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Abstract
We assess  the stability  of  simple two-dimensional  clusters  of  bubbles  relative to  small 
displacements of the vertices, at fixed bubble areas. The clusters analysed are: 1) flower 
clusters consisting of a central bubble of area λ surrounded by N shells each containing n 
bubbles of unit area, 2) periodic chain clusters consisting of N "parallel" rows of n bubbles 
of unit area and width w. The energy and bubble pressures of the symmetrical, unbuckled 
clusters are found analytically as a function of  λ and w for given  N and  n. Both types of 
clusters  studied  show  a  single  energy  minimum  at  a  critical  λm or  wm.  At  the  energy 
minimum for flower clusters, the pressure in the central bubble vanishes. The clusters show 
a  symmetry-breaking  buckling instability  under  compression  at  a  critical  λb or  wb.  The 
corresponding critical energy Eb was determined with the Surface Evolver software. While 
for N=1 the conditions λb = λm, wb = wm and Eb = Em hold, for N>1 buckling requires further 
compression  beyond  the  minimum,  for  which  the  energy  increases  with  increasing 
compression (decreasing λ or w), and the excess pressure in the central bubble of the flower 
clusters becomes negative. 
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1.Introduction
Considerable attention has been given in recent years to the determination of the perimeter 
minima of finite and periodic two-dimensional (2D) clusters with given cell areas. In 2001 
Hales [1] proved the honeycomb conjecture, which states that the partition of the plane into 
regular  hexagons  of  equal  area  has  least  perimeter.  Clusters  have  been  examined 
analytically [2-8], numerically [9-11] and experimentally [7]. 

Perimeter-minimising clusters have a simple analogy in the structure of a dry 2D 
foam [12]. The surface energy of a 2D foam is its perimeter multiplied by the film energy 
per unit length or film tension  γ . We therefore identify cells with bubbles and perimeter 
with energy. Minimisation of surface energy implies Plateau's rules for equilibrium [13, 
14]: the films are circular and meet at angles of 2π/3 at trivalent vertices. The contractile 
tendency of a film, endowed with the film tension γ, is balanced by a pressure difference 
across it;  the Laplace law dictates that a film of radius of curvature  R is balanced by a 
pressure difference ∆p = γ /R. 

In this paper we discuss the stability of the equilibria of two types of 2D finite 
clusters of bubbles: 1) flower clusters with N shells, each with n bubbles (“petals”) of the 
same area A=1, surrounding a central bubble of area λ; 2) chain clusters with N rows, each 
containing n bubbles of unit area, periodic in one direction (period nw, where w is the width 
of a bubble). Examples are shown in Fig. 1. Two-dimensional clusters of both types with 
N=1 were previously discussed in the literature [7, 10, 11, 15]. Here, we extend the work to 
higher N.

The  flower  clusters  for  N=1  were  shown  [11]  to  exhibit  a  buckling  type  of 
instability for n>6 when the area ratio λ is reduced to a critical value λm, at which point the 
cluster energy attains a minimum Em as a function of λ (i.e. λm =λb) as shown in Fig.2 (see 
Appendix A). At this critical point the energy per petal Em/n was found to be independent of 
n.  The cluster becomes “floppy” and destabilises, losing its n-fold symmetry. The energy 
Eb of the buckled clusters with λ<λm remains constant, E=Em [11], see Fig. 2. The pressure 
in the central bubble is equal to the outside pressure (excess pressure p*=0) at the energy 
minimum  [16],  and  p* decreases  to  negative  values  with  increasing  compression 
(decreasing λ). The buckling instability in flower clusters with N=1 was analysed by Weaire 
et al.  [11]  with the Surface Evolver program [17],  which allows the calculation of the 
Hessian matrix (the matrix of second derivatives) of the energy relative to infinitesimal 
displacements of the vertices, at constant bubble areas. The instability occurs when one of 
the eigenvalues of the Hessian becomes zero and buckling is evident in the distortion of the 
central  bubble.  The fundamental eigenmode causes an elliptical  buckling of the cluster. 
These  buckled  configurations  determined  with  the  Surface  Evolver  were  not  observed 
experimentally [18, 19]. Instead, another type of instability was detected in which a bubble 
is  ejected  from the  ring  of  “petals”  [18,  19].  The  difference  between  experiment  and 
simulation can be attributed to liquid held between the bubbles (Plateau borders) in the 
experiment and not present in the simulations. 

Brakke [20] provided one example of a flower cluster with N=2, n=24 and examples 
of chain clusters with  N up to 64 and n=2, which, under the Hessian matrix method, are 
stable at the energy minimum. Thus the energy minimum does not provide an indication of 
the point at which the instability will occur, and the Hessian eigenvalues must instead be 
calculated. For example, the flower cluster with  N=2,  n=24, has  λm=14.939 but becomes 
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unstable at λb=  13.084, when the excess pressure in the central bubble is pb
* =-0.068.  In 

this paper we show that, for any N>1, pb
*  is negative.

In periodic chain clusters with  N=1, buckling occurs at the energy minimum as a 
function of the width per bubble,  w, at which point the straight inter-bubble films start to 
rotate [15]. The buckled configuration can be calculated analytically. It has the energy of 
the minimum (Eb = Em) and the E(w) plot is as in Fig. 2, i.e. similar to that for N=1 flower 
clusters. Our Surface Evolver calculations confirm that  wm= wb for  N=1, but not for  N>1. 
For example, for N=2, n=24, the minimum occurs at  wm=0.848 but wb= 0.830 (the excess 
pressure in the bubbles is pb

* =1.204 at buckling). 
Here we determine the behaviour of both flower and chain clusters with multiple 

layers of bubbles (N>1), and compare it with the N=1 case. We will show, using analytical 
and Surface Evolver calculations, that the special properties of clusters with N=1, reviewed 
above, do not apply when N>1.

2. Analytical solutions
The  Plateau  rules  [13,  14]  enable  the  analytical  determination  of  the  equilibrium 
configuration of a cluster of bubbles.  For unbuckled flower clusters, the energy  E as a 
function of λ for fixed n and N is shown in Fig. 3a (details are given in Appendix A). The 
area ratio  λm  at which the minimum occurs is given in Fig.3b and in Fig.3c we plot the 
energy per petal at the minimum Em/γnN.  It was shown by Teixeira and Fortes [16] that the 
excess pressure p* in the central bubble vanishes at the energy minimum with respect to λ,  
for any n and N. 

The results of calculations for chain clusters (details are given in Appendix B) are 
shown in Fig. 4: the width per bubble wm and the energy Em/γnN per bubble at the energy 
minimum as a function of N. 

3. Surface Evolver results
3.1 Flower clusters
We used the Surface Evolver [17] in circular arc mode to determine the energy of a cluster, 
which provides a check on the calculated energy  E(λ) and allows us to find the point of 
instability of a flower cluster with the Hessian. Each film is represented by a circular arc, 
making the calculations precise and fast.  

The critical values λb at which zero eigenvalues first appear and the cluster becomes 
unstable under compression were determined for clusters with  N=1,  N=2 and  N=4 and a 
range  of  values  of  n.  As  mentioned  above,  the  critical  area  for  buckling, λb, for  N=1 
coincides with that at the energy minimum,  λm, at which point the excess pressure in the 
central bubble p* vanishes. However, for N>1 we always found that λb<λm and pb

*  <0 as in 
the example of Brakke for N=2 [20]. 

For N>1, symmetry breaking instabilities in flower clusters thus occur when p*<0 
and dE/dλ<0 and in general lead to a distorted, elliptical central bubble (as for  N=1) as 
shown in Fig 5a for  N=2 and  n=12 and in Fig. 5b for  N=4 and  n=12. The energy of the 
distorted  cluster  increases  with  decreasing  λ, and  is  only  very  slightly  lower  than,  by 
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around 0.01%, the energy that a symmetrical cluster with the same λ would have (see Fig 
5c and 5d), in contrast with what happens for N=1 (see Fig.2) as discussed above. 

In Fig. 6a, b we show λb  and λm for flower clusters with N between 1 and 5 and in 

Fig. 6c the ratio  λb  /λm . The excess pressure in the central bubble,  pb
* ,  at buckling is 

shown in Fig. 6d. We were not able to find simple relationships between λb and the energy 
per petal bubble  Eb/nN or the excess pressure  p* in the central bubble at buckling. It is 
striking that the λb /λm  and pb

*  plots of Fig. 6c and d are similar. The pb
*  data of Fig. 6d 

seems to indicate that an increase in the bending stiffness of the clusters imparted by an 
increase in N does not in general occur. 

Note that it is not possible to construct flower clusters for all choices of n, N and λ 
as we will discuss elsewhere. For example, for N=4, n=9 and λ in the interval 0.001≤ λ ≤ 4 
no clusters with 9-fold symmetry (i.e. the proper flower clusters) could be produced with 
the  Surface  Evolver.  Other  values  for  which  no  stable  cluster  could  be  found  can  be 
determined from the starting point of each curve in Fig. 6c or d.

3.2. Chain clusters
The Surface Evolver was used to examine chain clusters which are confined in a periodic 
box of length nw. Examples of the buckling instability in chain clusters with N=1, N=2 and 
N=4 are shown in Fig. 7. 

As for flower clusters, buckling of chain clusters with  N=1 occurs at the energy 
minimum, but for  N>1 buckling occurs beyond the minimum, for  wb < wm ,  i.e.  when 
dE/dw<0. For N=1 the energy of the buckled configuration is independent of w and equal to 
the minimum energy of the unbuckled configuration, as for flower clusters with N=1 (Fig. 
2). For N=1, the energy of the buckled configuration can be analytically determined in 2D 
[15] and also in 3D chain clusters [21]. It is indeed independent of λ or w in their interval of 
existence. For  N>1, however, the energy of the buckled configurations of the chains for 
w<wb is again close to, though slightly lower by around 0.005%, the calculated energy of 
the unbuckled configuration for the same w, as shown in Fig. 8.

The width of a bubble in a chain at the point of buckling wb is plotted in Fig. 9a. It 
increases with n for N>1 (the corresponding width in an unstrained honeycomb is 1.075). 
Fig.  9b  shows the  energy  per  bubble  at  buckling  Eb/γnN (the  value  for  the  unstrained 
honeycomb is  1.861).  Fig.  9c shows the ratio  wm/wb.  Finally,  Fig 9d shows the excess 
pressure in the bubbles at buckling.  In each case this pressure is above the excess pressure 
at the energy minimum. Again, wm/wb and pb

* exhibit similar behaviour.   

Summary 
Our main objectives in this study were the assessment of the stability of simple 2D clusters 
(flower and chain clusters) and the determination of the distorted configurations that result 
from instabilities. Both flower and chain symmetrical clusters show an energy minimum 
under  compression (i.e.  decreasing  the area  of  the  central  bubble  in  flower  clusters  or 
decreasing the width per bubble of the chain clusters). At the energy minimum the pressure 
in  the  central  bubble  of  a  flower  cluster  vanishes.  However,  the  instability  does  not 
necessarily  occur  at  the  energy  minimum,  as  conjectured  by  Vaz  and  Fortes  [19]. 
Determination of the eigenvalues of the Hessian matrix shows that, except for  N=1 (one 
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shell of bubbles in flower clusters and one row of bubbles in chain clusters), instability 
occurs  beyond  the  energy  minimum,  in  the  region  where  the  energy  increases  with 
compression and the excess pressure in the central bubble of flower clusters is negative. 
The distorted configurations predicted by the Surface Evolver have not yet been observed 
experimentally except for the chain clusters with N=1 [15]. The difficulty lies in performing 
either very "dry experiments" or simulations that include the liquid between the bubbles.
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Appendix A- Properties of symmetric flower clusters

For  symmetrical  unbuckled  flower  clusters  the  analytical  calculations  are  not 
straightforward  because  there  are  curved  inner  films,  although  the  films  in  the  radial 
direction  are  straight  by  symmetry.  The  curved  films  have  (positive)  radii  R0,  R1….RN 

where  N is the number of layers. The layers are numbered 1, …,  i, …N starting in the 
innermost layer. The central bubble is bubble 0. For n > 6 the curvature of the films of the 
central bubble is opposite to that of the other films. It is convenient to consider the chords 
of the curved films. The angle between a film and its chord is θi (i=1..N), i.e. the subtended 
angle of the circular film is 2θi . The chord polygon of a bubble in layer i is shown in Fig. 
A1. Introducing the equilibrium condition that angles between points of films at a vertex 
must be 2π/3:

θ0=
π
6
− π

n
 ; θ i=

π
2n

,  (1≤ i ≤N-1);  θ N=
π
6
 π

n
  .  (A1)

   

The areas of the bubbles are expressed in terms of the chord lengths,  Li=2Risinθi and the 
angles θi and lead, upon considerable simplification, to the following equations for the Ri 

(i=0...N with N>1):

R0
2= λ

nc0
;

c i R i
2=c0 R

0

2i , (1≤ i ≤N-1); (A2a)

c N R N
2 =c0 R

0

2N

with 

c0=−θ0
1
2

sin θ0

sin π /n 
;

c i=2θi−
1
2

tg θ i , (1≤ i ≤N-1);            (A2b)

c N=θ N
1
2

sin θ N

sin π /n 
.

These equations give the Ri (i=0...N) for each λ, N and n. 
The excess pressure in the central bubble, p*, is given by 

p*

γ
=− 1

R0

∑
i=1

N
1
Ri

(A3)

and the energy is 

E
2nγ

=−c0 R0∑
i=1

N−1

ci RicN RN . (A4)
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Both depend on N, n and λ.
At the energy minimum dE=0 we have

−c0dR0c1 ∑
i=1

N−1

dR icN dRN=0 . (A5)

Differentiation of equation (A2a) at fixed n, N, gives 

c0 R0dR0=c1 R i dR i=c N R N dRN          (1≤ i ≤N-1). (A6)

Combining equation (A5) and (A6) with (A3) we find

p*=0 (A7)
at the energy minima. (This is in fact a general property of free bubble clusters [16]). 

For clusters with a single layer (N=1), we have 

θ0=
π
6
− π

n
;

(A8)

θ1=
π
6
π

n
;

c0=−θ0
1
2

sin θ0

sin π /n 
;   c1=θ1

1
2

sin θ1

sin  π /n 
;   (A9)

           R0
2= λ

nc0
;                    c1 R1

2=c0 R
0

21 ; (A10)

E
2nγ

=−c0 R0c1 R1 ;              
p0

γ
=− 1

R0

 1
R1

. (A11)

At the energy minimum p*=0 and R0=R1=R. From equation (A2a) we find   c1−c0 R2=1  

and λ=
nc0

c1−c0 
1/2 . For N=1 the energy per petal at the energy minimum  Em/ nγ   is 

Em

nγ
=2c1−c0 

1/2=2 π
3
3

2
1/2=2 .7662 ,

(A12)
independent of n (cf. Fig. 5d).

8



Appendix B- Properties of symmetric chain clusters

In  unbuckled chain clusters  with any  N,  n,  the inner edges are  straight  because of the 
Plateau law of angles of 120º at vertices. The pressure is thus uniform but larger than the 
outside pressure, because the peripheral films are curved (Fig. 1). Let w be the width of one 
cell, and R0 the radius of the peripheral films. We have R0 =w. Denoting by L1 the length of 
the  straight  films  in  the  peripheral  cells,  and  by  L2 the  length  of  inner  films,  both 
perpendicular to the chain direction, and noting that the length of the inner inclined films is 
w /3  we obtain for the area of a peripheral cell 

A p=wL1w2  π
6
−3

6
 (B1)

and for the area of an inner cell

Ai=wL2
w2

23
. (B2)

Setting Ap = Ai =1 we obtain L1 and L2 as a function of w.   
The total energy is

E
γ
=n[ 2π

3
w2L1 N−2 L2

2w

3
 N−1] . (B3)

Introducing the relations between L1, L2 and w yields 
E

γ nN
= 1

w
w   3

2
 π

3N
 . (B4)

There is an energy minimum at 

wm= 3
2
 π

3N
−1/2 ; (B5)

Em

γ nN
=2 3

2
 π

3N
1/2 . (B6)

The excess pressure in the bubbles is p* =γ/w. The width wm for N=1 is  3
2

 π
3
−1/2  ; for 

chains  (with  N=1)  of  disks  or  of  regular  hexagons  in  contact,  the  values  of  w are, 
respectively, 1.128 and 1.074.
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Figure Captions
Figure 1 – Flower clusters with (a) N=2 and n=12; (b) N=4 and n=12. The central bubble 
has area  λ, while the “petals” have unit area; (c) Chain cluster with  N=4 and  n=30. The 
width of a bubble is w. Only the peripheral edges are curved, with radius R0 and subtended 
angle 2θ0, where θ0 is the angle between the curved films and their chords.

Figure 2 - Schematic representation of the energy as a function of w or λ for N=1 in flower 
and chain clusters. The short horizontal segment illustrates that for the buckled clusters, 
only in the case  N=1, the energy remains constant. Actual values are different for flower 
and chain clusters (see text).

Figure  3-    Plots  of  the  exact  relations  derived  in  Appendix  A for  symmetrical  flower 
clusters with N shells, each with n petals (n>6) of unit area surrounding a central bubble of 
area  λ: a) energy per petal bubble  E/nγ versus  λ for  N=2 and n=12; b) area  λm at energy 
minimum versus  n for  various  N;  c)  energy minimum per  petal,  Em/nNγ  versus  n for 
various N. Some of these clusters can not be constructed.

Figure 4 - Bubble width and energy per bubble at the energy minimum as a function of the 
number of rows N in chain clusters.

Figure 5 - Buckled flower clusters: (a)  N=2 and n=12 for λ =1.  In this cluster λm =1.40 and 
λb =1.11; (b)  N=4 and n=12 for  λ = λb. In this cluster  λm =0.98 and λb =0.89; (c) and (d) 
Energy as a function of λ of the symmetrical configuration (exact calculations and Surface 
Evolver) and of the distorted (buckled) configuration, respectively for the clusters with N=2 
and  n=12  and  for  N=4  and  n=12.  For  the  same  λ,  the  energies  of  the  buckled  and 
symmetrical clusters are almost the same.

Figure 6 – Surface Evolver results for flower clusters for various N and n: a) the area of the 
central  bubble at  the point  of instability,  λb;  b)  the area at  which the energy minimum 
occurs,  λm; c) the ratio λb /λm   and d) the excess pressure pb

*  in the central bubble at the 
point of instability.

Figure 7 - Buckled configurations of chain clusters for a) N=1 and n= 3; b) N=2 and n= 7; 
c) N=2 and n= 15 and d) N=4 and n = 20.

Figure 8 –Energy per bubble as a function of width of the bubbles w for a chain cluster with 
N=2 and n=20. Here wm =0.848 and  wb =0.822.

Figure 9 - Chain cluster results. a) Critical width wb at which buckling occurs; b) Energy 
E/nN at the critical width; c) ratio wm/wb and d) excess bubble pressure at w= wb .

Figure A1 – Definition of radii and angles of films in flower clusters. θi is one half of the 
subtended angle of a film of radius Ri, as in Fig. 1. 
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