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1. Classify the following equations as parabolic, elliptic or hyperbolic:

(a) uxx−uxy+2uy+3uyy−5uyx+8u = 0 : Since (−3)2 > 1 ·3, the equation is hyperbolic.

(b) 9uxx + 6uxy + uyy + ux = 0 : Since 32 = 9 · 1, the equation is parabolic.

(c) uxx − 4uxy + 4uyy = 0 : Since (−2)2 = 1 · 4, the equation is parabolic.

2. Consider the Cauchy problem{
utt = uxx, x ∈ R, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x).

(a) Find the domain of dependence of u at (x, t) = (2, 1).

(b) Let f(x) = 0 outside the interval [−1, 2] and g(x) = 0 outside the interval [1, 6]. Find
the set E of points (x, t) such that u(x, t) must be zero for (x, t) ∈ E.

Solution.

(a) The domain of dependence is [x− ct, x+ ct] = [x− t, x+ t] = [2− 1, 2 + 1] = [1, 3].

(b) Outside the sector for t > 0 between lines x+ t = −1 and x− t = 6, i.e. in {(x, t) : t >
0, x < −1− t or x > t+ 6}.

3. Find the solution u(x, t) of the one-dimensional wave equation on an infinite string{
utt − c2uxx = 0, x ∈ R, t > 0,

u(x, 0) = f(x), ut(x, 0) = g(x).

with

(a) f(x) = x and g(x) = cos(x).

(b) f(x) = ln(x2 + 6) and g(x) = 3x3.

(c) f(x) = sin(x3) and g(x) = x2

x2+4x+8
.

Solution. All of (a), (b) and (c) are solved using d’Alembert’s formula

u(x, y) =
1

2
{f(x+ ct) + f(x− ct)}+ 1

2c

x+ct∫
x−ct

g(λ)dλ.

(a) u(x, y) = 1
2{(x+ ct) + (x− ct)}+ 1

2c

x+ct∫
x−ct

cos(λ)dλ = x+ 1
2c(sin(x+ ct)− sin(x− ct)).
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(b)

u(x, y) =
1

2
{ln((x+ ct)2 + 6) + ln((x− ct)2 + 6)}+ 1

2c

x+ct∫
x−ct

3λ3dλ.

=
1

2
{ln((x+ ct)2 + 6) + ln((x− ct)2 + 6)}+ 3tx(c2t2 + x2)

(c) The integral is evaluated by conducting polynomial division, or equivalently by noting

that λ2

λ2+4λ+8
= 1− 4λ+8

λ2+4λ+8
.

u(x, t) =
1

2
{sin((x+ ct)3) + sin((x− ct)3)}+ 1

2c

x+ct∫
x−ct

λ2

λ2 + 4λ+ 8
dλ

=
1

2
{sin((x+ ct)3) + sin((x− ct)3)}+ t

+
1

c

(
ln |(x− ct)2 + 4(x− ct) + 8| − ln |(x+ ct)2 + 4(x+ ct) + 8|

)
.

4. Using the method of characteristics, solve the equations

(a) 2ux + (cosx)uy = 0, u(0, y) = e−y,

(b) ux + 2uy + (2x− y)u = 2x2 + 3xy − 2y2, u(x, 0) = x (harder!).

Solution. (a) We can rewrite this PDE as (2, cosx) · (ux, uy) = 0. That is, the directional
derivative in the direction (2, cosx) is zero, i.e. the solution is constant along characteristic
curves defined by the ODE

dy

dx
=

cosx

2
.

Therefore the characteristic curves are of the form y = 1
2sinx + c, and so solutions to the

PDE are of the form u(x, y) = f(c) = f(y − 1
2 sinx). The boundary condition implies that

f(z) = exp(−z), so the required solution is u(x, y) = exp(−y + 1
2 sinx).

(b) Consider the curves defined by

dx

dt
= 1,

dy

dt
= 2,

with conditions x(0) = s, y(0) = 0. That is,

x = t+ s, y = 2t.

Along these curves, the PDE reduces to the ODE

du

dt
+ 2su = 2s(s+ 5t).

(Here we have rewritten terms in x and y in terms of t and s.) Multiply by an integrating
factor of exp(2st) to obtain

e2st
du

dt
+2se2stu = 2s(s+5t)e2st ⇔ d

dt

{
e2stu

}
= 2s(s+5t)e2st ⇒ e2stu =

(2s2 + 10st− 5)e2st

2s
+c(s),

2



(we have used integration by parts) so u = 2s2+10st−5
2s +c(s)e−2st. Converting back to original

variables x and y gives

u(x, y) = x+ 2y − 5

2x− y
+ c(x− y

2
) exp

(
−y

(
x− y

2

))
.

Finally, applying the boundary condition yields that c(z) = 5/(2z), and so

u(x, y) = x+2y− 5

2x− y
+

5

2x− y
exp

(
−y

(
x− y

2

))
= x+2y+

5

2x− y

(
exp

(
−y

(
x− y

2

))
− 1

)
.
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