset</td>
<td>$C^\beta_{\inf,a}$</td>
<td>C^β_f</td>
</tr>
</tbody>
</table>
Examples

Consider the graph

\[
\begin{array}{ccc}
 v_0 \xrightarrow{e_0} & v_1 \xrightarrow{e_1} & v_2 \xrightarrow{e_2} & \ldots \\
 f_0 \downarrow & f_1 \downarrow & f_2 \downarrow & \ldots
\end{array}
\]

For \(\mathcal{T} C^* (E) \) and the gauge-action:

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>0</th>
<th>((0, \ln 2))</th>
<th>([\ln 2, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E^0_{\beta, r})</td>
<td>(\emptyset)</td>
<td>(E^0)</td>
<td>(E^0)</td>
</tr>
<tr>
<td>(E^0_{\beta, c})</td>
<td>({v_0})</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

KMS\(_\beta \)

\[
C^\beta_{\text{inf}, a} = \{m_{v_0}\} \quad C^\beta_f \sqcup m^\beta_{\text{inf}, b} \quad C^\beta_f
\]

Note: \(m^\beta_{\text{inf}, b} \) has support on the \textit{non-recurrent} path \(f_0 f_1 \ldots \).

Such paths do not occur in the case of finite graphs.