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ABSTRACT

Aims. The classic Weber-Davis model of the solar wind is reconsidered by incorporating alpha particles and by allowing the solar
wind to flow out of the equatorial plane in an axisymmetrical configuration.
Methods. In the ion momentum equations of the solar wind, the ion gyro-frequency is many orders of magnitude higher than any
other frequency. This requires that the difference between proton and alpha velocity vectors be aligned with the background magnetic
field. With the aid of this alignment condition, the governing equations of the multi-fluid solar wind are derived from the standard
transport equations. The governing equations are numerically solved along a prescribed meridional magnetic field line located at
colatitude 70◦ at 1 AU and a steady state fast solar wind solution is found.
Results. A general analysis concludes, in agreement with the Weber-Davis model, that the magnetic field helps the coronal plasma to
achieve an effective corotation out to the Alfvénic radius, where the poloidal Alfvénic Mach number MT equals unity (MT is defined
by Eq. (20)). The model computations show that, magnetic stresses predominate the angular momentum loss of the Sun. For the
fast wind considered, the proton contribution to the angular momentum loss, which can be larger than the magnetic one, is almost
completely canceled by the alpha particles that develop an azimuthal speed in the direction opposite to the solar rotation. The Poynting
flux associated with the azimuthal components is negligible in the energy budget. However, the solar rotation can play some role in
reducing the relative speed between alpha particles and protons for low latitude fast solar wind streams in interplanetary space.
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1. Introduction

The solar angular momentum loss rate L consists of the parti-
cle contribution LP and that contained in magnetic stresses LM.
The comparison of measurements of these quantities with mod-
els, the Weber-Davis analysis (1967) in particular, has yielded
divergent results. Missions before Helios measured a total an-
gular momentum flux L consistent with the Weber-Davis model
(about 1030 dyne cm sr−1), but the measured azimuthal angle of
the bulk flow was generally greater than 1◦ at 1 AU (or equiv-
alently 7 km s−1 for an average slow wind of 400 km s−1) (see
Pizzo et al. 1983, and references therein). Such a large azimuthal
flow speed implies that particles play a far more important role
than magnetic stresses in reducing the angular momentum of the
Sun. However, in the Weber-Davis model, 3/4 of the angular mo-
mentum flux at 1 AU is due to magnetic stresses. The Helios
data show that L is 0.2−0.3× 1030 dyne cm sr−1, in which LM is
about 0.15−0.2×1030 dyne cm sr−1 (Pizzo et al. 1983). Although
the measured magnitude of L is smaller than that computed in
the Weber-Davis model, the distribution of angular momentum
flux between particles and magnetic stresses is largely compati-
ble with their prediction. An equally important finding concerns
further distribution of LP between two major ion species in the
solar wind, namely, protons and alpha particles. Alpha particles
are found to carry an angular momentum flux in the direction of

� Appendix A is only available in electronic form at
http://www.edpsciences.org

counter-rotation with the Sun. This flux is substantial enough to
offset the proton contribution which could be comparable to the
magnetic one. This finding cannot be addressed by the Weber-
Davis model where the solar wind was treated as a bulk flow and
only protons were considered.

Apart from being essential in the problem of solar angular
momentum loss, the azimuthal ion motions may also provide a
possible means to resolve a long standing observational puzzle,
namely that alpha particles are observed to flow faster than pro-
tons in the fast solar wind. The differential streaming in the fast
wind could be as pronounced as 150 km s−1 at 0.3 AU before de-
creasing to about 40 km s−1 at 1 AU (Marsch et al. 1982). Such
a behavior has yet to be understood. One possible mechanism
is the coupling between the azimuthal and meridional motions,
facilitated by the strong magnetic field (McKenzie et al. 1979;
Hollweg & Isenberg 1981). Although the Poynting flux may
still be negligible (cf. Acuna & Whang 1976; Alexander &
de La Torre 1995; Hu et al. 2003), the proposed coupling is ex-
pected to limit, at least to a non-trivial extent, the ion differential
streaming. As pointed out by Hollweg & Isenberg (1983), one
shortcoming of the formulation of McKenzie et al. (1979) is that
protons are privileged over alphas: the azimuthal magnetic field
is assumed to be determined entirely by the protons whose az-
imuthal flow is neglected. Hence the formulation cannot prop-
erly account for the azimuthal dynamics of protons or alphas. In
addition, the formulae are applicable only to the equatorial plane
where the slow solar wind prevails at solar minimum.
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The goal of this paper is to extend the Weber-Davis model
by including alpha particles self-consistently. This approach al-
lows us to assess the individual contributions of ion flows and
magnetic stresses to the angular momentum loss of the Sun. The
effect of the coupling between azimuthal and meridional mo-
tions in limiting the proton-alpha differential streaming will also
be explored quantitatively. Given that the differential streaming
is more prominent in the fast wind, which in general flows out
of the equatorial plane, it is necessary to formulate the model
such that it treats both protons and alphas on an equal footing,
and allows the solar wind to flow outside the equatorial plane.
In this sense, this paper also extends the model of McKenzie
et al. (1979).

The paper is organized as follows. The derivation of the gov-
erning equations is given in the appendix. Section 2 details the
physical model and also describes the assumptions on the back-
ground poloidal magnetic field and the ion heating mechanism.
A general analysis is then given in Sect. 3. Section 4 presents the
numerical results and the effect of the solar rotation. In Sect. 5,
the main results are summarized.

2. Model

The solar wind is assumed to consist of electrons (e), pro-
tons (p) and alpha particles (α). Since the role of alpha parti-
cles is not necessarily minor, their contribution has to be self-
consistently taken into account (Li et al. 1997). This is done by
rewriting the momentum equations (Schunk 1977) in the flux
tube frame, instead of the standard spherical coordinate system
(r, θ, φ). Central to the derivation is that the ion-cyclotron fre-
quency Ωk = ZkeBl/mkc is many orders of magnitude higher
than any other frequency present in the ion momentum equations
(McKenzie et al. 1979). Here mk is the mass of ion species k
(k = p, α), Zk is the charge of species k in units of the electron
charge e, Bl denotes the meridional magnetic field strength, and c
is the speed of light. The derivation is provided in the appendix,
the resulting governing equations are quoted here to save space.

2.1. Governing equations

As described in Appendix A, in addition to the impicit as-
sumptions in deriving the five-moment transport equations
(Schunk 1977), we make the following assumptions:

1. axial symmetry is assumed (∂/∂φ ≡ 0);
2. the electron inertia is neglected in the electron momentum

equation;
3. quasi-neutrality is assumed;
4. both viscosity and resistivity are neglected;
5. quasi-zero current is assumed, the only exception to this oc-

curs when ion momentum equations are derived;
6. the electric field in the magnetic induction law is convected

by electrons, i.e., contributions like Hall effects are ne-
glected;

7. the Spitzer law is used for the field-aligned electron heat flux,
and the ion heat fluxes are neglected;

8. we are only interested in steady state solutions. However,
time-dependent equations are solved to yield steady state
solutions.

Given these assumptions, the governing equations take the form
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where ns, us and Ts denote the number density, velocity and
temperature of species s (s = e, p, α), respectively. The species
pressure is ps = nskBTs, where kB is the Boltzmann constant.
By assuming quasi-neutrality and quasi-zero current, we have
ne =

∑
k Zknk and ue =

∑
k Zknkuk/ne (k = p, α). G is the gravita-

tional constant, M� is the solar mass, and γ = 5/3 is the adiabatic
index. Coordinate l measures the arclength of the poloidal mag-
netic field line from the footpoint at the coronal base. Both the
heliocentric distance r and colatitude θ are evaluated along the
poloidal magnetic field. The cross-sectional area of the flux tube,
a, scales as a ∝ 1/Bl. Φ is the magnetic azimuthal angle, defined
by tanΦ = Bφ/Bl. The poloidal magnetic field Bl and the heat
deposition to ion species k, denoted by Qk, will be specified in
Sects. 2.2 and 2.3, respectively.

The energy and momentum exchange rates δEs/δt and
δMs/δt are due to Coulomb collisions of species s with all the
remaining ones (Schunk 1977),

δMs

δt
=

∑
t

nsmsνstΦst (ut − us) , (8)

δEs

δt
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∑
t

nsmsνst
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[
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]
. (9)

Expressions for the collision frequency νst as well as correction
factors Φst and Ψst have been given by, e.g., Li et al. (1997) and
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Fig. 1. a) The poloidal magnetic field configuration given as contours of the magnetic flux function. The equator points upward. The line of force
on which the model equations are solved is displayed by the thick contour. This field line is located at θ = 70◦ at 1 AU and originates from 31.5◦
on the Sun. b) Radial distribution of the poloidal magnetic field strength Bl along the designated field line. At 1 AU, Bl is 3.3γ.

will not be repeated here. In the computation, the Coulomb loga-
rithm lnΛ is taken to be 21. The electron thermal conductivity κe
in Eq. (3) is 7.8 × 10−7 erg K−7/2 cm−1 s−1 (Spitzer 1962).

2.2. Background poloidal magnetic field

To avoid complications associated with the cross-field force bal-
ance, we choose to prescribe the background poloidal magnetic
field by adopting an analytical model given in Banaszkiewicz
et al. (1998). In the present implementation, the model magnetic
field consists of dipole and current-sheet components only. A set
of parameters M = 3.6222, Q = 0, K = 1.0534 and a1 = 2.5 are
chosen such that the last open magnetic field line is anchored
at θ = 40◦ on the Sun, and the poloidal magnetic field strength
is 3.3γ at θ = 70◦ at 1 AU, compatible with Ulysses measure-
ments (Smith & Balogh 1995).

Figure 1a shows the magnetic field configuration in the
meridional plane. The thick solid line represents the field line
along which we will find solar wind solutions. This field line is
rooted at colatitude 31.5◦ on the Sun, and reaches 70◦ at 1 AU,
which corresponds to the edge of the fast stream observed by
Ulysses (McComas et al. 2000). Plotted in Fig. 1b is the radial
profile of the poloidal magnetic field strength Bl along the des-
ignated field line.

2.3. Ion heating

To produce fast solar wind solutions, an empirical energy flux,
launched from the Sun and in the direction of B, is assumed
to heat ions only. This energy flux is assumed to dissipate at a
rate Q with a characteristic length ld, i.e.,

Q = FE
Bl

BlEld
exp

(
− l

ld

)
, (10)

where FE is the input empirical flux scaled to the orbit of the
Earth, RE = 215 R�, R� being the solar radius. Moreover, BlE is
the poloidal magnetic field strength at RE. Q is then assumed to
be apportioned between protons and alpha particles by

Qα =
∆

1 + ∆
,Qp =

1
1 + ∆

,∆ =
ρα
ρp
χ, (11)

where ρk = nkmk (k = p, α) is the ion mass density, and χ is
a parameter indicating the degree by which the alpha particles

are preferentially heated, with χ ≡ 1 standing for the neutral
heating: heating rate per ion is proportional to its mass.

In the computations, the following parameters

FE = 1.8 erg cm−2 s−1, ld = 1.35 R�,

χ =
χc + 0.8

2
− χc − 0.8

2
tanh

(
r − 5 R�
0.3 R�

)
, χc = 1.5

are chosen to yield a fast solar wind solution. As can be seen,
χ varies smoothly from χc in the inner corona to 0.8 far from
the Sun with a rather steep transition occurring at 5 R�. A pref-
erential heating that favors alpha particles in the inner corona
(χc > 1) is necessary to produce a positive relative speed vαl−vpl.

3. General analysis

Before solving Eqs. (1) to (7) to find solar wind solutions, one
can conduct an analysis to reach some general conclusions.

3.1. Alignment conditions

Equation (6) derives from the φ component of the magnetic in-
duction law. For a steady state, it can be integrated to yield

veφ − Ωr sin θ =
Bφ

Bl
vel. (12)

The constant of integration Ω can be identified as the angular
rotation rate of the flux tube. Combining Eqs. (7) and (12), one
finds

vpφ −Ωr sin θ =
Bφ

Bl
vpl, vαφ − Ωr sin θ =

Bφ

Bl
vαl. (13)

That is, in the frame strictly corotating with the Sun, all species
(electrons, protons and alpha particles) flow along the mag-
netic field. The alignment conditions were first recognized by
Parker (1958), and have been extended to general axisymmetri-
cal MHD flows by, e.g., Low & Tsinganos (1986) and Hu et al.
(2003).

3.2. Angular momentum conservation law

In a steady state, Eq. (5) leads to

r sin θ

[
vpφ +

ραvαl

ρpvpl
vαφ − BφBl

4πρpvpl

]
= L, (14)
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where the tube invariant L comes from the integration. The phys-
ical meaning of L can be better seen by noting that the constant

L = ρpvplL
a
aE

R2
E = Lp +Lα +LM (15)

is the angular momentum loss per solid angle, where

Lk = r sin θρkvklvkφ
a
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4π
a
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R2
E, (16)

with k = p, α. Subscript E denotes values evaluated at
RE = 1 AU. Obviously, both outflowing particles and magnetic
stresses contribute to the angular momentum flux.

The conservation law for the angular momentum, Eq. (14), is
valid for an arbitrary flux tube in an azimuthally symmetric solar
wind. The single-fluid version (or equivalently the two-fluid one)
of this conservation law has already been obtained by, e.g., Low
& Tsinganos (1986) and Hu et al. (2003).

3.3. Expressions for vpφ, vαφ and Bφ

The alignment condition, Eq. (13), together with Eq. (14) leads
to
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where MT , Mp and Mα are defined as
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α, M2
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kl
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with k = p, α. The poloidal Alfvénic Mach number MT is thus
comprised of both Mp and Mα.

For the solar wind, MT � 1 is valid near 1 R�, but MT � 1
holds at 1 AU. Hence, there must exist a point between 1 R� and
1 AU where MT = 1. At this location, which will be termed the
Alfvénic point, Bφ is singular unless the numerator in Eq. (19)
vanishes,
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ρpvpl

)
Ωr2

a sin2 θa, (21)

where subscript a denotes values at the Alfvénic point. We have
employed the fact that the ion mass flux ratio ραvαl/ρpvpl is a
constant. The angular momentum loss per solid angle then be-
comes

L = ṀΩr2
a sin2 θa, (22)

where

Ṁ = (ρpvpl + ραvαl)
a
aE
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E

is the mass loss rate per solid angle of the solar wind.
Hence the conclusion of Weber & Davis (1967) still holds:

the magnetic field helps the coronal plasma to achieve an ef-
fective corotation to the Alfvénic point, as long as the poloidal
Alfvénic Mach number MT is defined by Eq. (20).

3.4. Energy conservation law

Combining the governing equations in the steady state, one can
derive an energy conservation law,
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where the constant F is the total energy flux scaled to RE. The
terms on the left hand side of Eq. (23) correspond, respectively,
to the kinetic and potential energy fluxes, the Poynting flux, the
enthalpy flux, the electron conductive flux, and the source term
due to the heat deposition. The ratio of the Poynting flux to F
will be used to assess the relative importance of the Poynting
flux in the energy budget.

4. Numerical results

Equations (1) to (7) are solved by using a fully implicit numeri-
cal scheme (Hu et al. 1997). From an arbitrary initial guess, the
equations are advanced in time until a steady state is achieved.
The computational domain extends from 1 R� to 1.2 AU. At
1 R�, ion densities as well as species temperatures are fixed,

np = 1.5 × 108 cm−3, (nα/np) = 0.06,

Te = Tp = Tα = 106 K,

while vpl and vαl are specified to ensure mass conservation. vpφ
and Bφ are evaluated in accordance with Eqs. (17) and (19),
where L is computed at the grid point immediately adjacent
to the base. At the outer boundary (1.2 AU), all dependent
variables are linearly extrapolated for simplicity. We also take
Ω = 2.865×10−6 rad s−1. For the steady state solutions presented
in this paper, the maximum relative errors in the conserved quan-
tities are smaller than 1%.

Figure 2 displays the radial distribution of (a) the species
densities ne, np and nα, (b) poloidal flow speeds vpl and vαl,
and (c) species temperatures Te, Tp and Tα. The model yields
the following parameters at 1 AU,

npvpl = 2.3 × 108cm−2s−1, vpl = 660 km s−1,

vαl − vpl = 49 km s−1, nα/np = 0.0445

which agree well with the Ulysses observations of the fast wind
(McComas et al. 2000). In addition, the modeled electron density
fits observations reasonably well in the inner corona (Fig. 2a).
However, without considering the non-thermal contribution, the
modeled proton temperature is higher than that inferred from
UVCS measurements (Fig. 2c). Moreover, Tp and Tα at 1 AU
are much smaller than values given by in situ measurements
(McComas et al. 2000). The poor match is due to the oversimpli-
fied heating function. As for the poloidal flow speeds, the alphas
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Fig. 2. Results derived from a 1.5D 3-fluid solar wind model which incorporates the azimuthal components self-consistently. The radial distribution
of a) the densities of protons np and alpha particles nα (solid lines), as well as electrons ne (dashed line), b) the poloidal flow speeds of protons
(vpl) and alphas (vαl), and c) the temperatures of electrons (Te), protons (Tp) and alpha particles (Tα). The error bars in a) are the upper and lower
limits for the electron density derived by Fisher & Guhathakurta (1995). The error bars in c) represent the uncertainties of UVCS measurements
for the effective proton temperature reported by Kohl et al. (1998). Please note that both measurements are made for polar coronal holes.

initially fall behind the protons below 2 R� beyond which a pos-
itive ∆vl = vαl − vpl develops. vαl reaches a maximum around
66 R�, and starts to decrease thereafter.

To examine the differential streaming further, ∆vl = vαl − vpl

is plotted in Fig. 3a. The poloidal flow speeds of protons (vpl)
and alpha particles (vαl) are replotted in Fig. 3b (a different
scale is used, see Fig. 2b). In addition, model results from the
corresponding computation that neglects the solar rotation (i.e.,
Ω ≡ 0) are plotted as dotted lines for comparison. For the ease
of description, we shall call the model with (without) azimuthal
components the 1.5D (1D) model. It is found that the effect of
the azimuthal components on the poloidal dynamics can be ad-
equately represented by the flow speed profiles. Below the local
maximum of 78.6 km s−1 at 7.28 R�, Fig. 3a shows no differ-
ence in the ∆vl profile between 1D and 1.5D models. The dif-
ferential streaming, ∆vl, for both models plummets from nearly
zero at the coronal base to about −44.6 km s−1 at 1.44 R�, and
rises thereafter to the local maximum. Interestingly, in the 1D
model, beyond the local maximum ∆vl undergoes only a modest
decrease to 66.3 km s−1 at 1 AU, while in the 1.5D model ∆vl

is 48.7 km s−1 at 1 AU. This further reduction in the differential
streaming is achieved through a slight rise in the vpl profile ac-
companied by a modest deceleration of alpha particles (Fig. 3b).

This behavior is not surprising since in the poloidal momen-
tum equation (Eq. (2)),

vkl
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can be obtained when the alignment condition, Eq. (13), is used.
When viewed in the frame corotating with the Sun (vkl secΦ
is the ion speed seen in that frame), the solar rotation en-
sures that all particles move in the same centrifugal potential
(Ω2r2 sin2 θ/2). Neglecting all other contributions, and taking
the difference of the proton and alpha version of Eq. (24), one
arrives at
∂

∂l

[(
v2
αl − v2

pl

)
sec2 Φ

]
= 0,

or(
v2
αl − v2

pl

)
∝ cos2Φ. (25)

With the development of the magnetic azimuthal angle, cos2Φ
decreases monotonically with increasing distance (cf. Fig. 4a).
As a consequence, the differential streaming ∆vl decreases.
Figure 3 can be seen as a direct illustration of the effect of solar
rotation in limiting the ion differential streaming, predicted by
McKenzie et al. (1979) and Hollweg & Isenberg (1981).

Figure 4 displays the radial profiles of (a) − tanΦ = −Bφ/Bl,
(b) the azimuthal speeds of protons (vpφ), alpha particles (vαφ)
and electrons (veφ), and (c) the specific contribution of pro-
tons (ξp = Lp/L), alpha particles (ξα = Lα/L) and the mag-
netic stresses (ξM = LM/L) to the angular momentum flux (cf.
Eq. (15)). In addition, the sum ξp + ξα, which gives the over-
all particle contribution ξP, is also plotted. Given in dotted line
is ζ, the ratio of the Poynting flux to the total energy flux (cf.
Eq. (23)). In Fig. 4c, the dashed line is used to plot negative val-
ues. The asterisks in Fig. 4b denote the Alfvénic point, which is
located at ra = 11.8 R�.

From Fig. 4a, it is obvious that only beyond, say 10 R�,
does a spiral angle Φ develop. This can be explained in view of
Eqs. (12), (13): within 10 R� the left hand side is much smaller
than the poloidal flow speed on the right hand side for any
species. On the other hand, in interplanetary space, the species
azimuthal speed is much smaller than Ωr sin θ, the Parker theory
for the spiral magnetic field is recovered, i.e., tanΦ = Bφ/Bl ≈
−Ωr sin θ/vl, where vl can be taken as the poloidal speed of any
species.

In the inner corona, both protons and alpha particles tend to
corotate with the Sun: vpφ and vαφ are positive (Fig. 4b). The az-
imuthal speed of the alpha particles is slightly larger than that of
the protons below 2 R�, and from there on, the alpha particles
are gradually turned opposite to the solar rotation. vαφ becomes
negative beyond 5.71 R�, eventually vαφ reaches −24.7 km s−1

at 1 AU. On the other hand, the proton azimuthal speed vpφ in-
creases from a local minimum of 0.78 km s−1 at 12.5 R� mono-
tonically to 4.8 km s−1 at 1 AU.

The behavior of the azimuthal flow speeds can be explained
by Eqs. (17) and (18). Near the coronal base, both M2

p and M2
α

are far from unity. It then follows from Eqs. (17) and (18) that

vpφ ≈ Ωr sin θ, vαφ ≈ Ωr sin θ. (26)

At r ≤ 2 R�, a negative ∆vl makes vαφ slightly larger than vpφ.
For r > ra, the solar wind expands almost radially. As a result,
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Fig. 3. Radial distributions of a) the differential streaming, vαl − vpl, and b) the poloidal flow speeds of protons (vpl) and alpha particles (vαl). Solid
lines are used to plot the 1.5D model, whereas dotted lines are used for the corresponding 1D model which neglects the solar rotation.

Fig. 4. Radial distributions of a) − tanΦ = −Bφ/Bl where Φ is the magnetic azimuthal angle, b) the azimuthal speeds of protons vpφ, alpha particles
vαφ as well as electrons veφ, c) the relative importance of the proton fluid ξp = Lp/L, the alpha fluid ξα = Lα/L, the sum of the two ξP = ξp + ξα,
and the magnetic stresses ξM = LM/L in the total angular momentum loss of the Sun (please see Eq. (16) in text). In addition, the ratio of the
Poynting flux to the total energy flux, ζ, is plotted as dotted line. The dashed line represents negative values. In panel b), the asterisks denote the
Alfvénic point, where the poloidal Alfvénic Mach number (defined by Eq. (20)) equals unity.

M2
k /vkl = (4πρkvkl/Bl)/Bl ∝ r2 (k = p, α) holds fairly accurately.

The variation of vpl beyond ra is very modest. We therefore have
M2

p � 1 for r � ra. From the identity M2
α/M

2
p = ηvαl/vpl, it

follows that M2
α is a substantial fraction of M2

p given that the ion
mass flux ratio η = ραvαl/ρpvpl is 0.19 in this solution. Hence
close to 1 AU, the azimuthal speeds of both protons and al-
phas are determined by the terms associated with the differential
streaming in Eqs. (17) and (18), namely, for r � ra,

vpφ ≈ Ωr sin θ
η

1 + ηvαl/vpl

vαl − vpl

vpl
,

vαφ ≈ −Ωr sin θ
1

1 + ηvαl/vpl

vαl − vpl

vpl
· (27)

As a result, vpφ/vαφ ≈ −η holds. However, this asymptotic behav-
ior of the ion azimuthal speeds for r � ra does not hold in gen-
eral. If the alpha abundance is far from unity, the azimuthal mag-
netic field will be solely determined by protons, and vpφ should
behave like vpφ ∝ r−1 for r � ra when the differential streaming
term in Eq. (17) is neglected.

Now let us move on to Fig. 4c. It can be seen that, from
the coronal base to 1 AU, magnetic stresses play a dominant

role in the total angular momentum budget, the particle contri-
bution ξP is no more than 2.6%. However, the individual an-
gular momentum flux carried by protons or alpha particles is
not necessarily small in magnitude. As a matter of fact, pro-
tons contribute more to the total angular momentum flux than
magnetic stresses do beyond 101 R�. However the proton con-
tribution is virtually canceled by the alpha particles that counter-
rotate with the Sun. This can be understood in light of Eqs. (17)
and (18). As has been described, far away from the Alfvénic
point, r � ra, both vpφ and vαφ are mainly determined by the
terms associated with the differential streaming. From the iden-
tity ραvαlM2

p/vpl ≡ ρpvplM2
α/vαl, one can see that for r � ra, ξα

and ξp tend to have the same magnitude but opposite sign. At
this point, we can also see from the dotted line in Fig. 4c that al-
though the solar rotation introduces appreciable difference in the
meridional dynamics, the Poynting flux never exceeds 0.12% of
the total energy budget. Needless to say, its contribution to the
solar wind acceleration is in fact determined by its difference
between 1 R� and 1 AU.

At 1 AU, the model yields a total angular momentum loss
of L = 0.17 × 1030 dyne cm sr−1, in which the magnetic part is
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LM = 0.165× 1030 dyne cm sr−1, consistent with measurements
(Pizzo et al. 1983; Marsch & Richter 1984). However, the abso-
lute azimuthal speed vpφ or vαφ is larger than the measured values
(although these quantities can only be determined with a mod-
est precision). Moreover, ξP never turns negative, in this sense at
variance with the measurements: Pizzo et al. (1983) and Marsch
& Richter (1984) showed that particles in the fast wind tend to
carry a negative angular momentum flux. Pizzo et al. (1983) sug-
gested that the discrepancies between the model and measure-
ments may be removed by including the stream interaction in
the super-Alfvénic region. This is however beyond the scope of
this paper.

5. Concluding remarks

The main aim of this paper is to extend the Weber-Davis analysis
(Weber & Davis 1967) on the transport of the angular momen-
tum from the Sun by including alpha particles and by allowing
the solar wind to flow out of the equatorial plane in an axisym-
metrical configuration. Following McKenzie et al. (1979), we
exploit the fact that the gyro-frequency of ions is many orders
of magnitude higher than any other frequency in ion momentum
equations. From this it follows that the difference between pro-
ton and alpha velocities must be in the direction of the magnetic
field. Using this alignment condition, the governing equations
are then derived from the standard five-moment transport equa-
tions.

The model equations also enable us to examine quantita-
tively the effect of azimuthal components in limiting the proton-
alpha differential streaming in the fast wind. For simplicity, we
choose to solve the governing equations on a prescribed poloidal
magnetic field line located at a colatitude of 70◦ at 1 AU, cor-
responding to the edge of the fast stream observed by Ulysses
at solar minimum conditions (McComas et al. 2000). The ef-
fects of the azimuthal components on the meridional dynamics,
if any, are optimal in this regard. These effects are directly shown
by a comparison of two models with and without azimuthal
components.

The main results can be summarized as follows:

1. The general analysis concludes that, in agreement with the
Weber-Davis model, the magnetic field helps the coronal
plasma to achieve an effective corotation from the coronal
base to the Alfvénic radius, where the poloidal Alfvénic
Mach number MT = 1. MT has to include the contribution
from alpha particles (Eq. (20)).

2. In the low latitude fast solar wind, the angular momentum
loss from the Sun is almost entirely due to magnetic stresses.
The proton contribution, which can be as important as the
magnetic one in interplanetary space, is offset by alpha par-
ticles that develop an azimuthal speed in the direction of
counter-rotation with the Sun.

3. The Poynting flux associated with the azimuthal components
is negligible. Nevertheless, the solar rotation has an apprecia-
ble effect in limiting the proton-alpha differential streaming
in fast solar wind streams at low latitudes in interplanetary
space.

Although the fast solar wind solution is largely compatible with
in situ measurements in terms of the ion mass fluxes and termi-
nal speeds, it fails in a detailed fashion. For instance, the model
is not able to predict a proton temperature profile consistent with

UVCS measurements in the inner corona, nor does it predict an
ion differential speed as large as 150 km s−1 at 0.3 AU to be com-
parable with the Helios observation (Marsch et al. 1982). Hence,
including the azimuthal components cannot solely account for
the deceleration of alphas relative to protons in interplanetary
space. More sophisticated mechanisms, the ion-cyclotron reso-
nance for instance, are expected to alleviate the discrepancies
(e.g., Li 2003), but can hardly help achieve a satisfactory match
(e.g., Hu & Habbal 1999). Nevertheless, such a direction is for
sure worth pursuing and is left for a future study.

The model also suffers from the inconsistency that the force
balance in the direction perpendicular to the poloidal magnetic
field is replaced by prescribing a background magnetic field. In
a more rigorous treatment, the poloidal magnetic field should
be derived self-consistently. In principle, such a task can be ac-
complished by adopting an iterative approach: the parallel and
perpendicular force balance are solved alternately until a conver-
gence is met (Pneuman & Kopp 1971; Sakurai 1985). By doing
so, the angular momentum loss from the Sun can be obtained
self-consistently for all poloidal flux tubes. An accurate estimate
of the duration over which the angular momentum of the Sun is
completely removed is then possible (see Hu et al. 2003).

The present paper is aimed at presenting a rather general
analysis of the angular momentum loss from a magnetized rotat-
ing object for flows assuming axial symmetry and incorporating
two major ion species. Although for the present Sun, the cen-
trifugal and magnetic forces are so weak that they have little im-
pact on the meridional dynamics (especially below the Alfvénic
point), a similar study as presented in the text can be carried out
for stars that rotate at a faster rate or have a stronger magnetic
field than the Sun.
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Appendix A: Derivation of the governing equations

In this appendix, it is shown how the 5-moment transport
equations are reduced to the governing equations in Sect. 2.1.
The approach adopted here closely follows that by McKenzie
et al. (1979; see also Hollweg & Isenberg 1981). The original
derivation of McKenzie et al. (1979) is restricted to the equato-
rial flow, and ions other than protons are treated as test particles.
Employing the same spirit, we extend their derivation to general
flows assuming axial symmetry. In addition, all ion species are
treated on an equal footing, which is particularly important for
the solar wind since alpha particles can not be seen as test par-
ticles. The central point is that, due to the presence of a strong
magnetic field (in the sense that the ion gyro-frequency is many
orders of magnitude higher than any other frequency in the mo-
mentum equations), the difference vector between proton and al-
pha velocities must be aligned with the magnetic field.

A.1. General momentum equation

First of all, let us examine the momentum equation for species s
(Schunk 1977),

nsms

[
∂us
∂t
+ us · ∇us

]
+ ∇ps + nsms

GM�
r2

r̂

−nses

(
E +

1
c
us × B

)
− δMs

δt
= 0. (A.1)

As usual, species s is characterized by its density ns, velocity us,
mass ms, electric charge es and pressure ps. es can also be mea-
sured in units of electron charge e, i.e., es = Zse with Ze ≡ −1
by definition. The momentum exchange rate δMs/δt is due to the
Coulomb frictions. It is customary to neglect the electron inertia
(me = 0). As a result, the electrostatic field E can be expressed as

E = −1
c
ue × B − ∇pe

nee
+

1
nee

δMe

δt
· (A.2)

Substituting the expression for E into the magnetic induction
law

∂B
∂t
+ c∇ × E = 0,

one then arrives at

∂B
∂t
− ∇ × (ue × B) = 0, (A.3)

where B is the magnetic field. The terms in Eq. (A.2) other than
the motional electric field −ue × B/c are many orders of mag-
nitude smaller and thus have been neglected. All terms have to
be kept when E is substituted into the ion momentum equation
however.

The plasma in question consists of two ion species, protons
(p) and an additional one (i). (Subscript i is used here to indicate
that in principle the equations to be developed are also applica-
ble if other ion species than alpha particles is considered.) As
the frequency in question is well below the electron plasma fre-
quency, the expression for ne follows from quasi-neutrality,

ne = np + Zini. (A.4)

Neglecting the displacement current in the Ampere’s law, one
finds the expression for ue

ue =
npup + Ziniui

ne
− j

nee
, (A.5)

where j = c∇ × B/4π is the electric current density.
Substitution of Eq. (A.2) into Eq. (A.1) for ion species k (k =

p, i) then leads to

∂uk
∂t
+ uk · ∇uk + ∇pk

nkmk
+

Zk∇pe

nemk

+
GMS

r2
r̂ − Zk

4πnemk
(∇ × B) × B

− 1
nkmk

[
δMk

δt
+

Zknk

ne

δMe

δt

]

+
Zke
mkc

n jZ j

ne

(
u j − uk

)
× B = 0, (A.6)

where subscript j stands for ion species other than k, namely,
j = p for k = i and vice versa. Note that, when deriving
Eq. (A.6), we have used Eq. (A.5) to evaluate the electron ve-
locity ue in the expression for E. The electric current j can be
dropped when ue is evaluated elsewhere. This is because, in the
context of the solar wind, j is the large-scale electric current and
is negligible since the spatial scale at which the magnetic field
evolves is well beyond the proton inertial length.

A.2. Alignment conditions for electrons

Now it becomes necessary to separate explicitly the poloidal and
azimuthal components of the magnetic field and species veloci-
ties, namely,

B = BP + Bφφ̂, us = usP + vsφφ̂,

where subscript P stands for the poloidal component. The as-
sumption of azimuthal symmetry (∂/∂φ = 0) allows BP to be
expressed in terms of the magnetic flux function ψ(r, θ; t), i.e.,

BP = ∇ψ × φ̂

r sin θ
·

The magnetic induction law, Eq. (A.3), can then be rewritten as

∂ψ

∂t
+ ueP · ∇ψ = 0, (A.7)

∂Bφ

∂t
+ r sin θ∇ ·

[
1

r sin θ

(
BφueP − veφBP

)]
= 0. (A.8)

For a steady state, from Eq. (A.7) follows ueP · ∇ψ = 0, which is
equivalent to

ueP × BP = 0. (A.9)

In other words, the poloidal components of the electron velocity
and magnetic field are strictly parallel. In light of this alignment
condition, Eq. (A.8) can be shown to reduce to Eq. (6) in the
text.

A.3. Equations cast in the flux tube frame

It proves useful to work in the flux tube frame, whose base
vectors are

ê1 = BP/BP, ê3 = φ̂, ê2 = ê3 × ê1.

By definition, the magnetic field has only two components, i.e.,

B = B1ê1 + B3ê3,
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We restrict ourselves to time-independent axisymmetrical flows
only. Taking the dot product of ê1 with Eq. (A.6), one arrives at

vk1∂1vk1 − v2
k3∂1 ln r sin θ

+v2
k2ê1 · (ê2 · ∇ê2) + vk2∂2vk1 + vk1vk2ê1 · (ê1 · ∇ê2)

+
1

nkmk
∂1 pk +

Zk

nemk
∂1 pe +

GM�
r

∂1 ln r

+
Zk

4πnemk
B3 (∂1B3 + B3∂1 ln r sin θ)

− n j

Akne
c0(v j1 − vk1) + Ωk1

B3

B1

Z jn j

ne
(v j2 − vk2) = 0. (A.10)

Similarly, taking the dot product of Eq. (A.6) with ê2 and ê3
results in, respectively,

v2
k1

R − v
2
k3∂2 ln r sin θ

+vk2∂2vk2 + vk1∂1vk2 + vk1vk2ê2 · (ê2 · ∇ê1)

+
1

nkmk
∂2 pk +

Zk

nemk
∂2 pe +

GM�
r

∂2 ln r

− Zk

4πnemk

⎡⎢⎢⎢⎢⎣B2
1

R −
⎛⎜⎜⎜⎜⎝∂2

B2
1 + B2

3

2
+ B2

3∂2 ln r sin θ

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

− n j

Akne
c0(v j2 − vk2)

+Ωk1
Z jn j

ne

[
(v j3 − vk3) − (v j1 − vk1)

B3

B1

]
= 0, (A.11)

and

vk1 (∂1vk3 + vk3∂1 ln r sin θ)

+vk2 (∂2vk3 + vk3∂2 ln r sin θ)

− Zk

4πnemk
B1 (∂1B3 + B3∂1 ln r sin θ)

− n j

Akne
c0(v j3 − vk3)

−Ωk1
Z jn j

ne
(v j2 − vk2) = 0, (A.12)

where

R = 1/ê2 · (ê1 · ∇ê1)

is the (signed) curvature radius of the poloidal magnetic field
line, while

c0 =
Z2

i ni

ne
νpeΦpe +

ne

ni
νpiΦpi +

Ainp

ne
νieΦie

is a coefficient associated with Coulomb frictions. Here Ai =
mi/mp is the mass number of species i. In addition, Ωk1 =
ZkeB1/mkc is the gyro-frequency for species k. ∂n = ên · ∇ is
the directional derivative operator along ên (n = 1, 2, 3).

The ion gyro-frequency is many orders of magnitude higher
than any other frequency in the momentum equation. This has
two consequences. First, from Eq. (A.12), v j2 − vk2 is far smaller
than vk3 from an order-of-magnitude estimate. Since ve2 = 0 (see
Eq. (A.9)), both vp2 and vi2 should be very small and can be
safely neglected unless they appear alongside the ion-cyclotron
frequency. Second, Eq. (A.11) leads to

vi3 − vp3 =
B3

B1

(
vi1 − vp1

)
. (A.13)

In other words, the ion velocity difference is aligned with the
magnetic field. This is Eq. (7).

Solving Eq. (A.12) for v j2 − vk2 and then substituting it
into Eq. (A.10), one arrives at the poloidal momentum equation
(Eq. (2)). It is interesting to note that the magnetic field does not
appear explicitly in this equation (except for the term tanΦ), al-
though it plays an essential role in coupling the azimuthal and
meridional motions. Combining Eq. (A.12) for p and i, one can
obtain Eq. (5). The partial differentiation with respect to time t
in the equation is merely for numerical purpose.

In closing, we note that the p and i versions of Eq. (A.11)
can be combined to yield a force balance condition in the ê2
direction,

ρpv
2
p1

R − ρpv
2
p3∂2 ln r sin θ

+
ρiv

2
i1

R − ρiv
2
i3∂2 ln r sin θ

+∂2 pp + ∂2 pi + ∂2 pe + (ρp + ρi)
GM�

r
∂2 ln r

− 1
4π

⎡⎢⎢⎢⎢⎣B2
1

R −
⎛⎜⎜⎜⎜⎝∂2

B2
1 + B2

3

2
+ B2

3∂2 ln r sin θ

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ = 0. (A.14)

If further expressing the geometrical coefficient R, the differ-
entiation ∂2 and the Lorentz force in terms of the magnetic
flux function ψ, one can eventually derive a second-order quasi-
linear partial differential equation (PDE) for ψ. This PDE can
then be solved by using the approaches proposed by Pneuman &
Kopp (1971) or Sakurai (1985).


