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Abstract

We compare extensive experimental results for the gravity-driven steady drainage of oil-in-

water emulsions with two theoretical predictions, both based on the assumption of Poiseuille

flow. The first is from standard foam drainage theory, applicable at low aqueous volume

fractions, for which a correction is derived to account for the effect of the confinement of

the foam. The second arises from considering the permeability of a model porous medium

consisting of solid sphere packings, applicable at higher aqueous volume fractions. We find

excellent quantitative agreement between experiment and the two theories in each of these

limits, providing a master curve for the permeability of foams and emulsions. Using our

experimental data, we also demonstrate the analogy between the problem of electrical flow

and liquid flow through foams and emulsions.

1 Introduction

The general problem of the motion of dispersed particles relative to a continuous fluid phase in

response to gravity is composed of two specific situations. The first, sedimentation (or “creaming”

in the case of emulsions), is the settling of isolated particles, be they solid, liquid (drops) or gas

(small bubbles). Sedimentation/creaming tends to bring the particles into contact. The second,

known as drainage when applied to foams [1], is the flow of the continuous phase around the

particles and takes place after sedimentation, when the volume fraction of the continuous phase

φ is less than a close-packing value of the order of 0.36. As well as being separated in time, the

two phenomena are subject to different theories, although they have some features in common.

Solid particles, and even sufficiently small drops of liquid or bubbles, are not compressed

enough by gravitational sedimentation to make the drainage process of interest. Emulsions, in-

cluding those used in applications, are often made with small drops (typically below 100 µ m [2, 3]
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if not submicrometric [4, 5]) and the majority of work on the settling of emulsions (called cream-

ing in this context) pertains only to sedimentation; indeed, the volume fraction of the continuous

phase is usually above 0.25 and more often above the close-packing limit [6]. We recently began

a study of emulsions with drops of a few millimeters in diameter, and values of φ down to about

0.1 [7], where drainage is important, and we continue that work here.

Drainage theories [8, 9] describe the spatial and temporal variation of the local volume fraction

φ and the flow rate Q of the continuous phase for values of φ . 0.05 (the dry limit). These theories

are realized as partial differential equations known as foam drainage equations, derived on the basis

of flow through the network of narrow channels, known as Plateau borders. Their predictions are

particularly simple if one can restrict oneself to computing the variation of liquid fraction with

height. This applies to foams/emulsions confined in narrow cylinders where one finds a uniform

volume fraction in any cross-section. In this paper, we address the steady regime in such an

experiment, i.e., as continuous phase is added at a constant flow rate Q, what is the steady state

relationship between Q and φ?

For emulsions, it can be arranged that the viscosity of the continuous phase is small compared

to that of the dispersed phase. The dispersed drops are then expected to behave like solid objects

and drainage should then proceed in the form of a Poiseuille flow through the Plateau borders, with

the velocity of the continuous phase imposed to be zero at the interfaces between the two phases

(no-slip boundary condition) [7]. This simple condition on the viscosities is not generally met

for aqueous foams (it is inverted and the dispersed phase is less viscous), although experimental

observations indicate that a Poiseuille-type flow can be closely approached for particular types

of surfactant solutions with rigid air-water interfaces [10]. It follows that drainage in emulsions,

besides being of interest in its own right, can provide a benchmark in the limit of Poiseuille drainage

for foams. Here the “rigid-interfaces” drainage theory [8] provides quantitative predictions against

which experiments on foam drainage can be judged.

An additional feature makes emulsions valuable model systems for studying drainage. We

observed that no convective instability occurs up to values of φ exceeding 0.42 [7]. Thus steady

drainage can be studied far above the value allowed for foams where convective rolls on the scale

of the container are triggered above liquid volume fractions φ of around 0.15 [11, 12].

In this paper we report experiments of steady drainage in oil-in-water emulsions in vertical

glass cylinders. The volume fraction φ is varied between about 0.02 and 0.45, bridging the, usually

separated, domains of sedimentation and drainage. The viscosity of the oil that constitutes the

dispersed phase is a factor of 350 larger than that of the water that makes up the continuous phase.

We undertake a full quantitative comparison (including prefactors) of the experimental data for φ

as a function of Q with two ab initio theories: (i) the drainage theory initially developed for low

liquid fraction drainage in foam, and (ii) the permeability of a model porous medium consisting of

spheres, at higher water volume fraction. A new correction is introduced in the drainage theory

to account for the walls of the cylinder. Finally we present our case for a generalised conductance,

covering both the flow of liquid and electrical current through foams and emulsions.

The following section presents the experimental method. The experimental results are in

section 3. In section 4 we compare the experimental results to calculations from foam drainage

theory. This theory is refined to account for finite size effects due to the walls of the confining
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cylinder. In section 5, the experimental results are compared to calculations of the permeability

of sphere packings and in section 6 to the electrical conductivity of foams and emulsions. Section

7 presents the conclusions.

2 Methodology and experimental set-up

The aim of our forced drainage experiments is to determine the volume fraction of an oil-in-water

emulsion, stabilised by adding commercial washing-up liquid to the water, as a function of the

drainage flow rate at steady state. The set-up is shown in Fig. 1. The vertical glass cylinder of

diameter D containing the emulsion is connected via tubing and rubber plugs to a communicating

vessel (e.g. a 1 litre phial) whose height and water level can be adjusted to externally tune the

height of the air-water interface in the cylinder. Prior to the measurements, monodisperse oil

drops are injected at a constant rate by a pipette at the bottom of the cylinder and their number

n is recorded. Buoyancy gathers the drops into an emulsion.

The draining aqueous solution is fed back into the emulsion by adding solution to the top at

a constant flow rate Q. Our flow rate supplying device was either a glass burette or a syringe

pump (Infors, Basel, Switzerland) equipped with a 100 cm3 glass syringe. This device allows us

to accurately set constant flow rates as low as 0.0001 cm3/s. We used silicone oil (Dow Corning

200/350 cS Fluid, BDH Silicon product). The density at 25◦C, given by the manufacturer, is ρo

= 0.968 g/cm3 and the coefficient of thermal expansion is 0.00096 ◦C−1; the viscosity is around

ηo = 3.5 g cm−1 s−1. The aqueous solution was made up of de-ionised water with 1% v/v of

commercial dish-washing liquid as the surfactant.

In order to vary the density difference, some of the experiments were performed using mix-

tures of de-ionised water and analytical grade ethanol for the continuous phase. The ethanol

concentration was restricted to be not more than 15% v/v for reasons of stability: beyond this

concentration, coalescence events (neighbouring drops merging with one another) occurred before

the measurements could be completed. Many studies in the literature address specifically the

coalescence that proceeds concurrently with, or subsequent to, creaming [13, 14, 15, 16]. The

measurements reported in the present paper concern creaming with no coalescence. The absence

of any coalescence event could be verified visually as the drops were macroscopic and remained

monodisperse. All experiments were conducted at ambient temperature. The water/ethanol mix-

tures were prepared at least 12 hours in advance and all dishes and liquids were left in the room

overnight prior to the experiments.

For such a set-up it is experimentally observed (and predicted by the foam drainage equation

[17]) that the aqueous volume fraction in a foam or emulsion under steady drainage is a uniform

function of height except near the bottom boundary where the aqueous solution meets the emul-

sion. In the following we refer to the aqueous volume fraction φ as the constant value away from

the lower boundary.

In the limit as the flow rate Q tends to zero, for the case of Poiseuille flow as in our emulsions,

φ scales as:

φ = cφ

√

Q, (1)
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where cφ is a constant that is dependent on the experimental parameters. The aim of our work

is firstly to determine this constant experimentally, and secondly to compare it to theoretical

predictions.

This requires an accurate experimental determination of φ. To do this we first measure the

total length of the emulsion in the cylinder, L(Q), using a ruler once the steady regime (i.e. a

constant value of L(Q)) is reached. We then rinse the emulsion with water devoid of surfactant

to merge the oil drops in the cylinder into a single homogeneous phase of oil. We denote by L0

the length of this column of oil. Then

φ =
L(Q) − L0 − ∆L(Q)

L(Q)
(2)

where ∆L(Q) is an additional length associated with the excess water at the bottom boundary,

where the drops become spherical, derived explicitly in Appendix A.

The additional length ∆L(Q) is maximal at Q = 0 and decreases with Q, as the value of φ

increases. For Q = 0, it is of the order l20/b [1], where b is the equivalent sphere diameter of the

oil drops and l0 is the capillary length,

l0 =
√

γ/∆ρg. (3)

Here γ is the interfacial tension, ∆ρ is the difference in density between the two phases and g is

the acceleration due to gravity. In the experiments described here, γ ≈10 mN/m [18]. For large

values of φ or long columns of foam, ∆L(Q) can be neglected, as described in Appendix A. The

expression for φ then reduces to

φ ≃ 1 − L0

L(Q)
. (4)

In one case (data in Fig. 2), water remained trapped in the oil, making the determination of L0

an inaccurate procedure. Instead, the value of L(0) was obtained using the following extrapolation

procedure, and used in Eq. 4 in place of L0. Combining Eqs. 1 and 4 we obtain

Q = c−2
φ

(

L(Q) − L(0)

L(Q)

)2

. (5)

We fitted this expression to the experimental data on successive ranges of flow rate [0, Qup] with

decreasing values of the upper limit Qup. The fit parameters L(0) and cφ,exp were then observed

to tend monotonically towards a well-defined limit at low flow rate. The experimental data and

the related limiting fitting curve are shown in Fig. 2, where the fit parameter L(0) is marked by

a cross. The fit is good on a restricted range of L(Q) − L(0) corresponding to φ . 0.06, while

deviations occur for larger values of L(Q) − L(0).

To compare with theory we also need to know the diameter of the equal-size oil drops. Since

we release the drops one-by-one into the column, it is easy to count their total number n. The

equivalent sphere diameter of the oil drops b is then given by

b =

(

3L0D
2

2n

)1/3

. (6)

Overall, the reported experiments cover the range 0.00015 cm3 < Q < 0.16 cm3 in flow rate,

0.025 < φ < 0.45 in aqueous volume fraction and 9.0 mm < D < 12.4 mm in cylinder diameter.
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The value of the drop diameter b is always close to 3 mm; so the cylinder diameter is not very

large compared to the drop size.

3 Experimental results

Our steady-state data for the variation of aqueous volume fraction with Q is summarised in Fig.

3. In Fig. 3a we plot data for emulsions in cylinders of differing diameters D but almost identical

drop diameter b in all the measurements. We can see that as the cylinder diameter is increased,

a given value of φ is only sustained with a larger value of Q.

Fig. 3b shows data for varying density difference ∆ρ = ρw − ρo, where ρw is the density of

the ethanol/water mixture. As shown in Table 1, ∆ρ decreases and the viscosity ηw increases

as a function of the ethanol concentration. (Density-matching, where ∆ρ = 0, is reached at an

ethanol concentration of about 22% v/v ; earlier work based on the density-matching between

oil and mixtures of water and alcohol is found in the book by Plateau [20]). Measurements were

carried out with the same emulsion successively subjected to drainage by each of the ethanol-water

mixtures listed in Table 1, in increasing order of concentration. The four sets of data in Fig. 3b

confirm that any given value of φ requires a greater flow rate when the density contrast is larger.

Results in the low flow-rate limit are compared with predictions of the foam drainage theory

in the following section. In section 5 we calculate the reduced permeability of the emulsions as a

function of φ from the flow rate measurements, and we will compare them to theoretical predictions

of permeabilities from the literature.

4 Low aqueous volume fractions

In the theory for Poiseuille drainage in a bulk foam, φ2 is proportional to Q in the limit of small

φ, see Eq. 1. This proportionality is experimentally confirmed, as shown in Fig. 4, and holds

approximately for φ up to 0.06, corresponding to Q = 0.0011cm3/s in our experiment. As shown

in Fig. 5a, the drops are observed to approach a polyhedral geometry with straight edges under

these low drainage flow rates. (Fig. 2 of Ref. [7] also shows the Plateau borders of emulsions at low

water volume fraction.) In addition, the emulsion in Fig. 5a presents an ordered structure with

spatial periodicity along the axis of the cylinder. This extends the sequence of ordered cylindrical

emulsions described previously [7]. Our experiments confirm that for values of the ratio of cylinder

to drop diameter, λ ≡ D/b, significantly above unity, the arrangement of monodisperse drops into

an ordered structure is generally fortuitous and the structure obtained is often disordered.

The geometrical properties (e.g. edge-length and surface area per unit volume) of any pack-

ing of monodisperse cells are quantitatively well represented by a periodic packing of “Kelvin”

tetrakaidecahedra [21], shown in Fig. 6a. This Kelvin packing is also the most tractable theoret-

ical model for a 3D foam, so we choose to compare our experimental data to the classical theory

for drainage in Kelvin foam.

Assuming a bulk foam consisting of space-filling Kelvin cells (Fig. 6a), the theoretical value
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for the coefficient cφ is given by [1, eq. 11.26]

c2
φ,th = 5.35

3χpbηw

∆ρg
V

−2/3
b A−1

cyl. (7)

Here Vb is the bubble volume, Acyl the cross-sectional area of the cylinder and χpb ≈ 49.8 a

dimensionless factor, calculated numerically, that characterizes the particular shape of the cross-

section of a Plateau border. Other packings of monodisperse bubbles, ordered or random, result

in deviations of the prefactor 5.35 by less than 2% [8, 21].

For our experimental parameters we compute c2
φ,th = 5.77 s cm−3 while a fit to the data results

in c2
φ,exp = 3.37 s cm−3 (the slope of the continuous line in Fig. 4). The prediction of cφ is nearly

twice the value that fits the experimental data and we therefore have a quantitative disagreement

between experiment and theory that is not due to the assumption of a particular bulk structure.

In view of the relatively small value of the ratio of cylinder diameter to drop diameter, λ ≡
D/b ≈2.78, finite size effects due to the walls should be anticipated. As a refinement to the existing

theory, the drops from the peripheral layer of the emulsion may be treated distinctly from those

of the bulk. In the idealized Kelvin structure, the surface drops consist of two halves equal in

volume but different in geometry, as shown in Fig. 6b: one fits to the bulk Kelvin structure while

the other rests against the wall. The surface cells are arranged into a hexagonal structure as

described in [1, §13]. The volume Vb of a Kelvin cell can be written as

Vb = 27/2r3 (8)

where r is an edge length (all edges have equal length). This volume is also equal to (π/6)b3,

hence

r =
π1/3

31/323/2
b. (9)

If the curvature of the glass wall is neglected, then the thickness of the surface layer of half-

Kelvin cells is r and the surface area s that each of them occupies on the wall is given by

s = 25/2r2. (10)

This area is also given by s = (33/2/2)w2 where w is the length of one edge of the surface hexagonal

cells. It follows that

w =
27/4

33/4
r. (11)

The interior of the cylinder may be split into a central region of diameter D − 2r, treated by

the existing bulk drainage model, and a surface region of thickness r consisting of the half surface

hexagonal cells (Fig. 6c). The draining fluid is found in a network of channels of two types: (i)

the bulk Plateau borders of cross-section Apb = cpbδ
2 where cpb =

√
3− π/2 and δ is the radius of

curvature of the water/oil interfaces; (ii) the surface Plateau borders of cross-section Aspb = cspbδ
2

where cspb = 2 − π/2. With these assumptions, and using the above expressions for r, s and w,

we find that, to second order in δ/b, the total volume fraction of the aqueous phase in the system

is

φ =
(

1 + a1λ
−1a2λ

−2
) 23/235/3

π2/3
cpb

δ2

b2
. (12)
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where

a1 =

(

211/4cspb

33/4cpb
− 8

3

)

π1/3

31/323/2
≈ 1.8627 (13)

and

a2 = −
(

211/4cspb

33/4cpb
− 8

3

)

π2/3

32/323
≈ −0.6688 (14)

The total flow rate Q is the sum of the flow rates in the bulk region and on the surface:

Q = Qbulk + Qsurf . (15)

The surface and the bulk region are assumed to be connected together only through horizontal

Plateau borders; these are not accounted for in the flow rates. The bulk contribution is given by

[1]:

Qbulk = σf
s ∆ρg

π

4
(D − 2r)2. (16)

Here σf
s is the flow conductivity:

σf
s =

1

3
lv

A2
pb

ηwχpb
(17)

where lv is the length of bulk Plateau border per unit volume:

lv =
12

27/6

1

V
2/3
b

. (18)

Only the surface Plateau borders need to be accounted for in the calculation of Qsurf . The

calculation of the flow rate in the two-dimensional network of surface Plateau borders is analogous

to the previous calculation in three dimensions:

Qsurf = σf
s,s ∆ρg πD. (19)

In this expression, σf
s,s is the surface flow conductivity:

σf
s,s =

1

2
ls

A2
spb

ηwχspb
(20)

where χspb is the dimensionless coefficient calculated numerically for surface Plateau borders,

χspb ≈ 50.7 [22]. The factor of 1/2 accounts for the random orientation in two dimensions of

the surface channels. The variable ls is the length of surface Plateau borders per unit surface,

therefore ls = 3w/s.

Summing the two contributions to Q, we obtain

Q =
(

1 + c1λ
−1 + c2λ

−2
) 32/3π1/3

21/2

c2
pb

χpb

∆ρg

ηw
D2b2 δ4

b4
(21)

where
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c1 =

(

21/4π1/3

31/12

(

c2
spb

c2
pb

χpb

χspb

)

− 21/2π1/3

31/3

)

≈ 9.6234 (22)

and

c2 =
π2/3

2 × 32/3
≈ 0.5156. (23)

Now, the ratio δ/b can be eliminated between Eq. 12 and Eq. 21. We find the following expression

for φ2 as a function of Q:

φ2 = f(λ)
23/238/3

π2/3
χpb

Q

Q0
. (24)

Here Q0 is a characteristic flow rate defined by

Q0 ≡ π

4

∆ρg

ηw
D2b2 (25)

and f(λ) is the fraction

f(λ) =
(1 + a1λ

−1 + a2λ
−2)2

1 + c1λ−1 + c2λ−2
. (26)

So that the cylinder is large enough to allow drops to form in the bulk, λ must exceed a value

of about 1.6, corresponding to f(λ) > 0.5 [23]. Fig. 7 shows that f increases as a function of λ

and reaches unity as λ approaches infinity. In this limit, where the wall effects are expected to be

negligible, it can be shown that Eq. 24 is equivalent to Eq. 1 with cφ given by Eq. 7.

For the measurements plotted in Fig. 4 we have λ = 2.78, therefore f(λ) ≈ 0.554. We thus

calculate that the wall effects approximately double the flow rate. As previously estimated [24],

calculated, and verified by sophisticated experiments [25, 26], each of the surface Plateau borders

carries a much larger flow rate than a bulk Plateau border. We calculate here that for the same

longitudinal pressure gradient, the ratio between the flow rate through a surface Plateau border

and through a bulk Plateau border is (c2
spb/c

2
pb)(χpb/χspb) ≈ 7.0. The coefficient c2

φ,th is now 3.20

s/cm3, in close agreement with the experimental value 3.37 s/cm3. Also, the resulting expression

φ2 = c2
φ,thQ, plotted as a dashed line in Fig. 4, is very close to the experimental data.

Therefore, in a regime of low liquid fraction, the drainage theory is successful in quantita-

tively predicting the dependence of aqueous volume fraction φ on flow rate Q provided that wall

effects are included. This justifies a posteriori the statement in the introduction that drainage in

emulsions (with low viscosity ratio ηw/ηo ≈ 1/350 of water to oil phase) is of Poiseuille type.

5 Analysis for high aqueous volume fraction

Figure 8 is a plot of ln(Q/Q0) as a function of φ for all our experimental data, taken for a variety

of cylinder diameters and viscosities; Q0 is the characteristic flow rate defined in Eq. 25. The

collapse of the data onto a single master curve confirms that given the aqueous volume fraction φ,

which acts as a geometrical parameter, the value of Q for steady drainage does scale with respect

to the experimental parameters according to the characteristic flow rate Q0 of Eq. 25. Our system
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has the diameter ratio λ as an additional geometrical parameter that quantifies the wall effects.

From the observed collapse of our data, the variations of λ in the explored range (2.65 < λ < 3.68)

are of limited impact. The prediction for small aqueous volume fraction (Eq. 24) with λ = 2.78 is

plotted with a continuous line. As already observed in section 4 this calculation is in agreement

with the experimental points for 0 < φ < 0.06, but not far beyond this range.

At larger aqueous volume fractions, as already stated in the context of foams or emulsions

[9, 27, 28], drainage may be treated identically to flow at low Reynolds numbers in porous media

by the classical Darcy equation:

Q =
k

ηw
A

→

|∇Π|, (27)

where A is the cross-section through which the flow proceeds,
→

|∇Π| is the gradient of driving

pressure and k is the permeability of the medium. The equivalent of our variable φ in the context

of porous media is called the porosity [29]. The relation between k and φ depends on the geometry

of the continuous phase or porous network. The cross-section A in our experiments is A =

(π/4)D2. Neglecting the impact on
→

|∇Π| of finite size effects due to the cylinder wall, we have
→

|∇Π|= (1 − φ) ∆ρg, resulting in:

Q

Q0
= (1 − φ)

k

b2
. (28)

The permeability of spatially-periodic packings of overlapping spheres to Stokes flow is given by

[30]:

k

d2
=

1

K

V0

6πad2
, (29)

where d is the centre-to-centre distance between closest-neighbour spheres, K is the coefficient of

friction (numerical values are given in Tab. 3 of ref. [30]), a is the radius of the spheres and V0 is

the volume of a unit cell of the packing. We have:

V0 = βd3, (30)

where β is a coefficient depending on the structure of the periodic packing (BCC structure:

β = 4/33/2; FCC structure: β = 2−1/2). It follows that the reduced flow rate Q/Q0 can be

expressed as:

Q

Q0
= (1 − φ)1/3 β1/3

65/3π1/3

1
(

a
d

)

K
. (31)

where we have used (π/6)b3 = (1 − φ)V0.

The ratio a/d can be calculated for all values of φ as detailed in Appendix B. The reduced flow

rate Q/Q0 can thus be calculated as a function of φ by Eq. 31 using this a/d value and the

value of K found in Table 3 of Ref. [30]. The resulting plots of ln(Q/Q0) assuming a BCC or an

FCC structure are shown in Fig. 8, together with the experimental data. We find that the BCC

calculation (dotted line) is in good agreement with the experimental data for φ > 0.1, i.e. where

the prediction for small aqueous volume fraction (continuous line) starts to deviate significantly.
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As shown in Fig. 5b for φ = 0.16, and for larger values of φ in Ref. [7], the shape of

the oil drops in these conditions becomes spherical, just as they are in the model of Ref. [30].

However, our emulsions were, in general, structurally disordered and no estimation could be made

concerning whether the structure is close to a BCC or other ordered structure. As for the small

flow rate theory (section 4), assuming some type of ordered structure allows a tractable theoretical

approach.

The theoretical reduced flow rate assuming an FCC structure (Fig. 8) is smaller than the BCC

reduced flow rate in the whole range covered by φ. The FCC model is in particular discrepancy

with the experimental points for small values of φ. This observation is consistent with independent

experiments on static aqueous foams where the structure is BCC in a range of small values of φ

and switches to FCC for φ > 0.2 [31].

The sphere packing models have a fundamental inadequacy at describing drainage in emulsions

(or in foams) at small values of φ. Approaching the dry limit, the geometries of the continuous

phase networks in the sphere packings (with curvature radius a) differ increasingly from the

network of Plateau borders of foams and emulsions. For a finite value of φ larger than zero (BCC:

φ ∼= 0.005501 ; FCC: φ ∼= 0.035897 ) strictly no flow is allowed through the packing. This explains

the increasing deviation of the theoretical prediction with respect to the experimental data in the

dry limit.

6 Generalised conductivity: the analogy between liquid and elec-

trical flow

In the limit in which the volume fraction of the continuous phase tends to zero, liquid flow and

electrical conductivity through foams and emulsions are in some sense equivalent [1]. Here, we use

our data to show that the analogy between these two quantities actually holds for a wide range of

φ. Since existing drainage theory is only valid in the low φ limit, the correspondence demonstrated

below should provide guidance for the development of a generalised theory of drainage, valid for

abritrary φ.

The relative electrical conductivity σe of a foam or emulsion is defined by σe = σe
s/σ

e
c where σe

c

and σe
s are the electrical conductivity of the continuous phase and the entire sample, respectively.

Feitosa et al. [32] recently published the following empirical formula for the variation of σe with

the volume fraction φ of the continuous phase, based in part upon a large amount of historical

data:

σe = 2φ(1 + 12φ)/(6 + 29φ − 9φ2) (32)

Lemlich’s [33] expression for the relative flow conductivity σf , defined in a similar way and

valid in the limit as φ → 0, is:

σf = φ/3

Note that Eq. 32 contains this limit.

To derive an effective flow conductivity for a foam or emulsion, we proceed from Eq. 16, which

makes no assumptions about φ (cf. Eq. 17, which does). Neglecting the influence of surface flow,
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the flow conductivity of the entire sample is given by

σf
s =

Q

∆ρgAcyl
. (33)

We may define an effective flow conductivity for flow through a single Plateau border as

σf
c =

Apb

ηwχpb
. (34)

The relative flow conductivity is then:

σf =
σf

s

σf
c

=
Q

Q0
χpb

(

6

π

)2/3 Vb
2/3

Apb
. (35)

Both Vb (from Eq. 18) and Apb are related to the length of the Plateau border network per

unit volume lv, which enables us to express σf in terms of φ = lvApb. For a Kelvin packing this

results in

σf =
12

27/6

(

6

π

)2/3

χpb
Q

Q0
φ−1 = 8.23χpb

Q

Q0
φ−1. (36)

Note that if we were to write Q in terms of φ using the appropriate expression (Eq. 7) for

Poiseuille drainage, and valid for low values of φ, then the above equation reduces to Lemlich’s

expression.

In Fig. 9 we have evaluated Eq. 36 for our emulsion drainage data and show it as a function of

φ. The equivalence of relative flow conductivity and electrical conductivity, with the latter given

by Eq. 32, is convincingly demonstrated, for values of φ up to 0.2.

This requires several comments. In deriving Eq. 36 we have taken for lv (length of Plateau

borders per unit volume) the value for Kelvin packing. This is known to be a good approximation

for random monodisperse packings [21] at low φ. Our data seems to suggest that its range of

validity extends even up to φ ≃ 0.2. It may be speculated that knowledge of lv for larger values

of φ could increase this range even further.

Values of χpb different from 49.8 could be used when Poiseuille flow is not appropriate.

[drenckhan ref?]

Surface Plateau borders, which needed to be included when relating the predictions of Poiseuille

flow drainage theory to our data, were not taken into account. They could be incorporated in the

above theory of flow conductance, but it appears that their effect is very limited in this particular

representation of the data.

Finally, we have not plotted the high φ data for the emulsions containing ethanol since this

data shows more experimental scatter than the data for non-ethanol based emulsions.

In summary, we believe that the merit of Fig. 9 lies in summarising two different transport

problems in one graph. Since the electrical conductivity data is highly reliable at this stage, this

can give information about the drainage behaviour of emulsions/foams for values of liquid fraction

that are difficult to access experimentally.
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7 Conclusion

The experimental results for drainage of an emulsion were quantitatively compared with two

theories in which the flow of the continuous phase is of the Poiseuille type, i.e. with zero velocity

at the interface of the two liquids. In the limit of low aqueous volume fraction, we predict that

wall effects can result in a substantial positive correction to the flow rate (estimated to be a

multiplying factor 1/f(λ)). With this refinement, the foam drainage theory provides a good

quantitative prediction of the relation between Q and φ. Our results suggest a limit of validity of

the low volume fraction drainage regime around φ = 0.06. For higher aqueous volume fraction,

analogies to the flow through porous media prove very useful. In particular, measurement of the

reduced permeability allows for a collapse of a wide variety of drainage data. We find a surprising

agreement with calculations for a model porous medium with a BCC arrangement of spherical

pores. Further investigation is required and should focus on the treatment of wall effects in this

theory.

The problem of liquid flow in foams or emulsions is closely linked to the problem of electrical

conductivity in such materials and a generalised conductivity can be identified that solves both

transport problems. Its usefulness in deriving a generalised flow equation needs to be explored in

future work.
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A Profile of aqueous volume fraction at the lower boundary of

the emulsion

The foam drainage equation, once integrated, gives an equation for the profile of aqueous volume

fraction ϕ(z) in steady drainage (Eq. 8 of Ref. [17]):

z

l1
=

1

2φ1/2

[(

arctan ϕ(0)1/2

φ1/2
− arccotanhϕ(0)1/2

φ1/2

)

−
(

arctan ϕ(z)1/2

φ1/2
− arccotanhϕ(z)1/2

φ1/2

)]

. (37)

Here z is the vertical coordinate measured upwards from the lower boundary of the emulsion. The

variable l1 in Eq. 37 is a characteristic length, defined by

l1 ≡ 2
√

c̃
l0

2

b
(38)

where b is the diameter of the bubbles or drops, c̃ is a constant with value close to 0.333 in the

case of a foam with a Kelvin structure [1] and l0 is the capillary length as in Eq. 3. As above, φ

is the bulk water volume fraction i.e. the limit which ϕ(z) reaches as z → ∞.
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Here the origin z = 0 corresponds to the bottom of the emulsion, where the drops take the

shape of spheres. Therefore our value of ϕ(0) is that of the void volume fraction for close-packed

spheres, ϕ(0) = 0.36.

Our aim is to compute the height L of the emulsion in the general case. Accounting for the

amounts of oil and of water in the system, we have:

L = L0 +

∫ L

0
ϕ(z) dz (39)

where L0 is the length of the column of oil when the emulsion has fully collapsed. The integral

on the right hand side of Eq. 39 can be transformed using integration by parts:

∫ L

0
ϕ(z)dz = L ϕ(L) −

∫ ϕ(L)

ϕ(0)
z dϕ(z). (40)

The length L may thus be split into three contributions:

L = L0 + φL + ∆L (41)

where the sum L0 + φL is the length calculated from Eq. 39 by setting ϕ(z) equal to the bulk

value φ everywhere, and letting ∆L account for the contribution of the bottom boundary effects

to the total column length. (Note that this is the equation used for the definition of aqueous

volume fraction φ in Eq. 2.) Using Eqs. 41, 39, 40 and Eq. 37, the following expression can be

obtained for ∆L:

∆L = φ1/2 l1

[(

ϕ(0)1/2

φ1/2
− arctan

ϕ(0)1/2

φ1/2

)

−
(

ϕ(L)1/2

φ1/2
− arctan

ϕ(L)1/2

φ1/2

)]

. (42)

When L is large compared to l1, the volume fraction at the top approaches its asymptotic value

i.e. ϕ(L) ≈ φ. In this limit Eq. 42 reduces to

∆L = φ1/2 l1

[

ϕ(0)1/2

φ1/2
− arctan

ϕ(0)1/2

φ1/2
− 1 +

π

4

]

, (43)

shown in Fig. 10.

For our study of dry emulsions with only water as the continuous phase, shown in Fig. 2,

the value of L(0) is 66.7cm, over 50 times greater than the corresponding value of ∆L(0), which

we consequently neglected (∆L(0) is calculated to be ϕ(0)1/2l1 from Eq. 43 in the limit φ →0,

equivalent to Q → 0).

Values of aqueous volume fraction φ in the shorter columns (L0 = 20.45cm and 13.06cm)

exceeded 0.1, therefore from Eq. 43 with ϕ(0) = 0.36 we have ∆L < 0.188 l1 <0.26 cm. It follows

that the use of Eq. 4 is justified. This also holds for the emulsions with water and 15% v/v of

ethanol as the continuous phase which had aqueous volume fractions higher than 0.2, since in this

case ∆L < 0.088 l1 <0.4 cm.
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B Calculation of the ratio a/d

Due to the overlap between neighbours in the sphere packings, the relation between the ratio a/d

and φ depends on the value of φ. We have in the BCC case:

1 − 31/2 π

8
< φ < 1 : φ = 1 − 31/2 π

(a

d

)3

1 −
(

33/2

4
− 1

)

π < φ < 1 − 31/2 π

8
: φ = 1 − 31/2 π

[

3
(a

d

)2
− 3

(a

d

)3
− 1

4

]

0.005501... < φ < 1 −
(

33/2

4
− 1

)

π : φ = 1 − 31/2 π

[(

3 +
33/2

2

)

(a

d

)2
− 6

(a

d

)3
− 1

4
− 1

2 × 31/2

]

(44)

and in the FCC case:

1 − π

21/2 × 3
< φ < 1 : φ = 1 − 25/2 π

3

(a

d

)3

1 − 21/2 π

(

3

2
− 20

35/2

)

< φ < 1 − π

21/2 × 3
: φ = 1 − 21/2 π

(

6
(a

d

)2
− 20

3

(a

d

)3
− 1

2

)

.(45)

Given a value of φ, the value of a/d can be calculated by solving Eq. 44 or Eq. 45, possibly

numerically, for instance with a Newton algorithm.
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Concentration Density difference Viscosity

in ethanol ∆ρ ηw

% v/v g/cm3 g cm−1 s−1

0 0.0256 1.002 10−2

5 0.0184 1.183 10−2

10 0.0121 1.386 10−2

15 0.0065 1.633 10−2

Table 1: Properties of water and ethanol mixtures. The density difference is calculated by ∆ρ =

ρw − ρo where ρw is the density of the mixture of water and ethanol [19]; ηw is the viscosity of the

mixture of water and ethanol [19].
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Figure 1: Experimental set-up for the study of steady drainage in an emulsion. The syringe pump

provides a constant input of aqueous surfactant solution at a flow rate Q.
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Figure 2: Emulsion length L versus flow rate Q as the dry limit is approached. Since the drops

did not coalesce at the end of the experiment, the extrapolation procedure described in the text

was used to find a value of L(0) = 66.68cm (marked by × on the abscissa). The cylinder diameter

was D = 9.0 mm and the drop diameter b = 3.23 mm. The continuous line is the corresponding

quadratic fit. The insert is a zoom on small values of Q.
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Figure 3: Water volume fraction as a function of the flow rate. (a) Measurements with cylinders

of different diameters, without ethanol. Data marked +: D = 9.0 mm, L(0) = 66.68 cm, b = 3.23

mm (as in Fig. 2). Data marked ⊙: D = 9.9 mm, L0 = 20.45 cm, b = 3.37 mm. Data marked

⊡: D = 12.4 mm, L0 = 13.06 cm, b = 3.37 mm. The lines are derived from the theory of high

liquid volume fraction, as presented in section 5 (calculated from Eq. 31 for a BCC structure and

values of Q0 calculated from Eq. 25). (b) Measurements for one emulsion subjected successively

to drainage with an increasing concentration of ethanol in water: D = 9.0 mm, L0 = 9.4 cm, b

= 3.40 mm. Ethanol concentration in the mixture: •: 0% v/v; �: 5% v/v; �: 10% v/v; N: 15%

v/v.



REFERENCES 20

0.000

0.005

0.010

0.015

0.000 0.001 0.002 0.003 0.004 0.005

φ
2

Q [cm3/s]

Figure 4: Squared water volume fraction as a function of flow rate for the data of Fig. 2 (+). The

continuous line is the linear fit in the limit as Q tends to zero: φ2 = c2
φ,expQ with c2

φ,exp = 3.37

s/cm3. The dotted line is the prediction of standard drainage theory and the dashed line is the

prediction when the Plateau borders along the walls are taken into account, see Eq. 24, with

λ = 2.78 in these experiments.

Figure 5: Side view of emulsion under drainage, for: a) Q = 0.00031 cm3/s and φ ≈ 0.032 ; b)

Q = 0.0125 cm3/s and φ ≈ 0.16. The internal diameter of the glass cylinder is 9 mm.
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Figure 6: Geometry of bulk and surface Kelvin cells, used for numerical calculations of drainage

which include surface flow. (a) bulk Kelvin cell of edge length r; (b) surface Kelvin cell split

(dashed line) into bulk and surface halves; (c) cross-section showing the bulk region and the

surface region of the interior of the cylinder.
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Figure 7: The function f(λ) is a numerical correction factor which takes account of flow along the

wall of the container. Here λ is the ratio of cylinder diameter to drop diameter. (Note that foam

structures with bulk Plateau borders require λ > 1.6.)
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Figure 8: Logarithm of the reduced flow rate Q/Q0 as a function of the aqueous volume fraction

φ. Data points are the experimental data of Fig. 3 (same symbols). Continuous line: the dry-limit

prediction obtained by inverting Eq. 24 with λ = 2.78. Dotted line: model of Eq. 31 assuming a

BCC structure. Dashed line: model of Eq. 31 assuming an FCC structure.
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Figure 9: Generalised conductivity as a function of the volume fraction φ of continuous phase.

Data points are from our drainage experiments on emulsions (Figure 3a) converted into flow

conductivities σf using Eq. 36. The solid line is an empirical function (Eq. 32) describing the

relative electrical conductance of foams. The good agreement demonstrates the analogy between

the problem of electrical flow and liquid flow through foams and emulsions.
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Figure 10: Normalized excess length of an emulsion or foam column as a function of the (normal-

ized) bulk liquid fraction. This length, which is calculated from Eq. 43, is due to capillary effects

at the bottom of the emulsion.


