The AT property is not preserved by finite extensions

A.H. Dooley Department of Mathematical Sciences University of Bath This is joint work with Anthony Quas from UBC

September 13, 2013

Plan of talk

- 1. Measurable dynamical systems and the Connes-Krieger dictionary
- 2. The AT property
- 3. Rank and entropy
- 4. The Morse system
- 5. Measures of "funny" cylinders and zero entropy
- 6. A finite extension which doesn't have the AT property

1 Measurable dynamical systems and the Connes-Krieger dictionary

A measurable dynamical system is a quadruple (X, \mathcal{B}, μ, T) , consisting of a measure space and an invertible bimeasurable transformation T. Sometimes we replace T with a group Γ of transformations acting on X. For us, the system will usually be *ergodic*: the only invariant sets are null or conull.

In the 1930's, Von Neumann classified factors into Types $I_n, n = 1, 2, ..., \infty$, Types II_1 and II_{∞} , and Type III.

He gave examples of factors by starting with $L^{\infty}(X, \mu)$ and taking what we call today the crossed product by the action of T. Actually, in all his examples, μ was an infinite product measure on an infinite product of 2-point spaces.

In a mathematical *tour de force*, Alain Connes and Wilfried Krieger and some others, showed that von Neumann's insight was good. Up to isomorphism, every factor arises this way.

In fact, they found a "dictionary" between factors and measurable dynamical systems:

v.n. factors up to isom \leftrightarrow ergod. meas.dyn. system up to orbit equ. \leftrightarrow flows (action of \mathbb{R})up to conjugacy

ITPF1 factors \leftrightarrow orbit equiv to product \leftrightarrow AT flow

Type $I_n \leftrightarrow X$ has n points \leftrightarrow periodic flow Type $II_1, II_{\infty} \leftrightarrow \mu \circ T = \mu \leftrightarrow$ recurrent flow Type $III_{\lambda}, 0 \leq \lambda \leq 1 \leftrightarrow$ there is no equivalent preserved measure \leftrightarrow dissipative flows.

All types except III_0 are ITPF1. Type III_0 contain both product type and non product type, and are not unique up to o.e..

2 The AT property

It is therefore important to study the AT property. Let me remind you what it is:

A dynamical system (X, \mathcal{B}, μ, T) is said to be approximately transitive (or to have the AT property) if any finite collection of positive L^1 functions may be simultaneously approximated by a positive linear combination of iterates of a single L^1 function, that is given $\epsilon > 0, f_1, \ldots, f_n \in L^1_+(X)$, there exist $f \in L^1_+(X), n_j :$ $j = 1, \ldots, m$ and $\alpha_{i,j}, i = 1, \ldots, n, j = 1, \ldots, m \in \mathbb{R}^+$ such that

$$\left\|f_i - \sum_{i,j} \alpha_{i,j} \mathcal{L}_{n_j} f\right\| \le \epsilon$$

where $\mathcal{L}_n f(x) = \frac{d\mu \circ T^n}{d\mu}(x) f(T^n x)$ and $\|\cdot\|$ denotes the L^1 norm.

We consider exclusively invertible probability measurepreserving transformations and so $\mathcal{L}_n f(x)$ reduces to $f(T^n x)$.

- The above definition is equivalent to the one with n replaced by 2.
- Jane Hawkins proved that if $(X, \mathcal{B}, \mu, \Gamma)$ is AT, and if $\Gamma_0 \leq \Gamma$, and if $\rho : X \to X/\Gamma_0 = Y$, then

$$(Y, \mathcal{B}_1, \mu \circ \rho, \Gamma/\Gamma_0)$$

is AT

• Suppose that (X, \mathcal{B}, μ, T) is AT and F is a finite group, with a measurable cocycle

$$\omega: X \times \Gamma \to F$$

We can form the skew product $(X, \mathcal{B}, \mu, T) \times_{\omega} F$, i.e. Γ acts on $X \times F$ by $\gamma(x, f) = (\gamma x, \omega(x, \gamma) f_0)$, where the space has the measure $d\mu \times d\lambda_F$.

Then $X \times_{\omega} F$ is a measurable dynamical system. If it's ergodic again,

Giordano, Putnam & Skau **conjectured** that it has the AT property provided that X is AT.

We will show that this is false.

3 Rank and entropy

The AT property is also related to the **rank** of a dynamical system.

A transformation has rank one if there exist a sequence of subsets B_n and integers k_n with the following properties:

1. The sets $T^i(B_n)$ for $0 \le i < k_n$ are pairwise disjoint;

2.
$$\mu(\bigcup_{0 \le i < k_n} T^i(B_n)) \to 1 \text{ as } n \to \infty;$$

3. the algebras \mathcal{A}_n generated by the sets $T^i(B_n)$ for $0 \leq i < k_n$ have the property that for all $A \in \mathcal{B}$ and all $\epsilon > 0$, there exists an n_0 such that for $n \geq n_0$, there exists a set $B \in \mathcal{A}_n$ such that $\mu(B \bigtriangleup A) < \epsilon$.

A system has funny rank one (Thouvenot) if there exist a sequence of subsets B_n , and a sequence of sequences $a_0^n, \ldots, a_{k_n-1}^n$ with the following properties:

- 1. The sets $T^{a_i^n}(B_n)$ are pairwise disjoint;
- 2. $\mu(\bigcup_{0 \le i < k_n} T^{a_i^n}(B_n)) \to 1 \text{ as } n \to \infty;$
- 3. the algebras \mathcal{A}_n generated by the sets $T^{a_i^n}(B_n)$ for $0 \leq i < k_n$ have the property that for all $A \in \mathcal{B}$ and all $\epsilon > 0$, there exists an n_0 such that for $n \geq n_0$, there exists a set $B \in \mathcal{A}_n$ such that $\mu(B \bigtriangleup A) < \epsilon$.

We have the following known or obvious implications:

Rank one \Rightarrow Funny rank one \Rightarrow AT \Rightarrow zero entropy.

The first implication is obvious, and Ferenczi gave a counter-example to show \Leftarrow

The second implication is fairly easy to see, and Ferenczi conjectures that the *Morse system* is not Funny Rank 1. Our result below would then show \Leftarrow .

The last arrow was shown by Connes and Woods using operator algebras. We show it using measure theory. We also show that an example of Furstenberg gives \Leftarrow .

4 The Morse system

Let $\Omega = \{0, 1\}^{\mathbb{Z}^+}$ and define $\phi(\omega) = \begin{cases} -1 & \text{if } \omega \text{ has an even number of trailing 1s} \\ +1 & \text{otherwise} \end{cases}$

 Ω is a group under the operation of addition with carry. Let 1 = (1, 0, 0, ...).

Let $X = \Omega \times \{\pm 1\}$ and define the Morse transformation on X by $T(\omega, t) = (\omega + 1, t \cdot \phi(\omega))$, where \cdot denotes multiplication in $\{\pm 1\}$. We let μ denote the Haar measure on Ω and letting c be the normalized counting measure on $\{\pm 1\}$, $\mu \times c$ is known to be a uniquely ergodic invariant measure for the Morse transformation.

This defines the Morse system as an explicit two-point extension of the odometer.

- Del Junco showed that it has simple spectrum, but is not of rank one.
- As it is not rank one, it cannot be tiled by translates of a single word: Ferenczi shows more, that the maximum density of the translates of a single word is 2/3.
- Ferenczi conjectured that it is of funny rank one.

Theorem 1 The Morse system has the AT property.

5 Measures of "funny" cylinders and zero entropy

Let ν be a shift-invariant measure on $Y = \{1, \ldots, l\}^{\mathbb{Z}}$. A funny cylinder set in Y is a set of the form $C_{x,\Lambda} = \{y \in Y : y_i = x_i \text{ for all } i \in \Lambda\}$, where $x \in Y$ and Λ is a finite set. The ϵ -ball about the funny cylinder $C_{x,\Lambda}$ is the set $B_{\epsilon,x,\Lambda} = \{y \in Y : y_i = x_i \text{ for all but at most } \epsilon |\Lambda| \text{ of the } i \in \Lambda\}$.

Theorem 2 Suppose that the system (X, \mathcal{B}, μ, T) has the AT property. Then let $\mathcal{P} = \{A_1, \ldots, A_l\}$ be an arbitrary finite measurable partition. Denote by π , the natural map induced by \mathcal{P} from X to $\{1, \ldots, l\}^{\mathbb{Z}}$ and let $\nu = \mu \circ \pi^{-1}$ on Y. Then for every $\delta > 0$ and $\epsilon > 0$, there exist arbitrarily large finite sets $\Lambda \subset \mathbb{Z}$ and points $x \in Y$ such that $\nu(B_{\epsilon,x,\Lambda}) > (1-\delta)/|\Lambda|$. **Corollary 5.1** (David) If (X, \mathcal{B}, μ, T) has positive entropy, then it does not have the AT property.

Proof If (X, \mathcal{B}, μ, T) has positive entropy, then it has a Bernoulli factor $Y = \{0, 1\}^{\mathbb{Z}}$ with probability p of 0's and q of 1's with 0 . One can check that the $measure of any set <math>B_{\epsilon,x,\Lambda}$ is bounded above by

$$\binom{n}{\lfloor \epsilon n \rfloor} q^{n - \lfloor \epsilon n \rfloor},$$

where $n = |\Lambda|$. It is not hard to show that for sufficiently small ϵ , this quantity is strictly less than $(1 - \epsilon)/n$ for all large n.

Corollary 5.2 There exists a zero entropy system that does not have the AT property.

Proof Let α be an irrational number and consider the transformation of \mathbb{T}^2 given by $T(x, y) = (x + \alpha, y + 2x + \alpha) \pmod{1}$. This transformation, studied by Furstenberg, is uniquely ergodic, preserving Haar measure on the torus. We use a version of the weak law of large numbers to show that it is not approximately transitive.

6 A finite extension which doesn't have the AT property

Finally, I would like to give a counter-example to the conjecture of Giordano, Putnamn and Skau which I mentioned above.

Theorem 3 There exists a rank 1 system with the AT property and an ergodic two-point extension of it that fails to have the AT property.

Proof. We modify a construction of Helson and Parry and again apply a weak law of large numbers. Letting p_n denote the *n*th prime number, let X be the compact group (with the product topology) $\mathbb{Z}_{2^N} \times \prod_{n=2}^{\infty} \mathbb{Z}_{p_n^2}$, where N is to be determined. Let 1 denote the element (1, 1, 1...) of X_0 , let T be the odometer given by T(x) = x + 1 and let μ be Haar measure on X.

Next on the *n*th factor in X for $n \ge 2$, define

$$\phi_n(i) = \begin{cases} -1 & \text{if } i = 0; \\ 1 & \text{otherwise.} \end{cases}$$

Then since ϕ_k is different from 1 only on a set of measure $1/p_k^2$, it follows that for almost every $(x_1, x_2, \ldots) \in X$, $\phi_k(x_k)$ is eventually equal to 1. Hence for almost every $(x_1, x_2, \ldots) \in X$, $\prod_{k=2}^{\infty} \phi_k(x_k)$ exists. We then define a

function $\phi_1 \colon \mathbb{Z}/(2^N\mathbb{Z}) \to \{\pm 1\}$ and a function $\phi \colon X \to \{\pm 1\}$ by

$$\phi(x_1, x_2, \ldots) = \prod_{k=1}^{\infty} \phi_k(x_k).$$

The key estimates required are due to Helson and Parry on $c(n) = |\int \phi^{(n)}(x) d\mu|$, valid independent of the choices of N and ϕ_1 .

Since the measure μ is a product measure and $\phi^{(n)}$ is the product of the $\phi_k^{(n)}$, one has

$$c(n) = \prod_{k=1}^{\infty} \left| \int \phi_k^{(n)} \, d\mu_k \right|,$$

where μ_k denotes the Haar measure on the *k*th factor. Note that all factors in the product are bounded above by 1. Moreover, in any factor such that $p_k^2 \ge 2n$, the quantity $\phi_k^{(n)}$ is equal to -1 on a set of measure n/p_k^2 and is equal to 1 elsewhere. Accordingly, the *k*th factor in the above product is equal to $1 - 2n/p_k^2 \le \exp(-2n/p_k^2)$. Hence they derived the estimate

$$c(n) \le \exp\left(-2n\sum_{p_k^2 \ge 2n} \frac{1}{p_k^2}\right),\,$$

from which one gets the crude inequality $c(n) \leq \exp(-2Kn^{1/4})$ for some K > 0. It then follows that the c(n) are summable, and with a little work, we can show that $\sum_{n=1}^{\infty} c(n) < 1/4$. Let M be so large that $\sum_{n=M}^{\infty} c(n) < 1/8$, and now choose $N > 6 + 3 \log M$.

By the Chinese Remainder Theorem, every point of X has a dense orbit so T is uniquely ergodic. Let μ denote Haar measure on X. Since T is an ergodic rotation of a compact Abelian group, it has discrete spectrum. Hence by a result of del Junco, T is a rank 1 transformation.

We consider the extension $T_{\phi}: X \times \{\pm 1\} \to X \times \{\pm 1\}$ given by $T_{\phi}(x,t) = (T(x), t \cdot \phi(x))$ and introduce the partition of $X \times \{\pm 1\}, \mathcal{P} = \{X \times \{1\}, X \times \{-1\}\}\}$. As before, T_{ϕ} preserves the product measure $\mu \times c$. The partition induces a natural map from $X \times \{\pm 1\}$ to $Y = \{\pm 1\}^{\mathbb{Z}}$ as in Theorem 2. Let ν be the induced measure on Y.

We are now in a position to argue as in Corollary 5.2. Let Λ be any finite subset of \mathbb{Z} and let $z \in Y$ be fixed. For $y \in Y$ and $i \in \Lambda$, let $A_i(y) = z_i y_i$. Let T be the sum of the A_i over $i \in \Lambda$. The A_i have expectation 0 (since ν is invariant under flipping the entire sequence). We have

$$\operatorname{Cov}(A_i, A_j) = z_i z_j \int y_i y_j \, d\nu = z_i z_j \int y_0 y_{|i-j|} \, d\nu$$
$$= z_i z_j \int \phi^{(|i-j|)}(x) \, d\mu(x),$$

so that $|\operatorname{Cov}(A_i, A_j)| = |\operatorname{Cov}(A_0, A_{|i-j|})| = c(|i-j|).$ We estimate

$$\operatorname{Var}(T) \leq \sum_{i \in \Lambda} \sum_{j \in \Lambda} c(|i - j|)$$
$$\leq \sum_{i \in \Lambda} \sum_{j \in \mathbb{Z}} c(|i - j|) < 3|\Lambda|/2.$$

Working exactly as before, we eventually see that $\nu(B_{15/16,z,\Lambda}) < 48/49$. This contradicts the conclusion of Theorem 2 showing that T_{ϕ} fails to have the AT property.

7 Applications to operator algebras

Giordano and Skau conjectured that a subfactor of finite index of an ITPF1 factor is again ITPF1.

The above example shows that this is false.

Consider (X, \mathcal{B}, μ, T) and construct the flow of constant height 1 over it. Then it is easy to see that the flow is AT if and only if the original system is AT.

Thus in the above example, we obtain a flow which is not AT, which is a 2 point extension of an AT flow.

Now, the Jones tunnel construction (which I don't understand!!) allows us to construct factors A, A_1 , where A_1 is a subfactor of A of index two, A is ITPF1 but A_1 is **not** ITPF1.

References

- A. Connes and E. Woods. Approximately transitive flows and ITPFI factors. *Ergodic Theory Dynam. Systems*, 5:203–236, 1985.
- [2] M.-C. David. Sur quelques problèmes de théorie ergodique non commutative. PhD thesis, 1979.
- [3] A. del Junco. Transformations with discrete spectrum are stacking transformations. *Canad J. Math.*, 28:836–839, 1976.
- [4] A. del Junco. A transformation with simple spectrum which is not rank one. Canad. J. Math., 29:655–663, 1977.
- [5] S. Ferenczi. Systèmes de rang un gauche. Ann. Inst. H. Poincaré Probab. Statist., 21:177–186, 1985.
- [6] S. Ferenczi. Tiling and local properties of the Morse sequence. *Theoretical Computer Science*, 129:369–383, 1994.
- [7] S. Ferenczi. Systems of finite rank. Collog. Math., 73:35–65, 1997.
- [8] H. Furstenberg. Strict ergodicity and transformations of the torus. Amer. J. Math, 83:573–60, 1961.
- [9] H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, 1981.
- [10] T. Giordano and D. Handelman. *private communication*.
- [11] T. Giordano and G. Skandalis. Krieger factors isomorphic to their tensor square and pure point spectrum flows. J. Funct. Anal., 64:209–226, 1985.
- [12] T. Giordano and G. Skandalis. On infinite tensor products of factors of type I₂. Ergodic Theory Dynam. Systems, 5:565–586, 1985.
- [13] T. Giordano, G. Skandalis, and E. Woods. On the computation of invariants for ITPFI factors. J. Operator Theory, 15:83–107, 1986.
- [14] T. Hamachi. A measure theoretical proof of the Connes-Woods theorem on AT-flows. *Pacific J. Math.*, 154:67–85, 1992.

- [15] J. Hawkins. Properties of ergodic flows associated to product odometers. *Pacific J. Math.*, 141:287–294, 1990.
- [16] H. Helson and W. Parry. Cocycles and spectra. Ark. Mat., 16:195–206, 1978.
- [17] A. Iwanik. The problem of L^p simple spectrum for ergodic group automorphisms. Bull. Soc. Math. France, 119:91–96, 1991.
- [18] W. Parry. Topics in ergodic theory, volume 75 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1981.