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Abstract

We study the effect of the experimental set-up on the structure and rheology of two-
dimensional foams. We perform the same experiment, in whicha sequence of topological
instabilities is realized, in three different set-ups, allowing the relative merits of each system
to be discussed. The experiment consists of an in-plane deformation of two bubbles which are
confined laterally by bars and wholly or partially confined above and below by glass plates and
liquid surfaces. An instability of the bubbles occurs when the bar spacing is increased or de-
creased (traction or compression) beyond a critical value.The critical values depend strongly
on the experimental set-up used, and, because of the finite liquid fraction of the system, do
not always agree with predictions based upon a two-dimensional analysis of a dry foam. This
behaviour gives information about the discrepancies between reported experimental results on
macroscopic two-dimensional foams under shear.

1 Introduction

The field of liquid foams has attracted much attention in recent years. Three-dimensional (3D)
foams are familiar from daily experience, but are difficult to work with from both an experimental
and theoretical point of view. However, two-dimensional (2D) systems allow the determination
of several properties of foam that can be extended to 3D. These 2D systems are much easier
to analyse; for example, in an experiment, every bubble can be seen and its position and shape
monitored. Computer simulations of 2D foams are much fasterthan their 3D counterparts, and
are thus able to be extended to much larger systems, with manythousands of bubbles. We will
describe three methods for the experimental production of 2D foams below. By comparing all
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three different methods, we show in this paper how the choiceof method affects the structure and
response of the foam.

Recent interest in the rheology of foams stems from a 2D Couette shear experiment by De-
bregeas et al. [1]. An aqueous foam was trapped between two horizontal glass plates in an annular
cell, and sheared by moving the inner wall in a quasi-static manner (i.e. the strain-rate was low
enough that full elastic relaxation could occur between each small increment in strain). The strik-
ing result was that all the plastic events (topological changes) were confined to a region close to
the inner wall (shear banding). This result was unexpected for a foam in the quasi-static limit. A
different Couette shear experiment was carried out by Dennin and co-workers [2, 3, 4] in a cell in
which, instead of a glass plate, the foam was bounded below bythe surface of a liquid pool, and
unbounded above. In this case shear banding was either not observed [2], or the shear band was
located much farther from the inner cylinder [3]. Our study is partly motivated by trying to explain
this discrepancy between ostensibly similar experiments with different setups.

The work described here also relates to instabilities of foams in apparently 2D systems. Re-
lated studies have found that the investigation of topological instabilities is a profitable way to
better understand foam systems and to improve the agreementbetween theoretical predictions
and experimental results [5]. The analysis of such instabilities relies on the assumption of the
two-dimensionality of the system, considering small plateseparations and assuming a low liquid
fraction, i.e. the foam to be dry, so that gravity does not play a large role.

Recently, attention has been drawn to the 3D nature of experimental systems. Cox et al. [6]
have shown that topological changes predicted by the theoryof dry foams may occur at different
values in the experimental system because of the unaccounted for liquid, for example in the menis-
cus beneath the bubbles. Thus experimental configurations are favoured which have higher 2D
energies than those configurations predicted by dry theory.The differences between the standard
methods of producing 2D bubble clusters suggest different behaviours of the instabilities [7].

The most common methods used to produce 2D foams are (i) a bubble raft, (ii) a Hele-Shaw
cell or (iii) a liquid-glass system. These are illustrated in Figure 1. In each experimental system
there is a distribution of liquid around the bubbles, which is not accounted for in the standard
dry theory. When a soap film touches a glass plate or when threefilms meet, a small triangular
liquid channel, known as a Plateau border, is formed. The liquid in the Plateau borders, and in
the menisci where films meet a liquid surface, will cause discrepancies in the response of the
experiment, compared to the dry case, which we will quantify. Our experiments thus allow us to
begin to explain the difference in the Couette shear experiments referred to above, in which shear
banding is seen in a Hele-Shaw geometry but not in a bubble raft.

The bubble raft method was used by Bragg and Nye [8] to reproduce the behaviour of atoms. In
this case a single layer of bubbles is created on a liquid surface. Despite the ease of foam creation,
this method has the disadvantage of rapid bubble rupture, due to the large region of contact with
air. Also, its response cannot always be reconciled with theusual 2D model of foams, in that a
topological transition may result in bubbles separating rather than being linked by a common film,
as shown below. The liquid content, as measured by the size ofthe meniscus encompassing the
base of each film, is difficult to control.

In the Hele-Shaw or glass/glass method [9], a layer of bubbles is sandwiched between two
horizontal glass or perspex plates. Plateau borders are formed at the top and bottom of each film
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and along the vertical lines of intersection of the films. Thetop Plateau border is smaller than the
bottom one due to gravity, and the vertical films interpolatebetween them, in hydrostatic balance.
This procedure was first used by Smith [10] and adopted by several authors to study coarsening
(bubble growth due to gas diffusion) [e.g. 11]. It is generally the method which allows experiments
with the lowest liquid fraction. However, the presence of the glass plates creates difficulties in the
manipulation of bubbles, and it is therefore difficult to produce arrangements of bubbles with a
given topology.

In the third method, the bubbles are trapped between a glass plate and a liquid solution [12]. In
addition to the Plateau borders touching the upper glass plate, as in the glass/glass method, there
is a meniscus at the base of each film, as in a bubble raft, whichis generally larger than the Plateau
border above it. This method was also introduced by Smith [10], although each system was for a
different purpose, so that he did not compare the results of the same experiment between the two
methods. This glass/liquid method has several advantages:it is easy to produce many topological
configurations of bubbles quickly, and to vary the effectiveliquid fraction of the foam by changing
the separation between liquid and glass (large separationscorrespond to lower liquid fractions).
However, in common with the bubble raft, it is difficult to define precisely this liquid fraction,
because of the presence of the meniscus, and the meniscus maycause topological changes that are
not predicted by dry theory.

In this paper, we make identical experiments on these three systems, shown in Figure 2, choos-
ing a simple experiment to allow us to easily study the effectof the system. The experiments
consist of the deformation of two bubbles between two bars, where the distance between the bars
is increased (traction) or decreased (compression) to trigger a change in topology, as in the 3D
experiments of Bohn [13]. These instabilities occur for critical values of the bar spacing. A small
number of experimental results of the two-bubble instabilities prepared with the liquid/glass tech-
nique were given by Fortes et al. [14]. Those authors also provided an analytical analysis which
we discuss below, although note that in our experiments noneof the films are ever pinned to the
wall at any point.

The structure of this paper is as follows. In§2 we describe the experiment and the three
experimental systems, then give theoretical predictions for the critical bar spacings in§3. In §4 we
present the results and discuss them in§5.

2 Experiments

Figure 1 illustrates the three experimental set-ups used toproduce 2D foams: a) bubble raft,LA,
b) glass/glass,GG and c) liquid/glass,LG. While in the first method the bubbles are only in contact
with the liquid pool (L) and air (A), in the other two methods the bubbles are confined by either
the liquid pool and the glass (G), or the two glass plates.

Figure 2(iii) shows two bubbles produced with the liquid/glass method. Two parallel bars
penetrate into the liquid solution. One bar is fixed and the other bar moves parallel to the fixed
one. A glass plate covers the two bars. Two equal-volume bubbles are produced from a graduated
syringe inserted in the liquid, so that their volumeV is known. In this way, the bubbles are formed
between the surfactant solution and the glass plate covering it at a separationH.
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In the bubble raft system, Figure 2(i), the procedure is the same except that we do not cover
the bubbles with the glass plate. In the glass/glass system shown in Figure 2(ii), the bottom liquid
is replaced by a glass plate, on which the bubbles are formed before covering with a second plate,
again at a separationH.

We denote byw the distance between the two bars. The experiment consists of increasing and
decreasing the spacingw in small steps (of about 1mm), interspersed with pauses to allow the
system to re-equilibrate (i.e. quasi-static motion). We measured the critical values of the spacing
at which transitions between various bubble configurationsoccur.

We made experiments with various separationsH (0.5, 1.0 and 1.5 cm) and bubble volumesV
(0.5, 1 and 1.5cm3).

The bubbles are deformed by changing the distance between the barsw. We start with configu-
rationP (Figure 3(i)) in which the two bubbles contact each other in afilm parallel to the bars. We
first increasew (traction) and at a critical bar spacingwPN an instability occurs in which this film
disappears and re-forms in the other direction, known as a T1process. This new configuration,N
(Figure 3(ii)), has a film perpendicular to the bars, joiningthe two bubbles. In the experimental
systemLA this film does not form, and the bubbles separate to form a configurationN ′ consisting
of two semi-circular bubbles.

We then compress configurationN by decreasingw and we obtain configurationP again,
at a critical valuewNP . Further compression leads to the slant configuration,S (Figure 3(iii)),
without a change of topology, at a valuewPS; here the inter-bubble film is inclined, representing
a buckling transition. After further compression, the inter-bubble film touches the bars and the
bubbles undergo a T1 topological transformation into the bamboo structureB (Figure 3(iv)), which
consists of two bubbles which share a common film perpendicular to the bars. This is attained at a
critical value,wSB.

3 Theoretical Predictions

The driving force for the topological changes is the minimization of surface energy. For an ideal-
ized two-dimensional foam, the surface energy is equivalent to the line-length, or perimeter, of the
configuration. In the dry model of a 2D foam at equilibrium, the films are represented as circular
arcs which meet three-fold at120◦ in vertices, according to Plateau’s rules [15]. It is then possible
to calculate geometrically an idealized 2D energy for each of the bubble configurations considered
here, shown in Table 1.

The decoration of this structure with a triangular Plateau border at each vertex, representing the
vertical Plateau borders in the experiments, is the most easily achieved representation of a wet 2D
foam. In practice, the main effect of the Plateau borders is to change the vertex separation at which
T1s occur. Such a model does not, however, take into account any variation of Plateau border area
with height.

We give here two predictions for the bar-spacing at which thetopological changes occur. The
first is based upon the usual dry model of a 2D foam, the second on an effectively “wet” 2D foam.

Our first theoretical prediction of the critical bar-spacing arises by calculating the value ofw at
which a soap film shrinks to zero length, as in the idealized dry model of a 2D foam. At this point,
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two vertices touch and trigger a topological change. The lengthsL of these films are given in the
last column of Table 1 for 2D bubbles of areaA. They are calculated directly from the geometry
of the cluster, as demonstrated by Fortes et al. [14]: for thetransitionS to B they predict a value
of wSB = 0.885

√
A, which is the point at which one of the short films touching thebar disappears.

The other values arewPN = 3.322
√

A, when the common film shrinks to zero length in theP
configuration;wNP = 2.210

√
A, when the film joining the bubbles in theN configuration shrinks

to zero length; andwN ′P = 1.128
√

A, when the two semi-circular bubbles touch. These values are
reduced, in proportion to the square-root of the liquid fraction, as the foam becomes wetter, since
the vertices touch sooner.

The transition fromP toS does not involve a topological change: the change to the alternative
configuration should occur when it is energetically favourable to do so. By comparing the energy
E of each configuration (lines 1 and 4 of Table 1), Fortes et al. [14] predicted that the value ofw
at which theP to S transition occurs iswPS = 1.022

√
A.

The energetic analysis given above is also applicable to a foam that does not have vanishingly
small liquid fraction [6]. The effect of the excess liquid isto allow the bubbles to jump to an
alternative configuration as soon as the energy of this alternative configuration, measured for the
equivalent (undecorated) dry foam, is lower. Our second prediction, for wet foams, is that the
critical spacingwij is the value ofw for which the energy of configurationi is equal to the energy
of configurationj. These values arewPN = 2.586

√
A, wPN ′ = 2.129

√
A andwSB = 1.304

√
A.

These should be considered as upper and lower bounds, because of the effects of liquid content.
The first prediction, of films shrinking to zero length, should provide an upper bound for the critical
spacing at which the transition occurs in traction (P − N ) and a lower bound in compression.
Similarly, the second prediction should give lower and upper bounds in traction or compression
respectively.
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4 Results

In Figure 4 we plot the critical values ofw as a function of bubble volumeV for the transitions
P − N ′, N ′ − P, P − S andS − B, obtained with the bubble raft experiment,LA. The results
are scaled by an equivalent cross-sectional area that assumes that the bubbles are hemispherical,
As = π(3V/(2π))2/3. That the results do not change for different bubble volumessuggests that
this scaling is appropriate, and that for the other systems we need only concentrate on the variation
of w with plate separationH.

In traction, theP−N ′ transition occurs as soon as it is energetically favourableto do so, in good
agreement with the second analytic prediction for “wet” foams. This reflects the (uncontrollable)
wetness of this experimental system, which induces the transition. In compression, there is a
slight delay after the energies become equal before theN ′ configuration of two separated bubbles
rejoins to formP, but it still occurs before the idealized picture of two semi-circles that just touch
suggests it should (first theoretical prediction). It represents, in fact, the extent of the meniscus,
and the distance at which two bubbles start to be attracted toeach other [16]. TheS configuration
appears where predicted, but the transition fromS toB does not occur until the edge length shrinks
to zero, as in a dry foam. Apart from this last discrepancy, weexpect that the wet predictions will
be most useful for theLA system.

In the experiments where the foam is covered by a glass plate,shown in Figure 5, the values
of the spacingw are scaled by the square-root of the apparent area of each bubble, A = V/H,
whereH took a range of values up to 1.5cm. As the plate separation increases, the effective liquid
fraction of theLG system decreases, while that of the glass/glass system doesn’t. Therefore the
observation that the critical values ofw do not change withH for GG makes sense. Moreover, all
theGG results are consistent with the predictions of dry 2D theory(solid lines).

The results for the liquid/glass system in traction (P − N ) show that this transition occurs as
soon as it is energetically favourable to do so for low separations (relatively high liquid fraction).
The values drift towards the other prediction, of waiting for the shortest film to shrink to zero
length, asH increases. In compression, the trend of increasing critical w with increasingH is
also clear. AsH decreases and the system gets wetter, the criticalw is smaller and below the
lower bound of the second analytic prediction, suggesting that for theLG system the dry theory is
inappropriate.

5 Discussion

The two-dimensional model of an idealized dry foam is an attractive one for theory and compu-
tation. It has also been widely invoked as an experimental technique, often without noting the
significant defect that no experimental system of this kind is completely two-dimensional (un-
like, for example, a Langmuir foam [17, 18], consisting of coexisting gas and liquid phases in a
monolayer of amphiphilic molecules on a liquid surface).

Therefore, the disagreement between theoretical and experimental values are due to the 3D
nature of the experiments. Both the bubble raft and the liquid/glass methods suffer from the pres-
ence of a meniscus around the bubbles, while the confinement in the glass/glass system makes it
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awkward to manipulate the bubbles.
It is the glass/glass system, or Hele-Shaw cell, that we havedemonstrated to correspond most

closely to the dry theory. At the other extreme, the bubble raft is simple to use but bears the
least resemblance to the predictions of dry theory, being better approximated by our “wet” theory.
Between these two extremes, the glass/liquid system allowsthe liquid fraction to be controlled:
our experiments suggest that it is necessary to takeH/

√
A < 1 to be close to the dry limit, and

H/
√

A > 2 for our second set of “wet” predictions to be valid.
It should therefore be no surprise if the localization results of the 2D Couette shear experiments

of Debregeas et al. [1], performed in the glass/glass system, are found to be in agreement with
quasi-static 2D simulations of dry foams in this geometry. More difficult will be a numerical
confirmation that the shear-band is not always present [2], or changes position [3], in the bubble
raft. The greater liquid content in the latter system surelyplays a role in determining the presence
of localization.

Such a simulation with the Surface Evolver would require each film to be deleted at least once
in each iteration to test whether the energy of an alternative configuration is lower. An alternative
would be a full three-dimensional Evolver calculation of a wet foam, which is currently not viable
because of the computational time required.

To improve agreement between simulations and experiments on 2D foams, the finite time-scale
of a T1 event must be accounted for (T1s occur instantaneously in quasi-static simulations), as in
Durian’s bubble model [19] for wet foams. Twardos and Dennin[20] have recently shown that
for theLA system, this time-scale is of the order of 10 seconds, a far from insignificant length of
time. The same time-scale may not apply to the other two systems: does the presence of a glass
plate increase or decrease it? That is, to what extent is thistime-scale set by the underlying liquid,
or the drag of the Plateau borders on the glass plates, or inter-bubble dissipation?

In our experiments, we find time-scales close to two seconds for the relaxation to equilibrium
after theP −N change (data not shown) for all systems. This shorter time could be indicative of a
change in solution viscosity or the ease with which a foam of two bubbles can relax, in comparison
to a bulk foam; it will be investigated in future work.
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Liquid Pool

(i)

Glass Plate

Glass Plate Glass Plate(ii) (iii)

Liquid Pool

Figure 1: Different quasi-2D experimental set-ups for investigating foams, illustrated in cross-
section. (i) a bubble raft, denoted here byLA, in which the bubbles float freely on the surface of a
liquid. (ii) GG. (iii) LG. Based upon figure 6 of [6].
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(i)

(iii)

(ii)

Figure 2: Three experimental systems used to produce 2D foams (top view): (i) bubble raft,LA,
(ii) glass/glass,GG and (iii) glass/liquid,LG. The bar-spacing in each case is of the order of 2cm.
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(iii) (iv)

(ii)(i)

P N

S B

Figure 3: Experimental observations of configurations: (i)P; (ii) N ; (iii) S and (iv)B. The bars
are visible at the top and bottom of each image.
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Figure 4: The critical bar spacing as a function of bubble volumeV at which the configuration
changes for theLA system, in which the bubbles completely separate in theP −N ′ transition and
the “height” of the system does not play any role. In each experimentw is scaled by

√
As, where

As is the area of the base of a hemi-sphere of volumeV . The dashed lines represent the criticalw
from the second analytic prediction (equal energy structures) while the solid lines are the critical
w for the first prediction (edge shrinking to zero length). It is clear that varying the bubble volume
makes little difference to the results scaled in this way. See text for discussion.

12



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

wPN√
A

wNP√
A

wPS√
A

wSB√
A

Plate separationH/
√

APlate separationH/
√

A

Plate separationH/
√

APlate separationH/
√

A

GGGG

GGGG

LGLG

LGLG

Figure 5: The critical bar spacing as a function of scaled plate separationH/
√

A at which the
configuration changes for the two systemsGG andLG. The dashed lines represent the criticalw
from the second analytic prediction (equal energy structures) while the solid lines are the critical
w for the first prediction (edge shrinking to zero length).
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