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Abstract: Synchronizing words are a well known topic in the theory of graphs and automata and in symbolic
dynamics. They can be reinterpreted as gadgets for the preparation of states on commutative algebras by repeated
interactions with another system. This interpretation suggests noncommutative versions which are relevant to the
preparation of states in noncommutative algebras and quantum systems.
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Road-coloured graphs and synchronizing words

Figure: road-coloured graph, from: Wikimedia Commons

directed (multi-)graph with constant outdegree

road-colouring = bijection between outgoing arrows (for each
vertex) and a set of labels or colours [red (r) and blue (b)]
brrbrrbrr leads from any vertex to the yellow vertex
bbrbbrbbr leads from any vertex to the green vertex
These are examples of synchronizing words.
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Road-colouring problem

Road-colouring problem:

Given a (finite) strongly connected and aperiodic
(multi-) graph with constant outdegree,
does there always exist a synchronizing word?

Conjectured by Adler and Weiss (1970),
complete proof by Trahtman (2009).

Complexity issues:
Finding the shortest synchronizing word is an
NP-complete problem (Eppstein 1990).

Computer scientists interpret synchronizing words
as reset buttons for finite automata.
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Algebraic version: road-colouring

Algebraically:

A set of vertices

C set of colours

A road-colouring graph is nothing but a map

γ : A× C → A

from which we also get the iterated maps

γn : A×
n∏
1

C → A, γn := γ ◦ γn−1, γ1 := γ

In particular this is a
topological Markov chain / subshift of finite type.
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Probabilistic interpretation of synchronizing word

Following the instruction given by a synchronizing word
involves forgetting the starting point.

Probabilistic version. TFAE:

1. There exists a synchronizing word.
2. For any probability measure µ on A there exists n ∈ N and a

probability measure νn on
∏n

1 C such that for any initial
probability measure µ0 on A

µ =
(
µ0 × νn

)
◦ γ−1

n

Easy: Prepare the point measure µ = δx by νn = δw where w
is a synchronizing word leading to x . Convex combinations.
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Non-commutative topological Markov chain

A, C C ∗-algebras

J : A → A⊗ C ∗-homomorphism

commutative example:
A = F (A), C = F (C ), Jf (x , y) = f (γ(x , y))

The corresponding iteration is now

Jn : A → A⊗
n⊗
1

C, Jn :=
(
J ⊗ 1l

)
◦ Jn−1, J1 := J

We call this a non-commutative topological Markov chain.
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Preparability

We say that a state ρ ∈ S(A) is preparable by
J : A → A⊗ C if there exists a sequence (θn) with
θn ∈ S(

⊗n
1 C) such that for any initial state ρ0 ∈ S(A)(

ρ0 ⊗ θn
)
◦ Jn → ρ if n→∞

More natural to consider limits here instead of a finite n.

Choice of topology left open for the moment. But

For commutative algebras from (finite) road-coloured graphs
TFAE:

1. There is synchronizing word.
2. All states are preparable.

Physical interpretation: Preparing a state (in a quantum
system if algebras are non-commutative) by repeated
interactions with independent copies of another system.

Attractive feature: The initial state is forgotten.

micromaser experiments
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A criterion

Special case: A = B(H) and C a von Neumann algebra.
Stationarity assumption: There exist faithful normal states
φ ∈ S(A) and ψ ∈ S(C) such that (φ⊗ ψ) ◦ J = φ.

TFAE:
1. All normal states on A = B(H) are preparable

(weakly or, equivalently, w.r.t. trace norm)
2. The following unital completely positive map Z is ergodic

(only trivial fixed points).

Hφ, Hψ GNS-Hilbert spaces w.r.t. φ, ψ
v : Hφ → Hφ ⊗Hψ is the isometry obtained by extending J
Now Z is given by the Stinespring representation

Z : B(Hφ)→ B(Hφ), x 7→ v∗ x ⊗ 1l v

Z is called an extended transition operator. Not acting on
the original A = B(H), in fact Hφ ' H⊗H.
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the role of Z

Zn measures how Jn forgets the A-component of the tensor
product:

〈aΩφ,Z
n(pφ)aΩφ〉 = ‖QφJn(a)‖2ψn

Ωφ cyclic vector for φ, a ∈ A = B(H)

pφ the one-dimensional projection onto CΩφ

Qφ linear extension of the map a⊗ b 7→ φ(a) b

‖b‖2ψn
:=
⊗n

1 ψ (b∗b)

Z ergodic ⇒ Zn(pφ)→ 1l ⇒ ‖QφJn(a)‖ψn → ‖a‖φ

Interpretation: Ergodicity of Z plays a similar role here as the
synchronizing word in the easy proof earlier. Indeed, with
more work the last property (called asymptotic completeness)
makes it possible to prepare arbitrary vector states and then,
by convex combinations, arbitrary normal states.
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