The AT property is not preserved by finite
extensions

A.H. Dooley
Department of Mathematical Sciences
University of Bath
This is joint work with Anthony Quas from UBC

September 13, 2013



S Gt w1

Plan of talk

Measurable dynamical systems and the Connes-Krieger
dictionary

The AT property
Rank and entropy
The Morse system

Measures of “funny” cylinders and zero entropy

. A finite extension which doesn’t have the AT prop-

erty



1 Measurable dynamical systems and the Connes-
Krieger dictionary

A measurable dynamical system is a quadruple
(X, B, u, T), consisting of a measure space and an in-
vertible bimeasurable transformation 7'. Sometimes we
replace T" with a group I' of transformations acting on
X. For us, the system will usually be ergodic: the only
invariant sets are null or conull.

In the 1930’s, Von Neumann classified factors into Types
I,,n=1,2,...,00, Types [y and I1, and Type I11.

He gave examples of factors by starting with L>°(X, u)
and taking what we call today the crossed product by
the action of T'. Actually, in all his examples, © was an
infinite product measure on an infinite product of 2-point
spaces.

In a mathematical tour de force, Alain Connes and
Wilfried Krieger and some others, showed that von Neu-
mann'’s insight was good. Up to isomorphism, every fac-
tor arises this way:.



In fact, they found a “dictionary” between factors and
measurable dynamical systems:

v.n. factors up to isom <+ ergod. meas.dyn. system up
to orbit equ. <> flows (action of R)up to conjugacy

ITPF1 factors <+ orbit equiv to product <> AT flow

Type I,, <+ X has n points <+ periodic flow
Type 111, [l <+ poT = p <> recurrent flow
Type I11y,0 < A < 1 4 there is no equivalent preserved
measure < dissipative flows.

All types except [11, are ITPF1. Type 111, contain
both product type and non product type, and are not
unique up to o.e..



2 The AT property

[t is therefore important to study the AT property. Let
me remind you what it is:

A dynamical system (X, B, u,T) is said to be ap-
proximately transitive (or to have the AT property)
if any finite collection of positive L' functions may be
simultaneously approximated by a positive linear combi-
nation of iterates of a single L' function, that is given
€e>0,f1,...,[n € LL(X), there exist f € L1 (X), n; :
j=1,...omand o ,i=1,...,n,j=1,...,meR"
such that

fi — Z@z’,jﬁnjf <e€

where £, f(z) = LI2(2) f(T"x) and || - || denotes the
L' norm.

We consider exclusively invertible probability measure-
preserving transformations and so £, f (x) reduces to f(T"x).



e The above definition is equivalent to the one with n
replaced by 2.

e Jane Hawkins proved that if (X, B, u, ') is AT, and
if 'y < T andif p: X — X/Ty =Y, then

(Ya Bla MO P, 1—’/FO)
is AT
e Suppose that (X, B,u,T) is AT and F is a finite

group, with a measurable cocycle

w: X xI' = F

We can form the skew product (X, B, u,T) X, F,
ie. ['acts on X X F by v(z, f) = (yx,w(z,7)fo),
where the space has the measure du x dAp.

Then X X, F'is a measurable dynamical system.
If it’s ergodic again,

Giordano, Putnam & Skau conjectured that it has
the AT property provided that X is AT.

We will show that this is false.



3 Rank and entropy

The AT property is also related to the rank of a dynam-
ical system.

A transformation has rank one if there exist a se-
quence of subsets B,, and integers k, with the following
properties:

1. The sets T%(B,,) for 0 < i < k, are pairwise disjoint;
2. (Up<icr, T'(Bn)) = 1 as n — oo;

3. the algebras A, generated by the sets T(B,,) for
0 < i < k, have the property that for all A € B and
all € > 0, there exists an ng such that for n > ny,
there exists a set B € A,, such that (B A A) < e.



A system has funny rank one (Thouvenot) if there ex-
ist a sequence of subsets B,,, and a sequence of sequences
ag, - - -, ay _y with the following properties:

1. The sets T% (B, are pairwise disjoint;
2. (Uo<icn, T (B,)) — 1 as n — 00;

3. the algebras A, generated by the sets 7% (B,,) for
0 <4 < k, have the property that for all A € B and
all € > 0, there exists an ng such that for n > ny,
there exists a set B € A, such that u(B A A) < e.



We have the following known or obvious implications:

Rank one = Funny rank one = AT = zero entropy.

The first implication is obvious, and Ferenczi gave a
counter-example to show <=

The second implication is fairly easy to see,and Fer-
enczi conjectures that the Morse system is not Funny
Rank 1. Our result below would then show <.

The last arrow was shown by Connes and Woods using
operator algebras. We show it using measure theory. We
also show that an example of Furstenberg gives <.



4 The Morse system

Let Q = {0,1}2" and define

Pw) =

—1 if w has an even number of trailing 1s
+1 otherwise

(2 is a group under the operation of addition with carry.
Let 1 =(1,0,0,...).

Let X = Q x {£1} and define the Morse transforma-
tion on X by T'(w,t) = (w+1,t- ¢(w)), where - denotes
multiplication in {£1}. We let 1 denote the Haar mea-
sure on {2 and letting ¢ be the normalized counting mea-
sure on {1}, p x ¢ is known to be a uniquely ergodic
invariant measure for the Morse transformation.

This defines the Morse system as an explicit two-point
extension of the odometer.

e Del Junco showed that it has simple spectrum, but
is not of rank one.

e As it is not rank one, it cannot be tiled by trans-
lates of a single word: Ferenczi shows more, that the

maximum density of the translates of a single word
is 2/3.

e Ferenczi conjectured that it is of funny rank one.

Theorem 1 The Morse system has the AT property.
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5 Measures of “funny” cylinders and zero en-
tropy

Let v be a shift-invariant measureon Y = {1,...,[}2. A
funny cylinder set in Y is a set of the form C, » = {y €
Y:y; =x; forallt € A}, where x € Y and A is a finite
set. The e-ball about the funny cylinder C, 4 is the set
Be.a={y €Yy, = x; for all but at most €|A| of the i €
A}

Theorem 2 Suppose that the system (X, B, u,T) has
the AT property. Then let P = {Ay,..., Ai} be an
arbitrary finite measurable partition. Denote by m,
the natural map induced by P from X to {1,... 1}~
and let v=pon~t onY. Then for every 6 > 0 and
e > 0, there exist arbitrarily large finite sets N C Z
and points x € Y such that v(B., ) > (1 —0)/|A|.
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Corollary 5.1 (David) If (X, B, u, T) has positive en-
tropy, then it does not have the AT property.

Proof If (X, B, 1, T') has positive entropy, then it has
a Bernoulli factor Y = {0, 1} with probability p of 0’s
and ¢ of 1’'s with 0 < p < ¢. One can check that the
measure of any set B, A is bounded above by

(L)

where n = |A|. It is not hard to show that for sufficiently
small €, this quantity is strictly less than (1 — €)/n for all
large n.

Corollary 5.2 There exists a zero entropy system that
does not have the AT property.

Proof Let o be an irrational number and consider the
transformation of T? given by T'(x,y) = (x +a, y+ 2z +
«) (mod 1). This transformation, studied by Fursten-
berg, is uniquely ergodic, preserving Haar measure on
the torus. We use a version of the weak law of large
numbers to show that it is not approximately transitive.
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6 A finite extension which doesn’t have the
AT property

Finally, T would like to give a counter-example to the
conjecture of Giordano, Putnamn and Skau which I men-
tioned above.

Theorem 3 There exists a rank 1 system with the
AT property and an ergodic two-point extension of it
that fails to have the AT property.

Proof. We modify a construction of Helson and Parry
and again apply a weak law of large numbers. Letting
p, denote the nth prime number, let X be the com-
pact group (with the product topology) Zon x [, Ly,
where N is to be determined. Let 1 denote the ele-
ment (1,1,1...) of Xy, let T be the odometer given by
T(x) =x+ 1 and let u be Haar measure on X.

Next on the nth factor in X for n > 2, define

' —1 it =0;
Cbn(@) = .
1 otherwise.

Then since ¢y, is different from 1 only on a set of measure
1/p%, it follows that for almost every (z1,22,...) € X,
or(xk) is eventually equal to 1. Hence for almost every
(z1,29,...) € X, [[1—s ¢r(xr) exists. We then define a

13



function ¢;: Z/(2V7Z) — {£1} and a function ¢: X —
{1} by
qulax%"' Hgbkxk
The key estimates required are due to Helson and Parry
onc(n) = | [ ¢ (x) dul, valid independent of the choices
of N and gbl.

Since the measure p is a product measure and ¢ is
the product of the gb,(gn), one has

(n) d,uk ’

where p; denotes the Haar measure on the kth factor.
Note that all factors in the product are bounded above
by 1. Moreover, in any factor such that p; > 2n, the
quantity ¢]in) is equal to —1 on a set of measure n/p;
and is equal to 1 elsewhere. Accordingly, the kth factor in
the above product is equal to 1 —2n/p; < exp(—2n/p:).
Hence they derived the estimate

c{n) < exp —an— ,

>2n

from which one gets the crude inequality c(n) < exp(—2Kn!/4)

for some K > 0.
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It then follows that the ¢(n) are summable, and with
a little work, we can show that > > c(n) < 1/4. Let
M be so large that > 7, ¢(n) < 1/8, and now choose
N > 6+ 3log M.

By the Chinese Remainder Theorem, every point of X
has a dense orbit so 1" is uniquely ergodic. Let p denote
Haar measure on X. Since 7' is an ergodic rotation of a
compact Abelian group, it has discrete spectrum. Hence
by a result of del Junco, T is a rank 1 transformation.

We consider the extension Ty : X x{£1} — X x{%1}
given by Ty(x,t) = (T(z),t - ¢(x)) and introduce the
partition of X x {£1}, P = {X x {1}, X x {—1}}.
As betfore, T} preserves the product measure 1 x c. The
partition induces a natural map from X x {1} to Y =
{£1}% as in Theorem 2. Let v be the induced measure
onY.

We are now in a position to argue as in Corollary 5.2.
Let A be any finite subset of Z and let z € Y be fixed.
Fory € Y and i € A, let A;(y) = z;y5. Let T be the sum
of the A; over i € A. The A; have expectation 0 (since v
is invariant under flipping the entire sequence). We have

Cov(4;, Aj) = Zizj/yiyj dv = Z@'Zj/yoyli—jldy

~ 2y [ 1) duta).
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so that |Cov(A;, Aj)| = |Cov(Ag, Aji—j)| = clli — j|).

We estimate

Var(T) <) Y efli - jl)

€A jEA

<D > elli— i) <3Al/2

1€EN JEZ

Working exactly as before, we eventually see that v( By /16,2, A) <
48/49. This contradicts the conclusion of Theorem 2
showing that Ty fails to have the AT property.

16



7 Applications to operator algebras

Giordano and Skau conjectured that a subfactor of finite
index of an I'TPF1 factor is again ITPF'1.

The above example shows that this is false.

Consider (X, B, u,T) and construct the flow of con-
stant height 1 over it. Then it is easy to see that the flow
is AT if and only if the original system is AT.

Thus in the above example, we obtain a flow which is
not AT, which is a 2 point extension of an AT flow.

Now, the Jones tunnel construction (which I don’t un-
derstand!!) allows us to construct factors A, Ay, where

Aj is a subfactor of A of index two, A is ITPF1 but A;
is not I'TPF1.
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