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1 Measurable dynamical systems and the Connes-

Krieger dictionary

A measurable dynamical system is a quadruple

(X,B, µ, T ), consisting of a measure space and an in-

vertible bimeasurable transformation T . Sometimes we

replace T with a group Γ of transformations acting on

X . For us, the system will usually be ergodic: the only

invariant sets are null or conull.

In the 1930’s, Von Neumann classified factors into Types

In, n = 1, 2, . . . ,∞, Types II1 and II∞, and Type III .

He gave examples of factors by starting with L∞(X,µ)

and taking what we call today the crossed product by

the action of T . Actually, in all his examples, µ was an

infinite product measure on an infinite product of 2-point

spaces.

In a mathematical tour de force, Alain Connes and

Wilfried Krieger and some others, showed that von Neu-

mann’s insight was good. Up to isomorphism, every fac-

tor arises this way.
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In fact, they found a “dictionary” between factors and

measurable dynamical systems:

v.n. factors up to isom ↔ ergod. meas.dyn. system up

to orbit equ. ↔ flows (action of R)up to conjugacy

ITPF1 factors ↔ orbit equiv to product ↔ AT flow

Type In ↔ X has n points ↔ periodic flow

Type II1, II∞ ↔ µ ◦ T = µ ↔ recurrent flow

Type IIIλ, 0 ≤ λ ≤ 1↔ there is no equivalent preserved

measure ↔ dissipative flows.

All types except III0 are ITPF1. Type III0 contain

both product type and non product type, and are not

unique up to o.e..
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2 The AT property

It is therefore important to study the AT property. Let

me remind you what it is:

A dynamical system (X,B, µ, T ) is said to be ap-

proximately transitive (or to have the AT property)

if any finite collection of positive L1 functions may be

simultaneously approximated by a positive linear combi-

nation of iterates of a single L1 function, that is given

ϵ > 0, f1, . . . , fn ∈ L1
+(X), there exist f ∈ L1

+(X), nj :

j = 1, . . . ,m and αi,j, i = 1, . . . , n, j = 1, . . . ,m ∈ R+

such that ∥∥∥∥∥∥fi −
∑
i,j

αi,jLnjf

∥∥∥∥∥∥ ≤ ϵ

where Lnf (x) =
dµ◦Tn

dµ (x)f (T nx) and ∥ · ∥ denotes the

L1 norm.

We consider exclusively invertible probability measure-

preserving transformations and soLnf (x) reduces to f (T
nx).
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• The above definition is equivalent to the one with n

replaced by 2.

• Jane Hawkins proved that if (X,B, µ,Γ) is AT, and
if Γ0 E Γ, and if ρ : X → X/Γ0 = Y , then

(Y,B1, µ ◦ ρ,Γ/Γ0)

is AT

• Suppose that (X,B, µ, T ) is AT and F is a finite

group, with a measurable cocycle

ω : X × Γ → F

We can form the skew product (X,B, µ, T ) ×ω F ,

i.e. Γ acts on X × F by γ(x, f ) = (γx, ω(x, γ)f0),

where the space has the measure dµ× dλF .

Then X ×ω F is a measurable dynamical system.

If it’s ergodic again,

Giordano, Putnam & Skau conjectured that it has

the AT property provided that X is AT.

We will show that this is false.
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3 Rank and entropy

The AT property is also related to the rank of a dynam-

ical system.

A transformation has rank one if there exist a se-

quence of subsets Bn and integers kn with the following

properties:

1. The sets T i(Bn) for 0 ≤ i < kn are pairwise disjoint;

2. µ(
∪

0≤i<kn
T i(Bn)) → 1 as n → ∞;

3. the algebras An generated by the sets T i(Bn) for

0 ≤ i < kn have the property that for all A ∈ B and

all ϵ > 0, there exists an n0 such that for n ≥ n0,

there exists a set B ∈ An such that µ(B △ A) < ϵ.
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A system has funny rank one (Thouvenot) if there ex-

ist a sequence of subsets Bn, and a sequence of sequences

an0 , . . . , a
n
kn−1 with the following properties:

1. The sets T ani (Bn) are pairwise disjoint;

2. µ(
∪

0≤i<kn
T ani (Bn)) → 1 as n → ∞;

3. the algebras An generated by the sets T ani (Bn) for

0 ≤ i < kn have the property that for all A ∈ B and

all ϵ > 0, there exists an n0 such that for n ≥ n0,

there exists a set B ∈ An such that µ(B △ A) < ϵ.
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We have the following known or obvious implications:

Rank one ⇒ Funny rank one ⇒ AT ⇒ zero entropy.

The first implication is obvious, and Ferenczi gave a

counter-example to show :
The second implication is fairly easy to see,and Fer-

enczi conjectures that the Morse system is not Funny

Rank 1. Our result below would then show :.

The last arrow was shown by Connes and Woods using

operator algebras. We show it using measure theory. We

also show that an example of Furstenberg gives :.
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4 The Morse system

Let Ω = {0, 1}Z+
and define

ϕ(ω) =

{
−1 if ω has an even number of trailing 1s

+1 otherwise

Ω is a group under the operation of addition with carry.

Let 1 = (1, 0, 0, . . . ).

Let X = Ω× {±1} and define the Morse transforma-

tion on X by T (ω, t) = (ω+1, t ·ϕ(ω)), where · denotes
multiplication in {±1}. We let µ denote the Haar mea-

sure on Ω and letting c be the normalized counting mea-

sure on {±1}, µ × c is known to be a uniquely ergodic

invariant measure for the Morse transformation.

This defines the Morse system as an explicit two-point

extension of the odometer.

• Del Junco showed that it has simple spectrum, but

is not of rank one.

• As it is not rank one, it cannot be tiled by trans-

lates of a single word: Ferenczi shows more, that the

maximum density of the translates of a single word

is 2/3.

• Ferenczi conjectured that it is of funny rank one.

Theorem 1 The Morse system has the AT property.
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5 Measures of “funny” cylinders and zero en-

tropy

Let ν be a shift-invariant measure on Y = {1, . . . , l}Z. A
funny cylinder set in Y is a set of the form Cx,Λ = {y ∈
Y : yi = xi for all i ∈ Λ}, where x ∈ Y and Λ is a finite

set. The ϵ-ball about the funny cylinder Cx,Λ is the set

Bϵ,x,Λ = {y ∈ Y : yi = xi for all but at most ϵ|Λ| of the i ∈
Λ}.

Theorem 2 Suppose that the system (X,B, µ, T ) has
the AT property. Then let P = {A1, . . . , Al} be an

arbitrary finite measurable partition. Denote by π,

the natural map induced by P from X to {1, . . . , l}Z
and let ν = µ ◦ π−1 on Y . Then for every δ > 0 and

ϵ > 0, there exist arbitrarily large finite sets Λ ⊂ Z
and points x ∈ Y such that ν(Bϵ,x,Λ) > (1− δ)/|Λ|.
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Corollary 5.1 (David) If (X,B, µ, T ) has positive en-
tropy, then it does not have the AT property.

Proof If (X,B, µ, T ) has positive entropy, then it has

a Bernoulli factor Y = {0, 1}Z with probability p of 0’s

and q of 1’s with 0 < p < q. One can check that the

measure of any set Bϵ,x,Λ is bounded above by(
n

⌊ϵn⌋

)
qn−⌊ϵn⌋,

where n = |Λ|. It is not hard to show that for sufficiently

small ϵ, this quantity is strictly less than (1− ϵ)/n for all

large n.

Corollary 5.2 There exists a zero entropy system that

does not have the AT property.

Proof Let α be an irrational number and consider the

transformation of T2 given by T (x, y) = (x+α, y+2x+

α) (mod 1). This transformation, studied by Fursten-

berg, is uniquely ergodic, preserving Haar measure on

the torus. We use a version of the weak law of large

numbers to show that it is not approximately transitive.

12



6 A finite extension which doesn’t have the

AT property

Finally, I would like to give a counter-example to the

conjecture of Giordano, Putnamn and Skau which I men-

tioned above.

Theorem 3 There exists a rank 1 system with the

AT property and an ergodic two-point extension of it

that fails to have the AT property.

Proof. We modify a construction of Helson and Parry

and again apply a weak law of large numbers. Letting

pn denote the nth prime number, let X be the com-

pact group (with the product topology) Z2N ×
∏∞

n=2Zp2n
,

where N is to be determined. Let 1 denote the ele-

ment (1, 1, 1 . . .) of X0, let T be the odometer given by

T (x) = x + 1 and let µ be Haar measure on X .

Next on the nth factor in X for n ≥ 2, define

ϕn(i) =

{
−1 if i = 0;

1 otherwise.

Then since ϕk is different from 1 only on a set of measure

1/p2k, it follows that for almost every (x1, x2, . . .) ∈ X ,

ϕk(xk) is eventually equal to 1. Hence for almost every

(x1, x2, . . .) ∈ X ,
∏∞

k=2 ϕk(xk) exists. We then define a
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function ϕ1 : Z/(2NZ) → {±1} and a function ϕ : X →
{±1} by

ϕ(x1, x2, . . .) =

∞∏
k=1

ϕk(xk).

The key estimates required are due to Helson and Parry

on c(n) = |
∫
ϕ(n)(x) dµ|, valid independent of the choices

of N and ϕ1.

Since the measure µ is a product measure and ϕ(n) is

the product of the ϕ
(n)
k , one has

c(n) =

∞∏
k=1

∣∣∣∣∫ ϕ
(n)
k dµk

∣∣∣∣ ,
where µk denotes the Haar measure on the kth factor.

Note that all factors in the product are bounded above

by 1. Moreover, in any factor such that p2k ≥ 2n, the

quantity ϕ
(n)
k is equal to −1 on a set of measure n/p2k

and is equal to 1 elsewhere. Accordingly, the kth factor in

the above product is equal to 1−2n/p2k ≤ exp(−2n/p2k).

Hence they derived the estimate

c(n) ≤ exp

−2n
∑
p2k≥2n

1

p2k

 ,

from which one gets the crude inequality c(n) ≤ exp(−2Kn1/4)

for some K > 0.
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It then follows that the c(n) are summable, and with

a little work, we can show that
∑∞

n=1 c(n) < 1/4. Let

M be so large that
∑∞

n=M c(n) < 1/8, and now choose

N > 6 + 3 logM .

By the Chinese Remainder Theorem, every point of X

has a dense orbit so T is uniquely ergodic. Let µ denote

Haar measure on X . Since T is an ergodic rotation of a

compact Abelian group, it has discrete spectrum. Hence

by a result of del Junco, T is a rank 1 transformation.

We consider the extension Tϕ : X×{±1} → X×{±1}
given by Tϕ(x, t) = (T (x), t · ϕ(x)) and introduce the

partition of X × {±1}, P = {X × {1}, X × {−1}}.
As before, Tϕ preserves the product measure µ× c. The

partition induces a natural map from X ×{±1} to Y =

{±1}Z as in Theorem 2. Let ν be the induced measure

on Y .

We are now in a position to argue as in Corollary 5.2.

Let Λ be any finite subset of Z and let z ∈ Y be fixed.

For y ∈ Y and i ∈ Λ, let Ai(y) = ziyi. Let T be the sum

of the Ai over i ∈ Λ. The Ai have expectation 0 (since ν

is invariant under flipping the entire sequence). We have

Cov(Ai, Aj) = zizj

∫
yiyj dν = zizj

∫
y0y|i−j| dν

= zizj

∫
ϕ(|i−j|)(x) dµ(x),
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so that |Cov(Ai, Aj)| = |Cov(A0, A|i−j|)| = c(|i − j|).
We estimate

Var(T ) ≤
∑
i∈Λ

∑
j∈Λ

c(|i− j|)

≤
∑
i∈Λ

∑
j∈Z

c(|i− j|) < 3|Λ|/2.

Working exactly as before, we eventually see that ν(B15/16,z,Λ) <

48/49. This contradicts the conclusion of Theorem 2

showing that Tϕ fails to have the AT property.
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7 Applications to operator algebras

Giordano and Skau conjectured that a subfactor of finite

index of an ITPF1 factor is again ITPF1.

The above example shows that this is false.

Consider (X,B, µ, T ) and construct the flow of con-

stant height 1 over it. Then it is easy to see that the flow

is AT if and only if the original system is AT.

Thus in the above example, we obtain a flow which is

not AT, which is a 2 point extension of an AT flow.

Now, the Jones tunnel construction (which I don’t un-

derstand!!) allows us to construct factors A,A1, where

A1 is a subfactor of A of index two, A is ITPF1 but A1

is not ITPF1.
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