
EPJ manuscript No.
(will be inserted by the editor)

Drainage induced convection rolls in foams I:

Convective bubble motion in a tilted tube

S.J. Coxa, M.D. Alonso, D. Weaire and S. Hutzler

School of Physics, Trinity College, Dublin 2, Ireland

Abstract. When liquid is added to a foam at sufficiently large flow rates,convective bubble motion will occur. Ex-

periments are described in which the foam is confined in a tubewhich is tilted from the vertical. The theory of foam

drainage is applied to this problem to show that the criticalangle of tiltθc at which convection occurs is related to the

liquid flow-rateQ by θc ∝ Q−3/4.

PACS. 82.70.Rr Aerosols and Foams – 83.60.Wc Flow instabilities

1 Introduction

In the physics of liquid foams, drainage (the passage of liquid

through the foam in response to gravity or pressure gradients)

plays a central role [1]. If an aqueous foam is freshly created,

it typically takes a few minutes to come into equilibrium under

gravity. During this period drainage adjusts the vertical pro-

file of the liquid fraction. If the foam is fed at the top with a

supply of liquid, this may be called forced drainage. If the im-

posed flow rate is constant the result is steady drainage. Unless

the flow rate is very small, the liquid fraction is approximately

constant over most of the foam column, offering a very sim-
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ple system for experiment and analysis, both of which have

been pursued extensively in recent years [2, 3]. There is a good

overall understanding of steady drainage, based largely onsuch

experiments. Only the finer details of the microscopic flow that

underlies our semi-empirical theories require to be interpreted

[4].

When steady drainage experiments were pursued to high

flow rates (and hence high liquid fraction) a new phenomenon

emerged. The uniform flow, in which the foam structure re-

mained fixed, was replaced by one in which there was a con-

vective motion of the bubbles [5, 6, 7].

For a typical polydisperse foam, the convective motion pro-

gressively deposits the smaller bubbles at the bottom of thecol-

umn, establishing a vertical gradient of bubble size, whichin
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turn suppresses the motion [8]. For a monodisperse foam, the

convective motion continues indefinitely, so this is the usual

objective of study in attempts to understand convection.

In the present paper we present a variation of the now fa-

miliar experiment: the column is tilted away from the vertical.

With such a tilt, convection is observed even at quite small flow

rates. We are able to account for the convection in this case in

terms of a simple theory in which it is seen to be driven by

the transverse variation (across the column) of liquid density,

in equilibrium.

This limited success may offer insight and confidence that

the spontaneous convective instability in a vertical column can

be adequately explained in similar terms. We shall return tothat

objective in a further paper.

The behaviour of the draining tilted foam is reminiscient of

the Boycott effect [9], which describes how the sedimentation

of particles suspended in a fluid is faster in a tilted tube than

in a vertical one. The explanation of this phenomenon [10] is

that in the vertical tube the particles have to move against the

static fluid. When the tube is tilted, the concentration of parti-

cles below the axis of the tube grows and the fluid rises above

the axis. The convection produced helps the particles to sedi-

ment faster. An analogous situation has been found in granular

materials where the flow of grains out of a tube is fastest at

angles between30◦ and45◦ degrees from the vertical [11].

However, although close analogies have been found in many

aspects of the behaviour of foams and granular materials, itis

important to stress that there is no trivial relationship between

them.

Surfactant solution

Flow rate

θ

gravity

ŷ

Y

Z

Fig. 1. A sketch of the convective roll in a tilted tube, showing the

(Y,Z) coordinate system used in the analysis and theŷ coordinate

around the cylinder. The dashed central line is a reference showing the

central axis of the tube. The arrows show the sense of the motion of the

bubbles. Fluid draining into and through the foam moves preferably in

the vertical direction, due to gravity.

2 Experimental procedure and observations

A column of foam was created by blowing nitrogen gas through

a syringe needle into a solution of the commercial detergent

Fairy Liquid, and collecting the bubbles in a glass tube. We

used glass tubes with diameterd =2.05 cm and length 35.5 cm.

The foams were monodisperse with bubble radii ofrb =1.55 mm.

A forced drainage experiment was performed by adding

the same surfactant solution at the top using a Watson-Marlow

505S peristaltic pump, which allows increments of 0.03 ml/sin

flow rateQ. The result was observed for a range of tilt angles

up to25◦.

The bubble motion that is observed is the simple convec-

tive roll indicated in figure 1. The downward-travelling side
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Fig. 2. The velocity of the surface bubbles (each point represents an

average of six measurements) in different positions aroundthe surface

of the tube, withŷ = −
1

2
π cm corresponding to the lower boundary

of the tube. The input flow rate was fixed atQ = 0.408 ml/s. Bubbles

at ŷ = 0 start to move upwards at angles above12◦. The width of

the wet region decreases when the tube is tilted, while the speed of

bubbles above the centreline is fairly constant at each angle, which is

consistent with the plug flow observed visually. Error bars have been

omitted for clarity.

is visibly “wetter”, that is, of higher liquid fraction, andtrav-

els with velocities that are of the order of 1cm/s. The upward-

travelling side has a lower velocity of the order of a few mm/s.

Various measurements of surface bubble velocities were made,

confirming the visual observation that the dry foam undergoes

plug flow, while the wet foam is continuously sheared (figure

2).

This type of motion has also been observed in the case of

the vertical tube, but in recent work we have also found a cylin-

drically symmetric form of convection in which all the surface

bubbles move downwards together and the return motion is in

the centre of the tube [7].
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Fig. 3. The upward velocity of bubbles in the dry foam in rela-

tion to the tilt angleθ. The data are fitted to the functionv(θ) =

vlim tanh((θ−θc)/θ0) and each curve labeled with the fixed flow rate

at which the data were taken. For small angles, an increase inθ leads

to an increase in velocity. At higher angles, we see that for low flow

rates the velocity reaches a plateau,vlim, while for higher flow rates,

the bubbles slow down slightly. In fitting the data to the ansatz given in

(1), we ignore these points, which only affects flow rates higher than

about 1 ml/s.

For the present case of the tilted tube, we observe only the

simple roll described above, and for further analysis we char-

acterise it by the velocity of plug flow on the dry, upper, side.

Figure 3 presents data for a range of flow rates. It is evident

that there is in each case a critical angleθc below which there

is no convection. The velocity of convection increases rapidly

when the angle is increased from this critical value, and eventu-

ally saturates. Of course this description does not apply infull

at higher flow rates, for which the critical angle goes to zero.

The three parameter fitting function

v(θ) = vlim tanh((θ − θc)/θ0) (1)
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Fig. 4. The limit velocityvlim reached by the convective roll in a tilted

tube varies linearly with flow rate. Extracted from the data of figure 3.

was found to be a convenient representation of the data: we

make no claim for this particular analytic form, although the

implied initial linear increase ofv(θ) seems reasonable.

In this way we reduce the data to two key dependencies,

those of limiting velocityvlim and critical angleθc on flow rate

Q. These are shown in figures 4 and 5. The limiting velocity is

linear in flow rate, to within a good approximation. The critical

angle shows a roughly inverse relation with flow rate: the curve

included in figure 5 is fitted using

θc = const. × Q−3/4, (2)

as suggested by the theory which follows. The fit appears to be

satisfactory.

It must fail in the limit of highQ, since there is spontaneous

convection forθ = 0 at some critical value ofQ, as previously

observed.
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Fig. 5. The motion of bubbles in the tilted tube begins, for given flow

rateQ, when the angle of tilt is increased beyond a critical valueθc.

The solid line is a fit to the form given in (17),θc ∝ Q−3/4, with a

coefficient of proportionality of3.17± 0.17. The inset shows the data

on log scales.

3 Theoretical analysis

3.1 Liquid fraction profile

Drainage in a vertical tube at low flow rates entails a distribu-

tion of liquid fraction which is cylindrically symmetric about

the tube axis. In the elementary theory it is treated as a con-

stant. This symmetry is broken by tilting the tube (figure 1).

In the absence of convective motion, and even in this case over

most of the length of the tube, there is notransverse flow of liq-

uid. A transverse variation of liquid fraction is produced by the

relevant component of gravity,g sin θ. This is the same varia-

tion that is familiar in the vertical profile of static equilibrium

in a vertical tube [12] as follows. (This is a special case of the

standard drainage theory.) For the surfactant used in theseex-

periments, the so-called channel-dominated drainage equation

is an appropriate model of the drainage process.
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Using the variables defined in the Appendix, the cross-sectional

area of the Plateau borderA obeys

ρg sin θ A2 +
Cγ

2

√
A

∂A

∂Y
= 0, (3)

whereY is as defined in figure 1. The solution is

A(Y ) =

[

ρg

Cγ
sin θ (Y − Y0)

]

−2

(4)

where the constantY0 is as yet undetermined. The liquid frac-

tion is then

Φl(Y ) =
K1

sin2 θ
(Y − Y0)

−2 (5)

with K1 = c1/V
2/3

b (Cγ/ρg)2 ≈ 8.96 × 10−7m2. As is in-

tuitively obvious, an excess of liquid gathers at the lower side

of the tube. If this were to reach the maximum density of a

foam (corresponding to the rigidity loss or melting transition)

the present theory fails and this should be a consideration at

high flow rates.

Again it appeals to intuition that this density variation in-

duces the convective motion; an explicit argument will be given

below. In order to do so it must overcome the yield stress of the

foam, below which it behaves as an elastic solid [1]. It will be

the competition between these two factors that will determine

the critical angleθc.

At this point the cylindrical profile of the tube is a consid-

erable complication, so we approximate it for the purposes of

the present preliminary theory by substituting a square cross

section, of sided, with two sides normal to the transverse di-

rection. This enables us to write the liquid fraction (and hence

the flow rate) as a function ofY only, and perform the nec-

essary integrations analytically, to obtain the total (input) flow

rateQ. That is, we integrate the flow rate in theZ direction,
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Fig. 6. The forces acting on a small element of the foam. The weight

of the foam,ρgΦl, is balanced by the pressure gradientp′ and the

shear stresses on the wall.

QZ = ρg cos θ A2/(3ηlf), across the width of the foam to get

the total flow rate:

Q =

(

c2d

rb

)2
1

d

∫ 1

2
d

−
1

2
d

QZdY (6)

where the factor of(c2d/rb)
2 represents the number of Plateau

borders in any one cross-section of the tube withc2 an un-

known geometric constant. Thus

Q =

(

c2d

rb

)2
1

d

∫ 1

2
d

−
1

2
d

dY
ρg cos θ

3ηlf

[

Cγ

ρg sin θ (Y − Y0)

]4

= c2

2K2

cos θ

sin4 θ

[

1

(Y0 − 1

2
d)3

− 1

(Y0 + 1

2
d)3

]

(7)

to findY0(Q) implicitly. The prefactor isK2 = d(Cγ)4/9ηlf(ρg)3r2

b ≈

2.03 × 10−4ml2/s.
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3.2 Stress profile

We now consider the forces acting on an element of the foam

as shown in figure 6. We assume that the solution does not de-

pend on vertical positionZ (except for neglected end effects).

In equilibrium, the weight of the foam is balanced by both the

vertical pressure gradientp′ and the gradient of shear stress on

the tube wall. The condition on the stressS must therefore take

the following form:

dS

dy
= ρgΦl(y) + p′. (8)

Here it is convenient to assume that the variation of liquid frac-

tion Φl(y) is approximately linear and writeΦl(y) = Φl(0) +

y
dΦl

dy

∣

∣

∣

∣

y=0

, where we have choseny = 0 as the centre of the

tube. Solving

dS

dy
= ρg

(

Φl(0) + y
dΦl

dy

∣

∣

∣

∣

y=0

)

+ p′ (9)

gives

S = (ρgΦl(0) + p′) y +
1

2
ρgy2

dΦl

dy

∣

∣

∣

∣

y=0

+ const. (10)

The integration constant is found by imposing zero stress,S =

0, aty = ± 1

2
d, corresponding to the assumption of no friction

at the wall. This results in

S =
ρg

2

dΦl

dy

∣

∣

∣

∣

y=0

(

y2 −
(

d

2

)2
)

. (11)

The maximum stress amplitude is thus given by

max|S| =
1

8
ρgd2

∣

∣

∣

∣

∣

dΦl

dy

∣

∣

∣

∣

y=0

∣

∣

∣

∣

∣

. (12)

The liquid fractionΦl is directly proportional to the Plateau

border areaA, according to standard drainage theory, as in the

Appendix. In the tilted tube,y is replaced withY . Φl(0) is the

liquid fraction at the centre of the foam. Therefore, as in (4),

max|S| = K3 sin θ (Φl(0))3/2 (13)

with K3 = 0.1(ρgd)2V
1/3

b /(Cγ) ≈ 1086N/m
2.

Now, consider the foam to have a yield stressS0 which de-

creases with liquid fraction,S0 = S00(1−Φl/Φc
l )

2 ≈ S00(1−

Φl(0)/Φc
l )

2 [13], whereΦc
l is the critical liquid fraction of 36%

at which the bubbles separate (the rigidity loss transition). S00

is approximately constant for small values ofθ. At the onset of

convection we have that

S0 = max|S| = K3 sin θc (Φl(0))
3/2

. (14)

For small anglesθc ≪ 1, this results in

θc ≈ S00

K3 (Φl(0))
3/2

(

1 − Φl(0)

Φc
l

)2

. (15)

The input flow rate (7) may be related to the liquid fraction

in the centre of the foam column from (4),Φl(0) = K1/(sin θ Y0)
2.

So (15) gives an implicit relationship for the critical angleθc in

terms of flow-rateQ.

To compare with the experimental data, we compute this to

leading order. We expand the expression forQ to give

Q ≈ c2
2
K2

sin4 θ

3d

Y 4
0

=
3dc2

2
K2

K2
1

(Φl(0))
2 (16)

Therefore

θc ≈ S00

K3

(Φl(0))
−3/2 ≈ S00c

3/2

2
(3dK2)

3/4

K3K
3/2

1

Q−3/4. (17)

We choose a value ofS00 = 0.06γ/rb [13], allowing us to

fit the experimental data through the geometric constantc2.

We find a value ofc2 = 3.96, giving θc ≈ 3.17Q−3/4. This

is shown with the experimental data in figure 5. It seems ex-

tremely satisfactory within this range of data.

4 Outlook

We have presented experimental data for convective bubble

motion in a tilted tube, together with a theoretical analysis for



Cox, Alonso, Weaire, Hutzler: Convective bubble motion in atilted tube 7

the onset of the motion. While this is clearly a special case of

convection in foams, it is nevertheless an important first step

in being able to give a theoretical justification for the phe-

nomenon.

An understanding of convection is necessary to be able to

take steps to reduce or eliminate it. An industrially important

example is that of the flotation process, in which ore is sepa-

rated in a foam undergoing forced drainage [14, 15]. The ore is

carried up, out of the gangue, with the foam, and then collected.

Were the yield stress to become low enough in some part of the

foam, either through increases in liquid fraction, flow rateor

bubble size, then convective motion would cause the ore to be

redistributed throughout the foam and the yield would drop.

The motion is, of course, caused by gravity, and prevents

the study of uniformly wet foams on earth. The current gen-

eration of microgravity facilities (parabolic flights, rockets and

the International Space Station) may therefore allow foam ex-

periments and theory [16, 17] to move beyond the limit of low

liquid fraction where we can demonstrate a fair level of under-

standing and a number of predictive guides for their behaviour.
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Appendix

Our theoretical model uses the channel-dominated foam drainage

equation for rigid interfaces, appropriate to the detergent used

in the experiments [1, 2, 18]. It relates the cross-sectional area

of the Plateau bordersA to their position(y, z) (with z verti-

cally downwards andy horizontal) in the foam at timet. The

balance of forces is between gravity, viscous drag on the walls

of the Plateau borders, and the pressure gradient between re-

gions of different liquid fraction.

Liquid density, viscosity and surface tension are denoted

by ρ, ηl andγ respectively. The acceleration due to gravity isg

and the bubble volume isVb. The liquid fraction of the foam is

directly proportional to the areaA [1]:

Φl =
c1

V
2/3

b

A. (18)

The constant of proportionalityc1 is, although dependent upon

the precise structure of the foam, close to 5.35, and we shall

use that value here.

In its two-dimensional form [19], the drainage equation can

be written

∂A

∂t
+ ∇.Q = 0 (19)

where the flow rateQ = (Qy, Qz) is

Q =
1

3ηlf

(

−γC

2

√
A

∂A

∂y
, ρgA2 − γC

2

√
A

∂A

∂z

)

(20)

where the geometric constants aref ≈ 50 andC2 = 0.16 .

For a tube of foam that is tilted at an angleθ, we define

Z andY to be the co-ordinates along and perpendicular to the

axis of the tube:

Z = z cos θ + y sin θ and Y = −z sin θ + y cos θ. (21)
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For this tilted geometry the flow rates in (20) are writtenQ =

(QY , QZ), where

Q =
1

3ηlf

(

−ρgA2 sin θ − γC

2

√
A

∂A

∂Y
,

ρgA2 cos θ − γC

2

√
A

∂A

∂Z

)

(22)

At constant flow rate (steady drainage) throughout the foam,

the time derivative ofA may be neglected, in which case (19)

represents the balance of flow rates in each of the two direc-

tions. The boundary conditions on these flow rates are that in

the Y direction the flow rate is zero atY = ± 1

2
d (the tube

walls) and in theZ direction the flow rate of liquid at top and

bottom is equal to the input flow rate.

Since there is no flow in theY direction at the sides of the

foam, there can be no flow in this direction anywhere. Thus all

liquid motion is in theZ direction, parallel to the tube walls,

andA = A(Y ) satisfies eqn. (3).

We take typical values of the material parameters through-

out: ρ = 1000kg/m
3, g = 9.8m/s

2, γ = 0.025N/m and

ηl = 0.001Ns/m
2.


