
MA34110: Partial Differential Equations

Solutions 1

2024–25

1. (a) dy
dx − 2y

x = 3x3 : The ODE is linear and first order. We multiply throughout by an
integrating factor exp(−

∫
2
xdx) = exp(−2 lnx) = x−2, giving

x−2 dy

dx
− 2x−3y = 3x ⇔ d

dx

{
x−2y

}
= 3x ⇒ y =

3x4

2
+ cx2,

where c is an arbitrary constant.

(b) d2y
dx2 − 2dy

dx − 3y = 0 : The ODE is second order, linear, with constant coefficients. The
auxiliary equation is m2 − 2m − 3 = 0 ⇔ (m − 3)(m + 1) = 0 and so the roots of
the auxiliary equation are m = −1 and m = 3. Consequently the general solution is
y = Ae−x +Be3x, where A and B are arbitrary constants.

(c) y dy
dx = 3

x2y
: The equation is separable, so

∫
y2dy = 3

∫
x−2dy + c ⇒ y3

3
= c− 3x−1 ⇒ y =

(
C − 9

x

)1/3

,

where c, C are arbitrary constants.

(d) dy
dx − y = 0 : y = Aex (A arbitrary, solved either by inspection, integrating factor of
e−x or separable variables techniques).

(e) d2y
dx2 +y = 0 : The ODE is second order, linear, with constant coefficients. The auxiliary
equation is m2 +1 = 0 and so the roots of the auxiliary equation are m = ±i. It follows
that y = A cosx+B sinx, where A,B are arbitrary constants.

2. (a) ux + xuy = sinx : First order. We write this in the form Lu = f(x, y), where L =
∂
∂x+x ∂

∂x and f(x, y) = sinx. For any C1 functions u and v, it follows from the linearity of
partial differentiation that L(u+v) = Lu+Lv. Moreover, for a constant c, L(cu) = cLu.
L is therefore a linear operator, and so the PDE is linear inhomogeneous.

(b) uxx+uux = 0 : Second order. We write this in the form Lu = 0, where L = ∂2

∂x2 +(·) ∂
∂x .

This is a non-linear operator due to the term (·) ∂
∂x . This can be seen by noting that for

a constant c,

L(cu) =
∂2(cu)

∂x2
+ cu

∂

∂x
(cu) = c

∂2u

∂x2
+ c2u

∂u

∂x
̸= c

(
∂2u

∂x2
+ u

∂u

∂x

)
= cLu.

It follows that the PDE is non-linear.

(c) ux + uuy = u : First order. The PDE is non-linear due to the presence of the term
uuy due to the same argument as in part (b).
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(d) ux + 2uy + 3 = x : First order. We can rearrange this PDE (leaving all terms in the
dependent variable u on the left hand side and other terms on the right hand side) to give
ux + 2uy = x− 3. We can write this in the form Lu = f(x, y), where L = ∂

∂x + 2 ∂
∂y and

f(x, y) = x−3. By linearity of partial differentiation, we note that L is a linear operator.
It follows that the PDE is linear inhomogeneous. (NB: the operator ∂

∂x + 2 ∂
∂y + 3 is

non-linear, so the initial rearranging was important.)

3. Find the general solution u = u(x, y) of the PDE uxy = 3xy.

Integrating with respect to y gives ux = 3xy2

2 + h(x). Integrating this with respect to x gives

u = 3x2y2

4 +
∫
h(x)dx + g(y), and since integrating an arbitrary function of x yields another

arbitrary function of x, we can write the general solution as u = 3x2y2

4 + f(x) + g(y).

4. (a) Find the general solution u = u(x, t) of the PDE 4ux +3ut = 0. Hence find the solution
of the PDE 4ux + 3ut = 0 satisfying the initial condition (for t = 0): u(x, 0) = cosx.

We apply the method of characteristics. The PDE can be written in the form (4, 3)·∇u =
0 and so u is constant along characteristic curves defined by the ODE dx

dt = 4
3 , which has

solution x = 4
3 t+ c where c ∈ R is constant (one constant for each characteristic curve).

It follows that the general solution is u(x, t) = f(c) = f(x − 4
3 t), where f ∈ C1(R) is

arbitrary.

(b) We now apply the initial condition: u(x, 0) = f(x) = cosx. The solution of the PDE is
therefore u(x, t) = cos(x− 4

3 t).

5. Solve the PDE x2yux + 3uy = 0, with u(x, 0) = 1
x .

We can write this in the form (x2y, 3) · ∇u = 0. That is, solutions are constant along
curves whose tangent lies in the direction (x2y, 3). Such curves are described by the ODE
dy
dx = 3/(x2y), which is separable. Solutions of the ODE are of the form y2 = c − 6

x . Since
u is constant along each characteristic curve and different characteristic curves have different
values of c, it follows that u = f(c) = f(y2+6/x). The boundary condition implies u(x, 0) =
1/x = f(6/x), so f(z) = z/6. The particular solution is therefore y = y2/6 + 1/x.

6. Solve the linear equation (1 + x2)ux + uy = 0.

We can write this in the form (1 + x2, 1) · ∇u = 0. Characteristic curves for this equation
satisfy dy/dx = 1/(1+x2). Solving this ODE yields y = arctanx+C. Solutions of the PDE are
constant on each characteristic curve. Thus, the general solution of PDE is u = f(y−arctanx).

7. Solve the equation (
√
1− x2)ux + uy = 0 with the condition u(0, y) = y.

Similarly, the characteristic curves for this equation satisfy dy/dx = 1/
√
1− x2, which yields

y = arcsinx + C. Thus, solutions take the form u(x, y) = f(y − arcsinx). The condition
u(0, y) = y implies f(y) = y, so u(x, y) = y − arcsinx is the required solution.

8. Using the method of characteristics, solve ux + uy + u = ex+2y with u(x, 0) = 0.

Consider the curves defined by
dx

dt
= 1,

dy

dt
= 1,

with conditions x(0) = s, y(0) = 0, implying x = t + s and y = t. Along these curves, the
PDE reduces to the ODE

du

dt
+ u = e3t+s.
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Multiply by an integrating factor of et to give

et
du

dt
+ etu = e4t+s ⇔ d

dt

{
etu

}
= e4t+s ⇒ u =

1

4
e3t+s + c(s)e−t.

Noting that t = y and s = x− y, we transform back to the original problem variables x and
y to give

u(x, y) =
1

4
e2y+x + c(x− y)e−y.

Applying the condition u(x, 0) = 0 yields that c(x) = −1
4e

x, and so the required overall
solution to the original problem is

u(x, y) =
1

4

(
ex+2y − ex−2y

)
=

1

4
ex

(
e2y − e−2y

)
=

1

2
ex sinh 2y.
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