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Abstract

The viscous froth model is used to study the evolution of a long soap film which is sheared

by moving its end point at a constant velocity in a direction perpendicular to the initial film

orientation. Film elements are thereby set into motion as a result of the shear, but these moving

film elements then experience viscous dissipation. This simple scenario enables analysis of the

transport of curvature along the film, which is important in foam rheology, in particular for

energy-relaxing ‘topological transformations’. Curvature is shown to be transported diffusively

along films, with an effective diffusivity scaling as the ratio of film tension to the viscous drag

coefficient. Computed (finite-length) film shapes at different times are found to approximate

well to the semi-infinite film and are observed to collapse with distances rescaled by the square

root of time. The tangent to the film at the end point reorients so as to make a very small

angle with the line along which the film end point is dragged, and this angle decays roughly

exponentially in time. The numerical results are described in terms of a simple asymptotic

solution corresponding to an infinite film that initially contains a right angled corner.

Keywords: Viscous froth model, Curvature-driven motion, Diffusion of curvature, Foam

rheology, Surface Evolver, Asymptotic analysis
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1 Introduction

Flowing foams occur in a variety of applications such as oil recovery, froth flotation and microflu-

idics, making them of research interest [1, 2, 3]. A detailed understanding of foam rheology

requires description of foam structure on the bubble scale. This has been achieved in the

quasistatic slow flowing limit, for structures in mechanical equilibrium (at a minimal energy

state [2]). In faster foam flows however, the structure departs from quasistatic mechanical

equilibrium and dissipative processes become significant [4].

Various models have been developed to simulate the rheology of foams, such as the bubble

model [5], the vertex model [6] and the viscous froth model [4, 7]. Among such models, the

viscous froth model has proven to be a powerful tool to simulate the rheology of dry foams,

predicting realistic bubble shapes and agreeing with experimental results for “2-dimensional”

foam flows in channels i.e. foam monolayers confined between upper and lower plates [7, 8, 9]. In

this geometry, a foam film can be represented mathematically by a curve in the “2-dimensional”

plane. The viscous froth model [3, 7, 8, 9, 10, 11, 12, 13] applied to such “2-dimensional” systems

is based on a force balance between the pressure difference across the two sides of the film (∆P ),

the film tensions (γ) and the viscous drag on each film element (the drag being associated with

moving the films over the confining upper and lower plates):

λv = ∆Pn− cγn (1)

where λ is the viscous drag coefficient per unit length of film, v is the velocity of a film element,

n is the unit vector normal to the film element, and c is the “2-dimensional” film curvature.

One particularly attractive feature of the viscous froth model over others is its capabil-

ity to account for film curvatures which are not simply arcs of circles. This feature is not

strictly necessary when simulating foams which are slowly sheared, i.e. in systems with low

capillary number (the ratio of the imposed foam deformation rate and the relaxation rate), as

the viscous term in equation 1 would then be negligibly small, reducing the equation to the

Young-Laplace law and thus the curvature of each film would simply be well represented by a

constant ∆P/γ. As velocities increase however, curvature deviates from this value and tends
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to vary with position.

We motivate this work by considering a periodic regular hexagonal array, the hexagonal

honeycomb structure. The pressures in every bubble are identical and thus films in the slowly

sheared limit do not have any curvature. However, upon fast shear (high capillary number), the

viscosity is important and curvature becomes spatially non-uniform, complicating the shape of

the films even in the case of the hexagonal honeycomb structure [4, 13, 14].

Elongated bubbles then arise [15] because bubble neighbour exchange transformations, so-

called T1 topological transformations, which tend to relax film energy, are suppressed. Films

are required to meet threefold at vertices, and a T1 is produced by moving two vertices together

until the point at which they collide. The velocity of a vertex is determined by the curvatures of

the adjoining films [13]. In the hexagonal honeycomb case (with equal pressures in all bubbles)

this can be expressed as1:

vv = −2

3

γ

λ
Σ3

i=1
ci(0)ni (2)

where vv is the velocity of the vertex, ci(0) is the curvature of film i at the vertex (i = 1, 2, 3),

and ni is the normal to the film i.

In the hexagonal honeycomb case, for any finite λ, it is clearly necessary to have film

curvature in order to set vertices in motion (and ultimately to induce a T1). Hence a relevant

question is to ask how rapidly curvature can be transported along foam films in a sheared

foam, since curvature is injected into the film by the shear, but the T1 relies on transport of

the curvature along the film. The purpose of this paper is therefore to consider transport of

curvature for a highly simplified yet generic case, the shearing of a single semi-infinite film (see

Section 2). We will compare computed simulation data (Section 3) with a late time asymptotic

solution (Section 4). The asymptotic solution can be analysed further to gain insights into the

behaviour of the system (Sections 5–6). Conclusions are offered in Section 7.

1Note that according to equation 2, only in the limit as λ → 0 does it become possible to displace the
vertex without curvature. For a hexagonal foam, this corresponds to the ‘slow displacement’ quasi-static limit
of Princen [16].
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2 Description of the system to be studied

Consider a semi-infinite foam film that is initially straight, with no pressure drop across it. One

of its endpoints is then moved perpendicular to the film orientation with a velocity vshear (see

figure 1).

Then, since γ/λ has the units of a diffusivity D, it follows that D/vshear is a length scale

and D/v2shear is a time scale2. We make lengths and times dimensionless on these scales and

curvature dimensionless on the scale vshear/D.

Since there is no imposed pressure difference, equation 1 then becomes

(

dX

dt

)

Θ

= −κn, (3)

where X is the dimensionless location of a film element, t is the dimensionless time, Θ labels

a material point, κ is the dimensionless curvature and n is the unit vector normal to the film

surface. This then corresponds to motion by mean curvature [19], a model which has also been

used in a different physical context to describe grain growth [13, 20].

For dimensionless times t ≪ 1, it turns out that the film turns through a very small angle

over its entire length. However for times t ≥ O(1) the film turns through an appreciable angle

and the end point of the film meets the horizontal boundary in figure 1 at an angle significantly

different from π/2. In fact the meeting angle decays very rapidly as t increases – a phenomenon

which we will investigate later. One of the reasons for analysing the behaviour of this angle is

that (in our dimensionless system) its cosine represents the force that must be applied to the

film endpoint to drag the film along. This is also (again in our dimensionless system) the rate

of working by the dragging force, some of that work being stored as an increased film length,

and some of it being dissipated viscously.

There is a well-known solution in the literature for a finite film dragged at both ends, known

as the Mullins finger or the grim reaper [13, 20]. Consider a film of initial length L the end

points of which are both pulled at velocity vpull (perpendicular to the initial orientation of

2Values of λ can be quite difficult to determine and are sensitive to details of a particular experiment [17, 18],
but reference [8] has quoted a value 290 kg m−2 s−1. Taking a film tension γ of say 29 × 10−3 N m−1, gives
diffusivity D of the order of 10−4 m2 s−1. If the film end point is dragged at a velocity vshear of 0.1 m s−1, the
characteristic length scale becomes 10−3 m and and the characteristic time scale would be 10−2 s.

4
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the film) such that the separation of the end points remains unchanged. Making the system

dimensionless on scales as above, the dimensionless initial length is

l =
Lvpull
D

(4)

and the dimensionless velocity of the end points is unity. The final state depends on the initial

length. If l < π, it is a finite segment of reaper propagating at unit velocity (see figure 2). The

angle through which the reaper turns between the symmetry point at its tail and the dragged

end point is less than π/2. On the other hand, if l > π, the solution is an infinitely long reaper

propagating at velocity π/l < 1 (again see figure 2). The reaper turns through π/2 between

the symmetry point at its tail and the end point. The dragged end points move at unit velocity

(hence the reaper becomes stretched infinitely long) in the direction of propagation.

The present case of a dragged semi-infinite film however is rather different. The curved

region of the film is not confined to a fixed lateral distance but rather the curvature extends

over longer and longer lateral distances as time evolves. This means the evolution slows down.

The long time asymptotic state of the semi-infinite film therefore cannot be mapped on to a

reaper. There is however another solution to which it corresponds. This is the case of an infinite

film that initially turns through a sharp right angle corner. This is sketched in figure 3 (and is

analogous to some solutions with initial sharp corners considered by Weaire and McMurry [13]).

Surface tension acts to smooth out the corner and the film immediately evolves into a curve.

This system (of a film that turns through a right angle) becomes the same as the sheared

semi-infinite film provided that the extent of the region over which the curvature is distributed

at any given time t, is considerably less than the distance that the end point of the sheared

semi-infinite film has been moved; thus the end point of the semi-infinite film is extremely far

from the curved region. The end point’s exact location is no longer relevant to determining the

evolution of that curved region – the end point has in effect moved an arbitrarily far distance

away from that region. We shall return to consider this long time asymptotic solution in due

course, but first we consider some (numerical) simulation data at finite time.

5
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3 Simulation of the dragged film

We have simulated the dragged film numerically using Surface Evolver [21]. We cannot of course

represent a semi-infinite film numerically, so we have chosen long finite films of length 40, 100,

and 200 each discretised into segments (with individual segment lengths ranging between 0.01

and 0.05 units). Both ends of the film are displaced with unit velocity, and we used a time

step of 10−4 units to evolve the film shape. The above numerical simulation procedure actually

corresponds to the start up of the reaper problem discussed in Section 2.

At sufficiently early times (see figure 4) there is a straight (vertical) central section of the

film which has not moved significantly. At these early times, either end of the finite film will

be a good representation of the semi-infinite case. The maximum amount of time for which we

can use the finite film to represent the semi-infinite one increases as the film length increases.

For instance, for a film of initial length 40 we could simulate out to time 8 units before the

film midpoint was moved by a distance of 10−6. However for a film of initial length 100 we

could simulate out to time 45 before the film midpoint moved by the same amount, whereas

for initial length 200 we could simulate all the way out to time 180. These simulations however

also become much more expensive as the film length increases – for initial length 40 units, the

run time was 15 minutes (on an i3 CPU, 3.10 GHz), whereas for initial length 200 units, the

run time was 48 hours.

Figure 5 shows data for the curved film shapes at times t equal to 40, 70 and 120 for the

case of an initial film length of 200. The film is drawn on a Cartesian coordinate domain, and

is assumed initially to be at a coordinate location x = 0 whilst covering −200 ≤ y ≤ 0. On the

figure, we only plot the domain −100 ≤ y ≤ 0 and x ≥ 0, so we are only plotting half the film

shape, it being symmetric about the line y = −100.

Our aim is to understand how far curvature is transported along the film as a function of

time, since (as was mentioned in Section 1) film curvature leads (in the case of a foam, as

opposed to that of just a single film) to vertex motion, and vertex motion is a pre-requisite

of any energy relaxing topological transformation in foam. Figure 5 shows (unsurprisingly)

that at longer times curvature has been transported over a longer lateral distance of film (i.e.

transported over a greater distance along the y-axis). There are however some additional

6
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interesting features in the figure.

Even though the ultimate source of the curvature is the imposed motion of the top boundary

(which at time t has displaced to x = t), the maximum of the curvature does not occur at that

topmost point. Indeed sections of the t = 70 and t = 120 curves are almost completely aligned

with the x-axis from x = t (i.e. the film endpoint) down to about x ∼ 40. The region of

maximum curvature is much further back at smaller x values: the figure also shows a zoomed

view of that region. In that zoomed view, we see at time t = 40, that the shape of the film is

qualitatively different either side of the quadrant ‘bisector’ θ = −π/4, i.e. there is asymmetry

between polar coordinate angles −π/2 ≤ θ ≤ −π/4 and angles −π/4 ≤ θ ≤ 0 (contrast

figure 3). When t = 40, the film tends to be more curved for −π/2 ≤ θ ≤ −π/4, but exhibits

a long rather flattened section for −π/4 ≤ θ ≤ 0. As curvature is needed to drive motion here,

the flattened section barely moves (e.g. it displaces comparatively little between times t = 40

and t = 70). By t = 70 however the flattened section has been eroded, and so these film points

are now able to move again. The asymmetry between the polar angles −π/2 ≤ θ ≤ −π/4 and

−π/4 ≤ θ ≤ 0 is much reduced by t = 70, a tendency which increases towards t = 120.

Figure 6 shows data for rescaled film positions – rescaling distances by t1/2 (on the grounds

that diffusive problems often exhibit this type of scaling). These collapse together reasonably

well – although, if we subdivide the solution quadrant into two halves, this collapse tends to

be much better for polar angles −π/2 ≤ θ ≤ −π/4 than for polar angles −π/4 ≤ θ ≤ 0. Given

the (above noted) asymmetry of the t = 40 film in these two angular domains, contrasted with

the near symmetry of the t = 120 film, we do not expect to obtain equally good collapse in

both domains. Nevertheless figure 6 is indicating that curvature is transported out to a lateral

distance (i.e. out to a distance |y| in the figure) of order t1/2 – this is a result we wish to

understand (and we return to it shortly in Section 4).

Figure 7 shows data for the angle ψ at which the film meets the line along which its end

point is dragged (see also the definition sketch figure 1). This is initially π/2 – the film meets

the line at right angles. Very rapidly however the film reorients – at its end point it becomes

nearly parallel to the line along which its end point is dragged.

How rapidly that angle decays to zero in the long time limit is behaviour that we would like

to analyse. The data on figure 7 have been plotted on a log-linear scale, and show a reasonably

7
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straight region on the plot. Thus the angle ψ is decaying roughly exponentially to zero over

time. By fitting the decay data over the (arbitrarily chosen) range 10−4 ≤ ψ ≤ 10−1 to an

exponential, the characteristic decay time turns out to be 2.65 units. The fit is poor at early

times (since early time data were excluded from the fit) but is also poor in relative terms at very

late times (an artifact of the fitting procedure which minimizes the sum of squares of absolute

errors, and hence incurs little penalty from relative errors if ψ is small). Nevertheless the notion

of an exponential fit is a fair approximation to the data: over the range of ψ mentioned above,

the fitting procedure reported rms errors in ψ between the data and the exponential fit of only

5× 10−4. The origin of this rapid near-exponential decay for ψ is another feature that we wish

to understand.

To summarise, Surface Evolver furnishes us with useful simulation data for understanding

the dragged film problem. However to access very long times (and still have a reasonable

representation of the semi-infinite film case), requires the use of very long but finite films in the

simulation and this becomes expensive numerically. What we seek therefore is to understand

the long-time behaviour of the dragged film using an asymptotic approach without relying on

simulations – this is the topic of the next section.

4 A late time asymptotic solution

In what follows we compute the similarity solution for the corner in figure 3, which corresponds

to the long time asymptotic behaviour of a sheared film. This is clearly a solution that is

symmetric under reflection about the bisector of the original corner.

In order to obtain this solution, there are various ways one can parameterise the film. For

instance one could parameterise based on material points or based on arc length along the film

(see Appendix). Here however, a polar coordinate system r̃ vs. θ will be chosen.

Projecting the vector equation 3 onto the radial and angular directions in polar coordinates,

one obtains
(

dr̃

dt

)

Θ

= −κnr̃ (5)

(

dθ

dt

)

Θ

= −κnθ

r̃
(6)

8
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where r̃ is the radial position, θ is the angular position, and nr̃ and nθ are the radial and

angular components of the normal vector n respectively. Furthermore, the radial position of a

film element can be considered to be a function of time and angular position, which itself is a

function of time and material point, i.e. r̃ (t, θ (t,Θ)). Then the following differential equation

holds:
(

dr̃

dt

)

Θ

=

(

dr̃

dt

)

θ

+

(

dθ

dt

)

Θ

dr̃

dθ
. (7)

Assuming that r̃(t, θ) = a(t)r(θ), where a(t) is a scale factor to be determined and r(θ) is

a rescaled radial position, we deduce:

nr̃ =
r√

r2 + r′2
(8)

nθ = − r′√
r2 + r′2

(9)

where r′ denotes the first derivative of r with respect to θ. Moreover since the tangent vector

is just a rotated version of the normal, and since the curvature is simply the derivative of the

tangent with distance along the film projected back onto the normal, we obtain

κ =
1

a
K; (10)

here3

K =
r2 + 2r′2 − rr′′

(r2 + r′2)3/2
(11)

where r′ is as above, and r′′ is the second derivative of r with respect to θ.

Substituting equations 5, 6 and 10 into equation 7 (and using ȧ to denote the derivative of

a with respect to time),

ȧr − Knθ

ar
r′ = −K

a
nr̃. (12)

From equation 12 it is clear that we should choose a =
√
t (thereby confirming the diffusive

nature of the system), from which it follows that

−Knr̃ =
r

2
− Knθ

r
r′. (13)

3Note that κ and K turn out to be negative quantities in the particular sign convention we adopt here.

9
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Further substituting from equations 8, 9 and 11 and rearranging gives

r′′ =
2r2 + r4 + 4r′2 + r2r′2

2r
. (14)

A description r = r(θ) as in equation 14 is convenient near the symmetry line θ = −π/4.

However near the asymptote θ = 0, the value of r should tend to infinity and a more convenient

description then is θ = θ(r); the chain rule gives trivially

r′ = θ′−1 (15)

where θ′ is the derivative of θ with respect to r. Further differentiating with respect to r and

substituting equations 14 and 15 where appropriate gives

θ′′ = −θ′3 2r
2 + r4 + 4θ′−2 + r2θ′−2

2r
. (16)

Equation 14 can be numerically integrated given initial values of r and r′, and may be

switched to equation 16 at any point to continue integrating. Assuming the shearing takes

place in the fourth quadrant (i.e. for −π/2 ≤ θ ≤ 0), the obvious symmetry condition is that

r′ = 0 at θ = −π/4. However the value of r at θ = −π/4 (which we denote as r0) must be

found by a trial and error shooting procedure, on the basis that θ should tend to zero as r tends

to infinity. Results of the numerical integration with varying values of r0 are given in figure 8.

To avoid unnecessary numerical expense, the step size was increased adaptively4. As a result,

the curves shown in figure 8 could be obtained in under 100 steps.

Clearly, the asymptotic angle between the ends of the film is dependent on r0. Too large a

value of r0 leads to films which curve too sharply and turn through more than π/4 between the

symmetry point and the asymptote. Conversely, too small a value of r0 leads to films which

curve too little, and turn through too small an angle. From the solutions obtained, r0 ≈ 1.0445

gave a film curved by the correct amount, and thus was adopted as the right initial condition

4Specifically whilst integrating for θ as a function of r we considered the discrepancy between doing two
steps with an integration step size δr and doing one step with an integration step size 2 δr: if the discrepancy
was exceedingly small compared with the change in θ during the step, we considered it safe to increase the step
size.

10
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thereafter.

Solutions obtained using this r0 value have also been plotted on figure 6 and compared with

the scaled simulation data. Agreement is imperfect (as might be expected, since the Evolver

data were obtained at finite times, rather than in the long-time asymptotic limit). Nevertheless

the Evolver data do indicate a tendency to converge towards the asymptotic state.

Returning to the asymptotic solution, as the film approaches the coordinate axes (either

the x-axis or the y-axis), the step wise changes in angle become smaller. Since numerical

calculations are limited by finite precision, it is preferable to switch eventually to an approximate

analytic formula for θ vs. r. As r increases and θ′ decreases, equation 16 becomes approximately

θ′′ ≈ −4 + r2

2r
θ′. (17)

Integrating with respect to r,

θ′ ≈ A

r2
exp

(

−r
2

4

)

(18)

where A is an integration constant.

In the limit as r → ∞, θ should approach some ‘final’ value θf which should itself be close

to zero provided the parameter r0 has been chosen correctly5. At θ close enough to the final

angle, θf , the value of A can be obtained by fitting the numerical θ′ vs. r values to equation 18.

Then the final angle θf can be obtained by integrating equation 18 out to an arbitrarily large

r. For consistency we have checked that the A value is insensitive to the choice of angle at

which we switch from the numerical integration to the analytical formula, and moreover that

the predicted final angle θf is close to zero.

Table 1 shows the computed results varying the angle at which the switch to the approximate

analytic solution takes place: convergence is obtained provided we switch around −0.001×π/2

or at any other angle closer to zero than that. The analytic solution (i.e. the decay of θ

with r) can then be followed for several decades more, down to the point at which θ reaches

the neighbourhood of θf . Once however θ attains a value close to θf , the solution becomes

‘unreliable’ being sensitive to the fact that our guess for the parameter r0 was not quite correct

5For any given r0, the value of θf is the angle that the curve in figure 8 makes with the x-axis, as x tends
to infinity.
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(i.e. the film turns through not quite the correct angle along its length, so θf is not exactly

zero). However the θf values reported in table 1 are so tiny that this discrepancy poses no real

difficulty.

5 Reorientation of the film end point

In the computed results of Section 3 we saw that the angle ψ at which the film meets the line

along which its end point is dragged decays very rapidly with time. Although the asymptotic

results of Section 4 deal with an infinite film with an initial right angle corner (rather than a

sheared semi-infinite one), we can nevertheless use the asymptotic results to gain insights into

the behaviour observed in the semi-infinite case. The dragged end point of the semi-infinite

film is displaced a distance r̃ = t (i.e. r ≡ r̃/t1/2 = t1/2) away from its original location. Hence

we can look at the film orientation at points on the asymptotic solution which are the same

distance away from the origin. Unlike in the simulations, these will not be exactly at polar

angle θ = 0, but (provided the distance is large) the θ value will be very close to zero. The

angle ψ can be evaluated as

ψ = arccos (t · ex) (19)

where ex is the Cartesian unit vector and t is the tangent vector

t =
er + rθ′eθ
√

1 + (rθ′)2
(20)

and er and eθ are polar unit vectors. Here er · ex = cos θ and eθ · ex = − sin θ. Values for ψ

vs. t evaluated at r = t1/2 according to the above formula and using the asymptotic analysis of

Section 4 are plotted in figure 9. As in figure 7, we plot here on a log scale, so that it is clear

that ψ actually exhibits very rapid decay, with a near straight line on the plot being indicative

of a near-exponential decay.

In the limit where θ is exceedingly close to zero we have

ψ ≈ dy

dx
(21)
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where y ≈ rθ and x ≈ r. Hence

dy

dx
≈ d

dr
(rθ) ≈ rθ′ + θ. (22)

We write this as rθ′ + θf + (θ − θf ) where θ
′ is given by equation 18 and hence

θf − θ =

∫

∞

r

A

r̄2
exp

(

− r̄
2

4

)

dr̄ (23)

with r̄ a dummy integration variable. Integrating by parts:

θf − θ =
A

r
exp

(

−r
2

4

)

−
∫

∞

r

A

2
exp

(

− r̄
2

4

)

dr̄

= rθ′ −
√
πA

2
erfc

(r

2

)

(24)

where equation 18 has been used. Substituting from equations 21 and 22 then gives

ψ ≈ θf +

√
πA

2
erfc

(r

2

)

, (25)

and (as alluded to above) we are required to evaluate this at location r = t1/2 so that

ψ ≈ θf +

√
πA

2
erfc

(

t1/2

2

)

. (26)

We are interested here in r and t values which are large compared to unity, but nevertheless

such that the complementary error function term is considerably larger than θf (otherwise the

ψ value we compute is sensitive to the fact that our chosen r0, as obtained via shooting, gives

θf values that differ very slightly from zero).

Based on equation 23, we can estimate that θf − θ will be at most a number on the order of

r−3 exp (−r2/4) and hence is much smaller than rθ′ (found using equation 18) when r is large.

It follows that the two terms on the right hand side of equation 24 nearly cancel (since the left

hand side of that equation is smaller than the first term on the right). If we are in a regime of

r values (as alluded to above) where the complementary error function term is still much larger
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than θf , it follows that

ψ ≈ rθ′ ≈ A

r
exp

(

−r
2

4

)

. (27)

Evaluated at r = t1/2, this gives

ψ ≈ A

t1/2
exp

(

− t

4

)

, (28)

hence the near-exponential decay of ψ observed in figure 9.

The time constant of the exponential decay for ψ for this asymptotic model according to

equation 28 is not quite the same as that obtained from the Surface Evolver results (see figure 7),

but this is unsurprising given the different θ values at which the angle ψ is evaluated in the

two models (at θ = 0 for the numerical Surface Evolver data, but at a small non-zero θ for

the asymptotic solution). Moreover the t−1/2 prefactor in the formula (equation 28) means the

decay is not quite a pure exponential in any case.

6 Movement of material points on a film

Having obtained the shape of the curved film in Section 4, the movement of material points can

be tracked: following material points is of interest because, even though shearing a film (as in

Section 3) adds new material to the film and increases its overall length, it turns out that film

material elements once created, invariably shrink. Taking dX to represent an element of film

with length ds, and differentiating the relationship (ds)2 = dX · dX with respect to time and

substituting t = dX/ds and dn/ds = κt, yields the shrinkage rate over a material domain [8]:

ṡ = −
∫

κ2ds (29)

where ṡ is the derivative of arc length, s, with respect to time. Since the characteristic length

is known to scale with t1/2 (see Section 4), it is appropriate to consider the rescaled arc length

S, defined by

s = t1/2S. (30)
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Substituting equation 30 into 29 and rearranging using κ = K/t1/2 from Section 4, gives

Ṡ = −1

t

∫ S

0

K2dS − 1

2t
S. (31)

The second term shows that even if the film element shrinkage stops i.e. ṡ = 0, then S will

continue to decrease because of the overall expansion of the structure (scaling with t1/2) induced

by the shearing.

Clearly (on geometric grounds), both S and K can be expressed solely in terms of either

r or θ. We choose to define S = 0 to be the symmetry point at θ = −π/4, as identified in

Section 4. Thus the similarity solution obtained in Section 4 (via equation 14 or equivalently

equation 16), allows the movement of material points at any point on the film to be tracked by

equation 31.

Since the film is being pulled at unit velocity, at time t = t0, a material point is injected

at a polar coordinate location r̃ = t0. For our asymptotic solution (which for computational

simplicity is what we choose to analyse here) this corresponds to a θ value very close to (albeit

not exactly) zero.

The movement of material points injected at t0 = 4, 16 and 64 was calculated taking the

asymptotic solution from Section 4, and considering points at the relevant initial location and

tracking their motion in time. Results are shown in figure 10 and figure 11.

The behaviour of the angular location θ of material points as seen in figure 10 is straightfor-

ward. The period of time for which the angular position of a material point is nearly constant

occurs when the point is on the near-straight section of the film (at |θ| ≪ 1, adjacent to the

x-axis). Hence this behaviour is always observed for any material point with t0 large enough

that its initial location is indeed on the straight section of the film, and the duration of the

period of nearly constant θ becomes longer with larger t0. Eventually, typically at some time

t on the order of t2
0
, the curved region of the film reaches the initially injected point and its

polar angle θ begins to decrease. Eventually all material points approach −π/4 asymptotically

at long times, at least in principle6.

6Notice however that the system may require exceedingly long times for a material point to approach close to
that final angle −π/4. Based on estimates given earlier, the time value of 10000 units needed in figure 10 for the
point labelled as t0 = 16 to migrate to within a few percent of −π/4 corresponds to 100 s of physical time. For
curvature with a ‘diffusivity’ D of 10−4 m2 s−1 (given earlier), this corresponds to an initially sharp-cornered
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Figure 11 shows similar data but expressed in terms of the rescaled arc length coordinate

S. This log-log plot suggests one straight line regime at early times, and a second straight line

regime at long times7. At early times and for large S equation 31 is dominated by Ṡ ≈ −S/(2t),

since the integral lim
S→∞

∫ S

0

K2dS remains finite. This gives a slope of −1

2
on the log-log plot

and (as noted above) corresponds to S decreasing due solely to the t1/2 overall length rescaling.

At late times i.e. small S, the slope is steeper. Equation 31 becomes

Ṡ ≈ −
(

K2

0 +
1

2

)

S

t
(32)

where K0 is the curvature at S = 0. Evaluating equation 13 at θ = −π/4 gives K0 = −r0/2

where, as stated in Section 4, r0 ≈ 1.0445. Integration of equation 31 reveals a straight line

on a log-log plot but now with a larger slope, −
(

K2

0
+ 1

2

)

, agreeing with the second straight

line regime seen in figure 11. Interestingly for the smallest t0 value shown on figure 11 (i.e.

t0 = 4), the evolution follows the slope of this ‘second’ straight line region even at early times.

The reason for this is made clear by comparing with figure 10: the t0 = 4 material point never

has exceedingly small values of |θ|, thus it never finds itself on any long straight section of film

adjacent to the x-axis. Rather it is injected onto an already curved section of film and its θ

and S values evolve accordingly8.

7 Conclusions

We have used the viscous froth model to describe a sheared foam film, with shear being in-

troduced by dragging the film’s end point at a constant velocity in a direction at right angles

to the original film orientation. Although the system we consider is a highly idealised one, it

film becoming rounded over a curvature radius 0.1 m, which is longer than a typical film in a foam. In practice
then, material points injected at either t0 = 16 or t0 = 64 case will not reach the neighbourhood of θ ∼ −π/4
on time or distance scales likely to be of interest in a real foam, although such material points could still see
significant evolution of θ away from the initial |θ| ≪ 1 value.

7We note a similar caveat as previously i.e. for larger t0 values, the times required to approach the second
straight line region may be prohibitively large.

8The supposition that the t0 = 4 material point is injected onto an already curved section of film is based here
on the analysis of the long-time asymptotic solution of Section 4. Figure 5 however showed that at finite times,
a flattened section of film can occur in the angular domain −π/4 ≤ θ ≤ 0 before the long-time asymptotic film
shape is actually achieved, and such a flattened section could affect the time evolution of θ or S as experienced
by a material point. This however is beyond the scope of the analysis presented here.
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nonetheless describes a generic process which is important in any sheared ‘2-dimensional’ foam

(i.e. in any system where a layer of bubbles is confined between upper and lower plates, and

subjected to shear). In the foam system containing many bubbles, it is necessary to transport

curvature along the entire length of a film so as to set a vertex in motion, leading eventually to

a collision between two adjacent vertices. This initiates a so-called topological transformation

that relaxes the energy in the foam as bubbles exchange neighbours. The first step in this chain

of events is transport of curvature.

Our data show that after a time t, curvature is transported over a distance scaling like

t1/2, which underlines the diffusive nature of the transport inherent in the viscous froth model.

The film end point however is moved at a constant velocity and hence its displacement grows

linearly in time. It therefore migrates increasingly far away from the curved region as time

evolves. The film end point becomes joined to the curved region of film by an almost straight

segment which reorients itself (approximately exponentially in time) to align with the direction

in which the film end point is being dragged. The film eventually approaches an asymptotic

state corresponding to an infinite film containing an initial right angled corner, a system which

admits a similarity solution whereby distances indeed scale like t1/2 as expected.

Appendix

We have stated in the main text that curvature “diffuses” along films. The purpose of this

section is to make this claim mathematically precise, and to indicate some of the physical

consequences that this diffusion of curvature implies.

The idea of the diffusive nature of film curvature comes from the viscous froth model equa-

tion 3, ignoring pressure differences for simplicity. Using the notation from equation 3, and

substituting κn = −dt/ds and t = dX/ds,

(

dX

dt

)

Θ

=
d2
X

ds2
(33)

which is analogous to Fick’s law. There is however a slight complication – the left hand side

of equation 33 is most naturally written in terms of material elements labelled by Θ while the
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right hand side of equation 33 is most naturally written in terms of arc lengths s. Material

elements do not however correspond precisely to arc length elements – indeed individual material

elements tend to shrink as time goes on. Care must be exercised therefore, when manipulating

equation 33 to derive a diffusion equation for curvature.

We proceed as follows. Since X can be considered as X(t, s(Θ, t)), we can derive a convec-

tive derivative as follows. First, we write

(

dX

dt

)

Θ

=

(

dX

dt

)

s

+

(

ds

dt

)

Θ

(

dX

ds

)

. (34)

Substituting equation 29 (and treating s′ as a dummy integration variable),

(

dX

dt

)

Θ

=

(

dX

dt

)

s

−
(

dX

ds

)
∫ s

0

κ2ds′ (35)

and hence in general
(

d

dt

)

Θ

=

(

d

dt

)

s

−
(
∫ s

0

κ2ds′
)(

d

ds

)

. (36)

Applying n · d2/ds2 to each term of equation 35 and simplifying using equation 3 and the

relationship d2
X/ds2 = −κn, gives

n · d2

ds2

(

dX

dt

)

Θ

= n · d2

ds2

(

dX

dt

)

s

− n · d2

ds2

((
∫ s

0

κ2ds′
)

dX

ds

)

= n ·
(

d

dt

)

s

(−κn)− n ·
(
∫ s

0

κ2ds′
)

d

ds
(−κn)

−n · 2κdκ
ds

t− n · 2κ2 (−κn)

= n ·
(

d (−κn)
dt

)

Θ

+ 2κ3 (37)

where we have used the fact that n · t vanishes, we have also applied equation 36 to the vector

−κn. Note in the above that

(

d (−κn)
dt

)

Θ

=

(

d

dt

)

Θ

(

d2
X

ds2

)

(38)

making it obvious that the operators d2/ds2 and (d/dt)
Θ

do not commute. We can further

simplify equation 37 by recognising that any derivative of n is necessarily orthogonal to n itself
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and hence

n · d2

ds2

(

dX

dt

)

Θ

= −
(

dκ

dt

)

Θ

+ 2κ3. (39)

Applying n · d2/ds2 to the right hand side of equation 33, substituting d2
X/ds2 = −κn,

and simplifying (using also the fact that dn/ds = κt and hence is orthogonal to n),

n · d2

ds2

(

d2
X

ds2

)

= n · d
2 (−κn)
ds2

= −d2κ

ds2
+ κ3. (40)

Equating 39 and 40 and simplifying gives

(

dκ

dt

)

Θ

=
d2κ

ds2
+ κ3, (41)

which is the curvature diffusion equation that we seek.

Equation 41, like equation 33, is still parameterised in terms of material point and arc

length coordinates, and takes an extremely compact and elegant form in those coordinates.

When solving viscous froth problems however, one seldom parameterises in terms of either

material points or arc lengths. Indeed the solution we obtained in Section 4 was described in

terms of polar r vs. θ or θ vs. r coordinates. Once the system is solved in terms of polars,

it is a straightforward geometry problem to obtain arc lengths. Meanwhile the analysis of

Section 6 has shown how to recover material point positions. Thus arc lengths and material

point locations are often determined after the film shape evolution has been solved, rather than

as part of the technique for obtaining that evolution.

Despite the fact that we seldom solve problems using equation 41 directly, the equation

remains useful conceptually. As a diffusion equation, it explains why curvature spreads over a

distance of order square root of time as we showed in the analysis in the main text.

In a different physical context, it also explains why so-called grain growth problems behave

differently from coarsening in a soap froth [13]. In both froth coarsening and grain growth

– see [13] for details – certain domains grow whilst others shrink and disappear. Soap froth

coarsening demands that domain boundaries are uniformly curved, according to the difference

in gas pressure across the boundary. A shrinking bubble on the point of disappearance has a
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much higher pressure than any of its neighbours with the result that curvature is nearly the

same along each and every edge. A shrinking soap bubble therefore adopts a very regular shape.

Grain growth models (which correspond to equation 41) permit much less regular shapes in

shrinking domains. The time scale to diffuse curvature uniformly along a film (on the order of

s2 for a domain of length scale s) is similar to the time scale (again order s2) for the domain to

disappear altogether. Thus irregularities in shrinking domains persist in grain growth models

all the way up to the disappearance of the grain. Grains are therefore far less regular than their

soap froth counterparts.
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Table 1: Values of θf and A, corresponding to varying switch points at which the analytic
approximation is implemented.

θ at switch r at switch θf A
−0.1×π/2 1.58 −0.012515 1.559
−0.01×π/2 2.66 −0.000032 1.378
−0.001×π/2 3.70 −0.000006 1.372
−0.0001×π/2 4.57 −0.000006 1.372
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t
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Figure 1: An initially semi-infinite film dragged perpendicularly to its initial orientation. The
resulting curvature diffuses along the film, and the angle ψ which the film makes with the
dragging direction decays.
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Figure 2: Different final states of the Mullins finger depending on the (dimensionless) end point
separation l: (a) for l < π the final state is a segment of a curve, and (b) for l > π an arbitrarily
long straight line section is observed, joining smoothly onto the curve.
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Figure 3: Sketch of the long time asymptotic solution of the sheared semi-infinite system, which
corresponds to a similarity solution of an infinite film with a right angled corner at first, from
which curvature diffuses away over time. Here θ is the angular position (in polar coordinates)
and r̃ is the radial position which can be rescaled with respect to time t to obtain a rescaled
similarity coordinate r.
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Figure 4: A sketch of the film studied numerically. As long as the straight (vertical) central
section is present, the remaining curved region of the film is identical to the case of a semi-
infinite film. For longer periods of time, the film itself needs to be longer to retain that straight
central section.
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Figure 5: (a) Curve shapes computed by Surface Evolver for a film with L = 200 computed at
times t of 40, 70 and 120. The end point at the top of the film has been displaced to position
x = t (although this is difficult to see on the scale of the plot). To guide the eye, the bisector
of the quadrant at polar angle θ = −π/4 is also indicated on the plot. (b) A zoomed version of
the above.

28

Page 28 of 34

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Diffusion of curvature on a sheared film

-4

-3

-2

-1

 0

 0  2  4

y/
t1/

2

x/t1/2

t=40
t=70

t=120
asymp.

Figure 6: Curve shapes computed by Surface Evolver for a film with L = 200 computed at
times t of 40, 70 and 120, but with distances scaled by t1/2 (cf. figure 5). To guide the eye, the
bisector of the quadrant θ = −π/4 is also indicated. Moreover the asymptotic shape expected
in the long time limit is shown (to be discussed in Section 4).
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Figure 7: The angle ψ at which the dragged film meets the line along which its end point is
dragged plotted as a function of time t. These data are for a film of length L = 200, although
data for the case L = 100 would be indistinguishable. The decay of ψ is compared with an
exponential fit, showing reasonable (albeit imperfect) agreement.
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Figure 8: Solutions of film shape using varying values of r0 (r at θ = −π/4). Note that (as this
is a similarity solution where the similarity variable is distance rescaled by the square root of
time) the axes are labelled here as x/t1/2 and y/t1/2.
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Figure 9: The plot shows the angle ψ between the vector tangent to the film and the x-axis
at a given point on the film against time t. Numerical simulation data from Surface Evolver
are shown (ψ being calculated at the film end point), and values are also shown from the
asymptotic solution (ψ being calculated at the ‘nominal’ end point of the film, i.e. at r = t1/2).
An approximate analytic formula for ψ (equation 28 obtained from the asymptotic solution in
the large t limit) is also shown. The complementary error function solution (equation 26) has
not been shown here, as it is almost indistinguishable from the curve labelled ‘asymptotics’.
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Figure 10: Plot of polar coordinate θ against t on a semi-log plot for material points injected
onto the film at t = t0. The initial period when θ is nearly constant (seen for larger t0 values) is
due to the material point migrating through the straight section of the film (located adjacent
to the x-axis on a plot such as figure 6). As t→ ∞ any given material point eventually moves
towards θ = −π/4 (although, depending on t0, this might happen only for exceedingly long
times).
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Figure 11: A log-log plot of S vs. t. Here t0 is the time at which the material point is injected.
A linear relationship (on these log-log axes) is observed at both high and low values of S, but
with differing slopes in these different regimes.
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