Assignment 1

2024 - 25

Starred questions (2a&b, 4a&b, 5, 8) due in either via Blackboard or on good old-fashioned paper by 5pm, Friday 25th October.

- 1. (ODEs practice): Find the general solution of the following ODEs:
 - (a) $\frac{dy}{dx} \frac{2y}{x} = 3x^3;$ (b) $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = 0;$ (c) $y \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{x^2 y};$ (d) $\frac{dy}{dx} - y = 0;$ (e) $\frac{d^2y}{dx^2} + y = 0.$
- 2. For each of the following equations, state the order and whether it is nonlinear, linear inhomogeneous, or linear homogeneous; provide reasons.
 - (a) $u_x + xu_y = \sin x; \star$
 - (b) $u_{xx} + uu_x = 0; \star$
 - (c) $u_x + uu_y = u;$ (d) $u_x + 2u_y + 3 = x$. [8 marks]
- 3. Find the general solution u = u(x, y) of the PDE $u_{xy} = 3xy$.
- 4. (a) \star Find the general solution u = u(x, t) of the PDE

$$4u_x + 3u_t = 0.$$

- (b) \star Hence find the solution of the PDE $4u_x + 3u_t = 0$ satisfying the initial condition (for t = 0: $u(x, 0) = \cos x$. [8 marks]
- 5. \star Solve the boundary value problem

$$\begin{cases} x^2 y u_x + 3 u_y = 0, \\ u(x,0) = \frac{1}{x}. \end{cases}$$

[10 marks]

6. Solve the linear equation

$$(1+x^2)u_x + u_y = 0.$$

Hint: you might like to remind yourself of the derivatives of inverse trigonometric functions.

7. Solve the equation

$$(\sqrt{1-x^2})u_x + u_y = 0,$$

with the condition u(0, y) = y.

8. * Using the method of characteristics, solve $u_x + u_y + u = e^{x+2y}$ with u(x,0) = 0. [14 marks]