
MA34110: Partial Differential Equations

Solutions 3

2024–25

1. Using the reflection method and the d’Alembert formula, solve the Cauchy problem for the
wave equation for a half-infinite string

utt − 9uxx = 0, x > 0, t > 0,

u(x, 0) = x2e−x, ut(x, 0) = xe−x,

u(0, t) = 0 (Dirichlet boundary condition).

Solution. We apply the principle of odd reflection. Define f̃ , g̃ and ũ by

f̃(x) =

{
x2e−x, x ≥ 0

−x2ex. x < 0

g̃(x) =

{
xe−x, x ≥ 0

xex. x < 0

ũ(x) =

{
u(x), x ≥ 0

−u(−x). x < 0

Then ũ satisfies the Cauchy problem defined for the whole line{
ũtt − 9ũxx = 0, x ∈ R, t > 0,

ũ(x, 0) = f̃(x), ũt(x, 0) = g̃(x),

and because of the odd reflection satisfies u(0, t) = 0 for all t > 0. This has solution by
d’Alembert’s formula:

u(x, y) =
1

2
{f̃(x+ 3t) + f̃(x− 3t)}+ 1

6

x+3t∫
x−3t

g̃(λ)dλ.

Considering the cases 0 < x < 3t and x > 3t separately as in the lectures, the solution is
given by

u(x, y) =


1
2

{
(x+ 3t)2e−x−3t + (x− 3t)2e−x+3t

}
+ 1

6

x+3t∫
x−3t

λe−λdλ, x > 3t

1
2

{
(x+ 3t)2e−x−3t − (x− 3t)2ex−3t

}
+ 1

6

x+3t∫
3t−x

λe−λdλ, 0 < x < 3t,

which evaluates as

u(x, y) =

{
1
2

{
(x+ 3t)2e−x−3t + (x− 3t)2e3t−x

}
− 1

6

(
(1 + x+ 3t)e−x−3t − (1 + x− 3t)e−x+3t

)
, x > 3t

1
2

{
(x+ 3t)2e−x−3t − (x− 3t)2ex−3t

}
− 1

6

(
(1 + x+ 3t)e−x−3t − (1 + 3t− x)ex−3t

)
, 0 < x < 3t.
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2. Find the solution of the inhomogenous wave equation{
utt − c2uxx = x cos t, x ∈ R, t > 0,

u(x, 0) = 0, ut(x, 0) = 0.

Solution. The Duhamel principle yields that the solution is given by

u(x, t) =
1

2c

t∫
0

x+c(t−τ)∫
x−c(t−τ)

y cos τdydτ = x(1− cos t).

3. Let l > 0 and m,n ∈ N. Prove that

l∫
0

sin
mπx

l
sin

nπx

l
dx =

{
l
2 , n = m,

0, n ̸= m.

Solution: We use the trigonometric identity

sinα sinβ =
1

2
[cos(α− β)− cos(α+ β)] ,

giving∫ l

0
sin

(nπx
l

)
sin

(mπx

l

)
dx =

1

2

∫ l

0
cos

(
(n−m)πx

l

)
dx− 1

2

∫ l

0
cos

(
(n+m)πx

l

)
dx.

First ∫ l

0
cos

(
(n+m)πx

l

)
dx =

l

(n+m)π
sin

(
(n+m)πx

l

)
|x=l
x=0

=
l

(n+m)π
[sin((n+m)π)− sin(0)] = 0.

Similarly, for n ̸= m,∫ l

0
cos

(
(n−m)πx

l

)
dx =

l

(n−m)π
sin

(
(n−m)πx

l

)
|x=l
x=0

=
l

(n−m)π
[sin((n−m)π)− sin(0)] = 0.

But, for n = m, ∫ l

0
cos

(
(n−m)πx

l

)
dx =

∫ l

0
cos(0)dx =

∫ l

0
dx = l.

Therefore, for n ̸= m, we have ∫ l

0
sin

nπx

l
sin

mπx

l
dx = 0,

while for n = m, we have ∫ l

0
sin

nπx

l
sin

mπx

l
dx =

l

2
.
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4. Using the method of separation of variables, solve the initial boundary value problem
utt − c2uxx = 0, x ∈ [0, π], t > 0,

u(x, 0) = sin 3x, ut(x, 0) = 0, initial conditions.

u(0, t) = 0 u(l, t) = 0, t > 0 boundary conditions.

(You may use formulae derived in the lectures if you wish to prevent your solutions becoming
too long, but make sure you understand their derivation.)

Solution: The solution is given by

u(x, t) =
∞∑
k=1

(
Ak cos

kπct

l
+Bk sin

kπct

l

)
sin

kπx

l
,

(see lecture notes for derivation); in this case l = π and so this reduces to

u(x, t) =

∞∑
k=1

(Ak cos(kct) +Bk sin(kct)) sin(kx),

The condition ut(x, 0) = 0 implies that Bk = 0 for all k. The condition u(x, 0) = sin(3x)
implies that A3 = 1, and Ak = 0 for all other k ̸= 3. Therefore the required solution is

u(x, t) = cos(3ct) sin(3x).

5. Using the method of separation of variables, find the general solution to the initial boundary
value problem for the one dimensional heat equation with endpoints held at zero temperature.

ut − c2uxx = 0, x ∈ [0, l], t > 0,

u(x, 0) = f(x),

u(0, t) = 0, u(l, t) = 0, t > 0.

Solution: Assume a separable solution, i.e. seek u in the form u(x, t) = X(x)T (t). Substi-
tution of this form into the heat equation yields

(X(x)T (t))t − c2(X(x)T (t))xx = 0 ⇒ X(x)T ′(t)− c2T (t)X ′′(x) = 0.

Rearranging yields
T ′(t)

c2T (t)
=

X ′′(x)

X(x)
= −λ, say,

where −λ is a constant since the two sides of the preceeding equation are functions solely of
the independent variables t and x respectively. The boundary conditions imply that X(0) = 0
and X(l) = 0. Consequently we can consider the problem for X(x):{

X ′′(x) + λX(x) = 0;

X(0) = X(l) = 0.

This is exactly the same problem as we met in the lectures and indeed in Q4. It has infinitely
many solutions (eigenfunctions), each of the form Xk(x) = sin(kπx/l), with k ∈ N. The
eigenvalues (derived as in the lecture) are λk = (kπ/l)2 for k ∈ N.
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The problem for T (t) (sought only in the case λ = λk as we seek non-trivial solutions) becomes

T ′
k(t) + c2λkT (t) = 0, k ∈ N.

This first order linear ODE has solutions (solved by integrating factor method)

Tk(t) = ak exp (−c2λkt),

where ak (k ∈ N) are arbitrary constants. Since the heat equation is linear homogeneous, the
superposition principle gives that any linear combination of solutions is itself a solution, so

u(x, t) =

∞∑
k=1

uk(x, t) =

∞∑
k=1

Xk(x)Tk(t) =

∞∑
k=1

ak sin

(
kπx

l

)
exp

(
−c2k2π2t

l2

)
.

Finally we must find the constants ak such that u(x, 0) = f(x). That is, find ak such that

∞∑
k=1

ak sin(kπx/l) = f(x); (1)

this is a Fourier sine series problem. We solve by fixing m ∈ N, multiplying both sides of (1)
by sin(mπx/l) and integrating w.r.t. x term by term between 0 and l. The result from Q3
gives

ak =
2

l

l∫
0

f(x) sin

(
kπx

l

)
dx.

6. Using the method of separation of variables, find the particular solution to the following
Laplace equation initial boundary value problem:

uxx + uyy = 0, x ∈ [0, 1], y ∈ [0, 1];

u(0, y) = u(1, y) = 0, y ∈ [0, 1];

u(x, 1) = 0, x ∈ [0, 1];

u(x, 0) = 4 sin(5πx), x ∈ [0, 1].

Solution: Assume a separable solution, i.e. seek u in the form u(x, t) = X(x)Y (y). Substi-
tution of this form into the heat equation yields

(X(x)Y (y))xx + (X(x)Y (y))yy = 0 ⇒ X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Rearranging yields
X ′′(x)

X(x)
= −Y ′′(y)

Y (y)
= −λ, say,

where −λ is a constant since the two sides of the preceeding equation are functions solely of
the independent variables x and y respectively. The boundary conditions imply that X(0) = 0
and X(1) = 0. Consequently we can consider the problem for X(x):{

X ′′(x) + λX(x) = 0;

X(0) = X(1) = 0.
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To obtain (infinitely many) non-trivial solutions (indexed by n ∈ N), let λn = ω2
n. Solving

the second order ODE gives

Xn(x) = An sin(ωnx) +Bn cos(ωnx).

The condition Xn(0) = 0 implies that Bn = 0∀n ∈ N. For non-trivial solutions that satisfy
Xn(1) = 0, ωn = nπ, so

Xn(x) = Bn sin(nπx), n ∈ N.

The problem for y becomes Y ′′
n (y) = n2π2Y (y). Solving these second order linear constant

coefficient ODEs gives

Yn(y) = Cne
nπy +Dne

−nπy = En cosh(nπ(y − 1)) + Fn sinh(nπ(y − 1))

(Here the arbitrary constants En and Fn are related to Cn and Dn through Cn = e−nπ(En +
Fn) and Dn = enπ(En − Fn)). The condition u(x, 1) = 0 implies En = 0∀n ∈ N.
The superposition principle yields

u(x, y) =

∞∑
n=1

Gn sin(nπx) sinh(nπ(y − 1)).

Finally the condition u(x, 0) = 4 sin(5πx) gives that

−
∞∑
n=1

Gn sin(nπx) sinh(nπ) = 4 sin(5πx),

whence G5 = −4cosech(5π) and Gn = 0∀n ∈ N\{5}. The particular solution is therefore

u(x, y) = −4cosech(5π) sin(5πx) sinh(5π(y − 1)).
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