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Abstract. We use the Surface Evolver to determine the shear modulusG of a dry 2D

foam of 2500 bubbles, using both extensional and simple shear. We examineG for a range

of monodisperse, bidisperse and polydisperse foams, and relate it to various measures of the

structural disorder of each foam. In all cases, the shear modulus of a foam decreases with

increasing disorder.

PACS. 47.57.Bc Foams and Emulsions – 83.80.Iz Emulsions and Foams– 83.50.Jf Ex-

tensional flow and combined shear and extension

1 Introduction

An aqueous foam is collection of gas bubbles con-

tained within a continuous liquid network [1]. De-

spite its fluid composition, it shows an elastic re-

sponse at low strains, more usually associated with

solids. At higher strains, topological changes oc-

cur in the bubble structure, leading to plastic de-

formation and yielding. Here we study the shear

modulus of these complex fluids, which character-

izes the elastic response, and show how it depends

upon the disordered structure of the foam.

Princen’s [2] calculation of the shear modulus

of a hexagonal 2D dry foam is the basis for this

work. The small-strain, static shear modulusG is

defined for simple shear by

G =
dτxy

dǫ

∣

∣

∣

∣

ǫ=0

(1)
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whereτxy is the shear stress andǫ the strain. Here,

we restrict to the dry limit, so the shear modulus

of a hexagonal foam of bubbles with areaA can

be written directly in terms of the surface tension

of the films,γ, and either the radiusR of a circle

of equivalent area or the lengthL of the sides of

the hexagons:

Ghex =

√√
3

2π

γ

R
=

1√
3

γ

L
=

√√
3

2

γ√
A

(2)

This result provides a fair estimate of the shear

modulus of many disordered 2D foams, and is in

fact exactfor any polydisperse hexagonal system

[3], with L andA replaced by their system-wide

averages̄L andĀ.

Here, we show how (2) must be modified to

allow the accurate prediction of the shear modulus

of disordered 2D foams, including those that are

bidisperse or polydisperse in bubble area.

Kruyt [4] recently gave a number of micro-

mechanical predictions forG which depend upon
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the distributions of bubble areas and edge lengths.

Although that work included comparison with a

simulation, our motivation here is in part to pro-

vide comprehensive data to improve models of this

kind, and we evaluate the success of these models

in relation to our data below.

Previous numerical work on calculating shear

moduli for 2D foams is summarised in [5], for pe-

riodic foams in both simple and extensional shear.

In addition, Weaire et al. [6] show thatG decreases

with increasing disorder in the number of sides,

based upon 64-bubble polydisperse foams under

extensional shear. These authors conjectured that

no 2D monodisperse foam has higher shear mod-

ulus than the hexagonal honeycomb, and Kraynik

et al. [3] extended this conjecture to polydisperse

hexagonal systems.

However, we can find little systematic data mea-

suring shear modulus as a function of structural

disorder, although such work does exist for 3D foams

[7, 8]. Yet 2D foams, such as those squeezed be-

tween glass plates, are still of interest. They pro-

vide a simple system for the study of rheology,

where benefits include the possibility to measure

the deformation and position of each constituent

element (bubbles) over time.

We first describe the creation of the foam struc-

tures, then analyse their structural statistics at equi-

librium in §3. In §4 we calculate three values of

shear modulus for each foam and discuss the vari-

ation of the average with disorder.

2 Foam Creation

We use the Surface Evolver [9] in circular arc mode,

so that all edges are accurately represented as arcs

of circles. Foams are generated using a Voronoi

procedure based upon randomly scattered(Pois-

son)points. The foam samples are periodic with

total area equal to one and theN = 2500 bubbles

each have fixed area, which is set as part of the

initialization of the structure.

For each foam we first find a minimum of the

total edge lengthE (equivalent to energy when

multiplied by surface tensionγ, which is here taken

equal to 2), allowing T1 neighbour-switchingevents

[10] where an edge length shrinks below a critical

value. This critical value is randomly chosen in the

range[0.001 : 0.004], where the upper limit is ef-

fectively fixed by the condition that no T1s must

occur during shearing - it is about one-third of the

average edge length.

Each sample is then annealed to drive the foam

towards a deeper energetic minimum by applying

large amplitude simple shear deformations to trig-

ger T1 events,with the aim of creating isotropic

structures that are more representative of real foams.

(Extension-compressioncycles, as used by Kraynik

et al. [7] in 3D, lead to a high degree of anisotropy,

and were therefore avoided). Step strains of +1/4,

-1/4, -1/4 and +1/4 are performed in thexy di-

rection, with edge-length minimising iterations be-

tween each step, and then repeated in theyx direc-

tion. Both cycles are repeated five times, and then

the foam is converged to equilibrium, performing

T1s where necessary.

The components of stressτ are found by inte-

grating the tension forces along each edge [11]:

τ = γ

∫

edges

t ⊗ t dL, (3)

wheret denotes the tangent to the edge. Note that

the total area of the foam is set to one. For the spe-

cial case of the circular arcs used here, we first cal-

culate the radius of curvatureRc of each edge and

then the orientationsθ1 and θ2 of its endpoints.

Then
(

τxx τxy

τyx τyy

)

= γ
∑

edges

∫ θ2

θ1

(

cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)

Rcdθ

= γ
∑

edges

Rc

2

(

∆+ ∆2

∆2 ∆−

)

(4)
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where

∆± = θ2 − θ1 ± cos(θ1 + θ2) sin(θ2 − θ1) (5)

and

∆2 = cos2 θ1 − cos2 θ2. (6)

The sample is sheared in order to reduce the

off-diagonal componentτxy and the normal stress

τxx − τyy towards zero. Simple shear is applied

first, until |τxy| < 0.02, and then extensional strain

is applied, until|τxx − τyy| < 0.1, and the cycle

repeated. The energy of the sample is again re-

duced to its minimum value. This represents the

starting point for the calculation of shear modulus.

2.1 Disorder

The disorder of the foam, irrespective of the dis-

tribution of bubble areas, is measured through the

second moment of the distribution of the number

of sides of each bubble:

µ2(n) =
∑

n

p(n)(n − 6)2 (7)

wherep(n) is the fraction of bubbles withn sides.

The result of annealing the foam is to reduce the

value ofµ2(n).

Further measures of disorder include the sec-

ond moment of the area distribution:

µ2(A) =

(

A

Ā
− 1

)2

, (8)

where the bar denotes averaging (Ā = 0.0004 is

the average bubble area), and the second moment

of the edge length distribution:

µ2(L) =

(

L

L̄
− 1

)2

. (9)

The total perimeter of the foam,E, gives the aver-

age edge length,̄L = E/(3N)
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Fig. 2. Histogram (21 bins) of normalised bubble areas

for the polydisperse foam in figure 1(d).

We examine over 180 different, disordered, foams,

and first categorise them according to the disper-

sity in bubble areas. Examples of the foams sim-

ulated are shown in figure 1. A coordinate system

(x, y) is defined to be parallel to the edges of the

unit cell.

The samples arising from the Voronoi proce-

dure are naturally polydisperse (figure 1(d)). A typ-

ical area distribution is shown in figure 2.

We make disorderedmonodisperse foams (fig-

ure 1(a)) by equating the areas of the bubbles in a

polydisperse foam, so thatA = Ā = 0.004.

Bidisperse foams with area ratioar = 0.2, 0.3, . . . , 0.8

were formed from a polydisperse sample by as-

signing those bubbles with area greater than the

average (about 45%) to have areaA1 and the rest

to have areaA2 = arA1, then scaled to have the

sum of the areas equal to one. Examples are shown

in figure 1(b) and (c). The parameterar is related

to the disorder parameterµ2(A) according to

µ2(A) =
k + (1 − k)a2

r

(k + (1 − k)ar)2
− 1 (10)

wherek is the proportion of bubbles with areaA1,

here about 0.45. Thus lowar corresponds to large

µ2(A) and vice versa, withar = 1 denoting monodis-

persity. In this case, it is also straightforward to

relatear to alternative measures of area disorder,

such asR21 = 〈R2〉/〈R〉 = 1/
√

π
∑

Ai/
∑√

Ai,

whereR is the equivalent circle radius.
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Fig. 1. Examples of the 2D periodic foams considered here, defining thex andy coordinate axes. (a) Monodisperse

foam, withµ2(n) = 0.511. (b) Bidisperse, withar = 0.7, µ2(n) = 0.454 andµ2(A) = 0.032. (c) Bidisperse,

with ar = 0.3, µ2(n) = 1.174 andµ2(A) = 0.329. (d) Polydisperse, withµ2(n) = 0.989 andµ2(A) = 0.263.

These foams are taken as representative whenever specific distributions are required in the following.

3 Structure

We compare the values ofµ2(n), µ2(A) andµ2(L)

for these different foams in figure 3, and examine

how the average edge length varies with each of

these parameters in figure 4 (recall that the aver-

age area is constant).Precise correlations are hard

to find, however. Recall the example of a poly-

disperse hexagonal foam, which has area disorder

(µ2(A) non-zero) but no disorder in the number

of sides (µ2(n) = 0). Here, we have the opposite:

monodisperse foams, with no area disorder, show

a range of values ofµ2(n).

Monodisperse foams span a range inµ2(n) of

about 0.3, which reflects the range of critical lengths

used to trigger T1 events in the foam’s evolution,

and within this rangeµ2(L) increases linearly. As

the area-ratioar of a bidisperse foam is reduced,

the value ofµ2(L) at givenµ2(n) decreases. On

average, however, there is an increase ofµ2(L)

with decreasingar, reflecting the increase inµ2(n)

with increasing area dispersity. For each value of

ar the data span a range inµ2(n) of about 0.3, as

for monodisperse foams. Polydisperse foams are

clustered aroundµ2(n) = 1.2, µ2(A) = 0.3 and

µ2(L) = 0.13, with no clear trends emerging.

The average edge length of a foam spans a nar-

row range for givenµ2(A), and decreases linearly

from above the honeycomb value. For given area

dispersity,L̄ increases almost linearly withµ2(n).

For polydisperse foams, the value ofL̄ is always

close to0.0122.
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Fig. 3. Comparison of the disorder parameters. The largest values of each disorder parameter are found for bidis-

perse foams with small area ratio. The honeycomb values are given by open squares.
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Starting from a regular hexagonal foam, we

performed a single T1 and re-equilibrated the struc-

ture to find the difference in average edge length:

∆L̄ = 0.01416/(3N). This allows us to give a

prediction of the increase in edge length with dis-

order (cf [12, eq. 20]) in a monodisperse foam:

L̄ =

√

2Ā

3
√

3
+

∆L̄

∆µ2(n)
µ2(n)

= 0.620
√

Ā + 0.00118µ2(n). (11)

This line overestimates (see figure 4) the average

edge length when there is greater disorder.

The distributions of edge orientations and lengths

are also calculated for each foam. The orientation

θ of a edge is defined as the angle that the line

joining the end points of the edge makes with the

x−direction, in the range[0, π]. For a fully isotropic

structure, the distribution of orientationsθ should

be constant, but as figure 5(a) shows this is not

quite the case for these foams, despite the use of

periodic boundary conditionsto eliminate edge ef-

fects.

The distribution of normalized edge lengths is

shown in figure 5(b). As the area disorder increases,

the peak of the distribution decreases below one

and a tail develops, indicating that a few longer

edges appear. Here, the honeycomb case would give

a delta function atL/L̄ = 1.

4 Shear Modulus

We now seek the value ofG as a function of the

disorder parameters,G(µ2(n), µ2(A), µ2(L)). For

the honeycomb we haveGhex = γ
√√

3/(2A) =

0.931γ/
√

A, from (2), which provides a reference

state atµ2(n) = µ2(A) = µ2(L) = 0.

The shear modulus is calculated in three ways,

described below, with a strain ofǫ = 0.0005 through-

out. We checked that the results do not depend

upon this value of epsilon, and that no T1s occur

during the quasi-static evolution.

The stressτ0 in the rest state (ǫ = 0) is first

recorded. Then the unit cell is sheared in thexy

direction and the shear modulus

Gxy =
τxy − τ0

xy

ǫ
, (12)

is found. The foam is returned to the rest state, re-

converged, and then sheared in theyx direction to

give a valueGyx. The foam is again returned to

the rest state and re-converged, and then an exten-

sional strain step in thexx direction is performed

to give [1, 4]

Gxx =
(τxx − τyy) − (τ0

xx − τ0
yy)

4ǫ
. (13)

Finally, a simple average is taken of these three

values.

Although for an isotropic medium all three should

be the same [13], the variation inG is further evi-

dence of the slight anisotropy of the foams. How-

ever, an error bar drawn from the smallest to the

largest value ofG is still smaller than the point

size in figure 6, so they are omitted.

Figure 6 shows that scaling the shear modulus

purely on the basis of the average bubble area does

not give a high degree of accuracy. The values of

G are all below the honeycomb value and differ by

up to 12%.

In general,G decreases almost linearly with

increasing side number disorder,µ2(n). Bidisperse

foams have a shear modulus that decreases from

the honeycomb value with increasing disorder in

the number of sidesn, the bubble areas, and the

edge lengthsL. Here, the most disordered foams

are the bidisperse ones withar = 0.2. Polydis-

perse foams are clustered in a fairly narrow range

of G around 0.84, and within that range there is not

a clear trend. They show the lowest shear moduli

for given disorder.

The clearest correlation is that betweenµ2(n)

andG: roughlyG = Ghex − 3.95γµ2(n)/
√

Ā. It

is a sharper decrease than that of Weaire et al. [6],

who findG ≈ Ghex − 2.2γµ2(n)/
√

Ā. The ratio
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Fig. 4. The average edge length, normalized by
√

Ā = 0.02, versus each of the disorder parameters. Here the

honeycomb value does not provide a lower bound.
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Fig. 5. (a) Representative histograms (21 bins) of edge orientation show that a monodisperse foam has the greatest

deviation from the isotropic case, while a polydisperse foam is within 20% of the isotropic value. (b) In the case

of edge length (normalized by average edge length), there isa subtle change in the distribution asµ2(A) increases:

the peak in edge length becomes higher and a tail appears.

of foam energy to shear modulus, shown in fig-

ure 7, is above the honeycomb value and increases

slightly with increasingµ2(n).

The shear modulus appears to stop decreas-

ing at high disorder, corresponding to bidisperse

foams with small area ratioar. This effect may be

attributable to the decoration of a foam of large

bubbles with small bubbles, which does not change

G; in the ordered case of a hexagonal foam deco-

rated with a small three-sided bubble at each three-

fold vertex,G should decrease by a factor of
√

3

from the honeycomb value [6, 3].

The following micro-mechanical predictions of

G, due to Kruyt [4], are based upon the distri-

butions of bubble areas and edge lengths respec-
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Fig. 7. The ratio of foam energy to shear modulus is

about 5 to 10% above the honeycomb value (given by

an open square), and increases slightly with increasing

disorder in the number of sidesn.

tively:

GA =
γ√
Ā

√

2

3
√

3

[

1

2
+

∫ ∞

0

p(A)

√

A

Ā
dA

]

(14)

≈ γ√
Ā

4

√

3

4

[

1 − 1

12
µ2(A)

]

(15)

GL =
3

4

γ

Ā

∫ ∞

0

p(L)

[

2L̄2 + LL̄ + 3L2

2L̄ + L

]

dL(16)

≈ γL̄

Ā

3

2

[

1 +
2

9
µ2(L)

]

(17)

where the approximate forms are for narrow dis-

tributionsp. In the latter case, the assumption of

affine motion means that the shear modulusGL

over-predicts the true value (eq. (17) represents a

small correction to the average edge-length data

shown in figure 4 multiplied by a factor of 1.5).

Eq. (15) is shown on figure 6, where it is also seen

to overestimate the shear modulus.

For each foam, we also measure the change in

both edge orientation (figure 8) and edge length

(figure 9) during the strain step.Note that for an

ordered hexagonal foam there is no change in edge

orientation under extensional shear parallel to one

of the edges. Under simple shear, the three-fold

vertices rotate and this is no longer the case.

The change in edge orientation is close to Gaus-

sian (fitting these distributions to a Gaussian gives

errors of only a few percent), with negative mean

for shear in thexy direction, positive mean for

shear in theyx direction and zero mean for exten-

sional shear. The peak of the distribution is largest

for the monodisperse foam. The standard deviation

is greater for extensional shear, and the largest val-

ues are found for the bidisperse foam withar =

0.3.

The normalized change in edge length is sim-

ilar in all three cases, with a symmetric bi-modal

distribution; the width of the distribution is approx-

imately twice as great for extensional shear.

5 Summary

We report values of shear modulusG for dry, dis-

ordered, 2D foams which are almost isotropic. All

results are consistent with a general picture of de-

creasing shear modulus with increasing disorder.

However, a functional form that relatesG to the

disorder parametersµ2(n), µ2(A) andµ2(L), as

well as system wide averages such as that of edge

length,L̄, remains elusive.

These disorder parameters are weakly but posi-

tively correlated. The average edge length decreases

with increasing disorder, except for foams which

have regions of hexagonal ordering.

Further complications include the introduction

of liquid into the foam, something which is always

present in real foams. For low liquid fraction, the

results presented here are expected to be appropri-

ate [14], but once the liquid fraction passes a value

of about 5%, the shear modulus should decrease as

four-sided Plateau borders appear.
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Fig. 8. Representative histograms (21 bins) of the change in edge orientation for simple shear in bothxy (solid line)
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