
MA34110: Partial Differential Equations

Solutions 4

2024–25

1. By considering the energy integral

E(t) =
1

2

l∫
0

u2(x, t)dx,

prove that the following heat equation problem has a unique solution.
ut = c2uxx, 0 ≤ x ≤ l, 0 ≤ t < T,

u(x, 0) = f(x), 0 ≤ x ≤ l,

u(0, t) = ϕ(t), u(l, t) = ψ(t), 0 < t < T.

Solution: Suppose for a contradiction that there are two distinct solutions, u1 and u2 say.
Their difference u = u1 − u2 satisfies the problem

ut = c2uxx, 0 ≤ x ≤ l, 0 ≤ t < T,

u(x, 0) = 0, 0 ≤ x ≤ l,

u(0, t) = 0, u(l, t) = 0, 0 < t < T.

We compute dE(t)
dt using integration by parts:

dE(t)

dt
=

1

2

∫ l

0
2uutdx = c2

l∫
0

uuxxdx = −c2
 l∫

0

u2xdx− u(x, t)ux(x, t)|l0

 .

= −c2
l∫

0

u2xdx ≤ 0.

Hence E(t) is decreasing. Moreover, we note that E(t) ≥ 0 for all t, and E(0) = 0. Therefore
E(t) = 0 for all t ≥ 0, which implies u = 0, that is u1 = u2. This contradicts our original
supposition that u1 and u2 were distinct solutions and completes the proof.

2. Using the maximum principle for the heat equation ut = c2uxx on the rectangle R := [0, l] ×
[0, T ], prove the minimum principle: the solution to the heat equation on R attains its mini-
mum on the parabolic boundary Π = ([0, l]× {0}) ∪ ({0} × [0, T ]) ∪ ({l} × [0, T ]).

NB: You do not need to re-prove the maximum principle.

Solution: Let v = −u. Then v satisfies the heat equation (since vt−c2vxx = −ut+c2uxx = 0)
and so obeys the maximum principle; that is, v attains its maximal value on the parabolic
boundary Π. We deduce that u attains its minimum value on Π.
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3. Suppose u satisfies the heat equation ut = uxx on the domain R = [0, 1] × [0, 100] with the
following initial and boundary conditions{

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(0, t) = te−t, u(1, t) = 0, t ≥ 0.

Find constants m,M such that m ≤ u(x, t) ≤M for all (x, t) ∈ R.

Solution: Since we know that u satisfies the heat equation, it must attain its maximal
value along the parabolic boundary. Similarly the minimal value is obtained on the parabolic
boundary (see previous question). It is therefore enough to calculate the maximum of te−t

which is e−1 attained at t = 1. Thus 0 ≤ u(x, t) ≤ e−1.

4. Compute the Fourier transform of e−a|x|, where a > 0 is a constant.

Solution

∞∫
−∞

e−a|x|eiξxdx =

∞∫
−∞

e−a|x|+iξxdx =

0∫
−∞

e(a+iξ)xdx+

∞∫
0

e(iξ−a)xdx

=

[
e(a+iξ)x

a+ iξ

]0
−∞

+

[
e(iξ−a)x

iξ − a

]∞
0

=
1

a+ iξ
− 1

iξ − a
=

2a

a2 + ξ2

5. A function f ∈ L1(R) has Fourier transform given by f̄(ξ) = e−ξ2/8.

(a) What is the Fourier transform of f ′ (i.e. the transform of the derivative of f)?

(b) Use the Fourier inversion theorem to find f(x).

(c) Using your answers to (a) and (b), along with any theorems or properties relating to
the Fourier transform that you know, deduce the function g whose Fourier transform is
given by

ḡ(ξ) = 2ξe−ξ2/4.

Give your final answer explicitly in closed form (i. e. not as an integral).

Solution

(a) By the derivative theorem, F{f ′} = −iξF{f} = −iξe−ξ2/8.

(b) Noting that f̄ ∈ L1(R), we have from the Fourier inversion theorem that

f(x) =
1

2π

∞∫
−∞

f̄(ξ)e−iξxdξ =
1

2π

∞∫
−∞

e−ξ2/8e−iξxdξ =
1

2π

∞∫
−∞

e−
1
8
(ξ2+8iξx)dξ

=
1

2π

∞∫
−∞

e−
1
8
(ξ+4ix)2e−2x2

dξ =
e−2x2

2π

∞∫
−∞

e−
1
8
(ξ+4ix)2dξ =

e−2x2

2π

∞∫
−∞

e−
y2

8 dy

=
2
√
2e−2x2

2π

∞∫
−∞

e−z2dz =

√
2

π
e−2x2

, since

∞∫
−∞

e−z2dz =
√
π.

Here we have used the substitutions y = ξ + 4ix and z =
√
2y
4 .
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(c) Note that ḡ(ξ) = 2ξe−ξ2/4 = 2i(e−ξ2/8)(−iξe−ξ2/8) = 2iF{f}F{f ′} = 2iF{f ∗ f ′} by
the convolution theorem. Fix x. Then:

g(x) = 2i(f ∗ f ′)(x) = 2i

∞∫
−∞

f(x− y)f ′(y)dy (by definition of convolution)

= 2i

∞∫
−∞

(√
2

π
e−2(x−y)2

)(
−4y

√
2

π
e−2y2

)
dy

= −16i

π

∞∫
−∞

ye−2x2+4xy−4y2dy = −16ie−2x2

π

∞∫
−∞

ye−4(y2−xy)dy

= −16ie−x2

π

∞∫
−∞

ye−4(y−x/2)2dy = −16ie−x2

π

∞∫
−∞

(
z +

x

2

)
e−4z2dz

= −16ie−x2

π


∞∫

−∞

ze−4z2dz +
x

2

∞∫
−∞

e−4z2dz


= −16ixe−x2

2π

∞∫
−∞

e−4z2dz = −16ixe−x2

2π

∞∫
−∞

e−α2 dα

2
= − 4i√

π
xe−x2

.

6. (a) Let f ∈ L1(R) be a real valued function. Show that its Fourier transform f̄ satisfies

f̄∗(ξ) = f̄(−ξ),

where f̄∗ denotes the complex conjugate of f̄ (this property is called Hermitian symme-
try).

(b) Derive a similar relationship between the transform of a purely imaginary function g
and its complex conjugate.

(c) Show that the Fourier transform of a real even function is real.

(d) Show that the Fourier transform of a real odd function is imaginary.

(e) Show that the Fourier transform of an even function is even.

Solution

(a) Note that

f̄∗(ξ) =

 ∞∫
−∞

f(x)eiξxdx

∗

=

 ∞∫
−∞

f(x)[cos(ξx) + i sin(ξx)]dx

∗

=

∞∫
−∞

f(x)[cos(ξx)− i sin(ξx)]dx =

∞∫
−∞

f(x)e−iξxdx. = f̄(−ξ)
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(b) Note that for a real function h defined by g(x) = ih(x),

ḡ∗(ξ) =

 ∞∫
−∞

g(x)eiξxdx

∗

=

 ∞∫
−∞

ih(x)[cos(ξx) + i sin(ξx)]dx

∗

=

∞∫
−∞

−ih(x) cos(ξx)− h(x) sin(ξx)]dx =

∞∫
−∞

−g(x)[cos(ξx)− i sin(ξx)]dx

=

∞∫
−∞

−g(x)e−iξxdx = −ḡ(−ξ).

(c) Let f be real and even. Then

f̄(ξ) =

∞∫
−∞

f(x)eiξxdx =

∞∫
−∞

f(x)[cos(ξx) + i sin(ξx)]dx =

∞∫
−∞

f(x) cos(ξx)dx,

which is clearly real.

(d) Let f be real and odd. Then

f̄(ξ) =

∞∫
−∞

f(x)eiξxdx =

∞∫
−∞

f(x)[cos(ξx) + i sin(ξx)]dx =

∞∫
−∞

if(x) sin(ξx)dx,

which is clearly imaginary.

(e) Let f be even. Then

f̄(−ξ) =
∞∫

−∞

f(x)e−iξxdx =

∞∫
−∞

f(x)eiξ(−x)dx.

Make the substitution y = −x:
∞∫

−∞

f(x)eiξ(−x)dx = −
−∞∫
∞

f(−y)eiξydy =

∞∫
−∞

f(−y)eiξydy,

and since f is even, we have that

∞∫
−∞

f(−y)eiξydy =

∞∫
−∞

f(y)eiξydy = f̄(ξ).

That is, the Fourier transform of an even function is even.

7. Find the Fourier transform with respect to x of the solution to the following boundary value
problem for Laplace’s equation:

uxx + uyy = 0, x ∈ R, y ∈ [0, 1];

u(x, 0) = 0, x ∈ R;
u(x, 1) = e−|x|, x ∈ R.
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Solution: Define ū(ξ, y) as the Fourier transform of u with respect to x. That is:

F{u} = ū(ξ, y) =

∞∫
−∞

u(x, y)eiξxdx.

Then the derivative theorem gives that

F{uxx} = (−iξ)(−iξ)F{u} = −ξ2ū,

while

F{uyy} =
∂2ū

∂y2

(since FTs are taken wrt x, not y here). Thus applying Fourier transforms to the PDE
(Laplace’s equation) yields

∂2ū

∂y2
− ξ2ū = 0.

Since this only has differentiation wrt one independent variable, we can solve in a similar
fashion to an ODE. The auxiliary equation is m2 − ξ2 = 0, whence

ū(ξ, y) = A(ξ)e|ξ|y +B(ξ)e−|ξ|y.

We will now apply the boundary conditions to find the functions A and B. Taking FTs wrt
x of the BCs gives {

u(ξ, 0) = 0, ξ ∈ R;
u(ξ, 1) = 2

1+ξ2
, ξ ∈ R (see Q1 with a = 1).

The first condition yields A(ξ) = −B(ξ). The second condition then gives

2

1 + ξ2
= A(ξ)

(
e|ξ| − e−|ξ|

)
= 2A(ξ) sinh(|ξ|).

Thus A(ξ) = csch(|ξ|)
1+ξ2

and so B(ξ) = − csch(|ξ|)
1+ξ2

. Finally, therefore, the Fourier transform wrt x
of u is given by

ū(ξ, y) =
csch(|ξ|)
1 + ξ2

(
e|ξ|y − e−|ξ|y

)
=

2csch(|ξ|) sinh(|ξ|y)
1 + ξ2

.

8. (Harder) Prove that the function

f(x) =
2 sin(ξ/2)

ξ

does not belong to L1(R).

Solution: Let f(ξ) = 2 sin(ξ/2)
ξ . Noting that the integrand is non-negative, it is enough to

show that
∞∫
0

|f(ξ)|dξ does not converge. Consider the intervals

Ik = [2kπ, 2(k + 1)π], k = 0, . . . , n,
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and define fk to be the restriction of f to the interval Ik. Then on each interval Ik, fk is a

continuous, integrable function satisfying |f(ξ)| ≥ | sin ξ
2
|

(k+1)π . Thus for n ∈ N,

(n+1)π∫
0

|f(ξ)|dξ =
n∑

k=0

2(k+1)π∫
2kπ

2| sin(ξ/2)|
ξ

dξ ≥
n∑

k=0

2(k+1)π∫
2kπ

| sin(ξ/2)|
(k + 1)π

dξ =
n∑

k=0

4

(k + 1)π
=

4

π

n+1∑
m=1

1

m
.

Letting n→ ∞ and recalling that the series
∞∑

m=1

1
m is divergent, we deduce that f /∈ L1(R).
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