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Section A

1. For each of the following equations, state the order and whether it is nonlinear, linear
inhomogeneous, or linear homogeneous. Where an equation is second order and linear,
state further whether it is parabolic, hyperbolic, or elliptic.

(a) 5ux − 2uy = 0,

(c) uxxx + xuxy = 7 sin2(x− 3y),

(b) uxx − 2uyy = u1/2,

(d) uxx + 4uxy + 4uyy = 0.

[10 marks]

2. Using the method of characteristics and clearly explaining the steps in your solutions,
solve the following boundary value problems:

(a)

{
9ux + 2uy = 0,
u(0, y) = sin y.

(b)

{
e3xux = 1

3
uy,

u(0, y) = cos y.

[6,8 marks]

3. Clearly stating any results you use, solve the following Cauchy problem for the
one-dimensional inhomogeneous wave equation:

utt − 9uxx = x sin t, x ∈ R, t > 0,
u(x, 0) = x2, x ∈ R,
ut(x, 0) = cos(2x), x ∈ R.

[13 marks]

4. Suppose the temperature (measured in ◦C), u, of a rod of length 5cm satisfies the
heat equation ut = uxx on the domain

A := {(x, t) ∈ R2 : x ∈ [0, 5], t ∈ [0, 10]},

and the following initial and boundary conditions:
u(x, 0) = x3 − 7x2 + 10x, 0 ≤ x ≤ 5,
u(0, t) = 0, 0 ≤ t ≤ 10,
u(5, t) = exp(t/5)− 1, 0 ≤ t ≤ 10.

Here, x and t are respectively measured in cm and seconds, and exp denotes the
exponential function.

(a) State the maximum principle for the heat equation specifically for this domain.
[2 marks]

(b) Give a physical interpretation of the boundary condition u(0, t) = 0. [2 marks]

(c) Without solving the equation and stating clearly any results you use, find the
minimum and maximum temperatures of the rod for all (x, t) ∈ A, giving your
answers to two decimal places. [10 marks]

(d) How far from the end of the rod is the minimum temperature realised? [1 mark]
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5. By seeking a separable solution to the following Laplace equation problem on the unit
square: 

uxx + uyy = 0, x ∈ [0, 1], y ∈ [0, 1],
u(x, 0) = u(x, 1) = 0, x ∈ [0, 1],
u(0, y) = f(y), y ∈ [0, 1],
u(1, y) = 0, y ∈ [0, 1],

it is possible to show that the solution is of the form

u(x, y) =
∞∑
n=1

An sinh (nπ(x− 1)) sin (nπy) .

If f(y) = 7e−4π(1− e8π) sin(4πy), find the constants An for all n ∈ N and hence
state the particular solution. [6 marks]

6. Let f ∈ L1(R). Then the Fourier transform of f exists and is defined for ξ ∈ R as

F{f(x)} = f̄(ξ) =

∞∫
−∞

f(x)eiξxdx.

(a) Show that for a ∈ R\{0}, F{f(ax)} = 1
|a| f̄ (ξ/a). [7 marks]

(b) Calculate the Fourier transforms of the following two functions:

(i) f1(x) =

{
exp(x), x < 0,
0, x ≥ 0.

(ii) f2(x) =

{
exp(5x), x < 0,
0, x ≥ 0.

[5 marks]

[Section B begins overleaf]
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Section B

7. Explaining your working throughout, find the solution of the following boundary value
problem: {

2ux + 7xuy + 4u = cos(x/2)e−2x,
u(0, y) = sin y.

[12 marks]

8. Consider the second order linear PDE

a11uxx + 2a12uxy + a22uyy = 0, (1)

where aij are real constants, each non-zero, such that a212 − a11a22 > 0.

(a) Classify (1) as either elliptic, hyperbolic, or parabolic. [1 mark]

(b) By using a suitable change of independent variables (converting x and y to φ
and η, say), show that (1) can be reduced to the canonical form

uφφ − uηη = 0.

[11 marks]

(c) Hence, stating clearly any facts you use, give the general solution of the PDE

uxx + 6uxy + 3uyy = 0.

[8 marks]

9. Let u = u(x, y) be a bounded solution to the following boundary value problem
defined in a half-plane:{

uxx + uyy = 0, x ∈ R, y > 0,
(uy − αu)|y=0 = h(x), x ∈ R. (2)

Here, h ∈ L1(R) is a known function, while α > 0 is a constant.

Define the Fourier transform with respect to x of u as

F{u} = ū(ξ, y) =

∞∫
−∞

u(x, y)eiξxdx.

(a) Clearly stating any results you use, show that the Fourier transform with respect
to x of u satisfies

∂2ū

∂y2
− ξ2ū = 0.

[3 marks]

(b) Hence find an explicit expression for ū(ξ, y), the Fourier transform of the solution
to problem (2). [6 marks]
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10. Stating clearly any results from the lectures that you use, solve the following Cauchy
problem for the heat equation on a semi-infinite rod:

ut − 4uxx = 0, x > 0, t > 0,
u(x, 0) = f(x), x > 0,
u(0, t) = 0, t > 0.

[9 marks]
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