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Bubble monolayers are model systems for experiments and simulations of 2D packing problems of
deformable objects. We explore the relation between the distributions of the number of bubble sides
(topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical
model [M. Durand, Europhys. Lett. 90, 60 002 (2010)] which takes into account Plateau laws. We
predict the correlation between geometrical disorder (bubble size dispersity) and topological disor-
der (width of bubble side number distribution) over an extended range of bubble size dispersities.
Extensive data sets arising from shuffled foam experiments, Surface Evolver simulations and Cellular
Potts model simulations all collapse surprisingly well and coincide with the model predictions, even
at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate
predictions [M. Durand et al., Phys. Rev. Lett. 107, 168304 (2011)]. At extremely low dispersity,
when approaching the perfectly regular honeycomb pattern, we study how both geometrical and
topological disorders vanish. We identify a crystallisation mechanism and explore it quantitatively
in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallise
over a larger range of size dispersities than hard disks. The model predicts that the crystallization
transition occurs when the ratio of largest to smallest bubble radii is 1.4.

PACS numbers: 83.80.Iz Emulsions and foams, 02.70.Rr General statistical methods
Keywords:

I. INTRODUCTION

Bubble monolayers with low liquid content, in which
bubbles tile the plane without gaps nor overlaps, are
model systems for experiments and simulations of 2D
packing problems with deformable objects. In such a
quasi two-dimensional foam, the average bubble size is
determined by the total number of bubbles. The aver-
age bubble side is determined by Euler’s theorem, and is
equal to 6. Hence what distinguishes two foams are their
disorders [1, 2]. The geometrical disorder is the relative
width of the bubble size distribution; it is fixed by the
repartition of gas between bubbles, and it plays a role
in a foam’s mechanical properties [3]. The topological
disorder is the relative width of the bubble side number
distribution; it is determined by the past history of the
foam, and it plays a role in foam coarsening [4].

Statistically, within a given bubble configuration, a rel-
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‡UMR 5588 CNRS & Université Grenoble I

atively large bubble has more neighbours than a smaller
one. Thus the geometrical disorder impacts on the topo-
logical disorder; experiments and simulations suggest
that both measures of disorder are correlated [5]. Un-
derstanding this geometry-topology correlation requires
a statistical description of foam structure: this is a chal-
lenge [6]. Existing models are based either on energy
minimisation only [7, 8], entropy only [9–15], or a bal-
ance of both energy and entropy to determine a free en-
ergy using a statistical mechanics approach: de Almeida
and Iglesias [17] have proposed a detailed prediction of
foam structure and predict the distributions of bubble
area (in cases where it is supposed to be free, for instance
in the self-similar coarsening regime [2]) or topology. One
more recent attempt describes bubbles by their size, irre-
spective of their shape, and predictions are based upon a
packing of hard discs around which polygons are drawn
[18].

Conversely, one of us has proposed a new statistical
approach, in which a space-filling constraint (curvature
sum rule [1]) replaces an energetic constraint [19]. It al-
lows, in a mean field approximation, to determine the
probability distribution of the number of sides of a bub-
ble of given area; it thus applies in principle to a foam
which has any given bubble area distribution. Using a
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mean-field approximation valid at moderate geometrical
disorders, we have solved this model analytically and suc-
cessfully compared its predictions with experiments and
simulations, without adjustable parameters [20].

Here, we further develop that work. Section II de-
scribes the model. Section III shows that, without ap-
proximation, this model predicts the foam topological
disorder for a very large range of dispersities. Section
IV successfully compares it, again without adjustable
parameters, with the preceding experiments and simu-
lations complemented by new simulations at even higher
dispersity. Section V investigates in detail the topological
ordering at very low dispersity.

II. MODEL

A. Principle

Our model is based on the ideas introduced in [19],
which we now briefly recall. For each given bubble, we
denote by A its area, P its perimeter, and n its number
of sides. In what follows we largely use its effective ra-
dius R =

√
A/π, i.e. the radius of the circle which has

the same surface area, because it correlates well with its
number of sides (see Fig. 10 below). Finally we denote

by e = P/
√
A = P/(R

√
π) its elongation.

At low liquid fraction, 2D bubbles are polygons with
curved sides. Their sides have a uniform line tension, so
that the foam energy is proportional to the sum of bubble
perimeters. Bubbles decrease their energy by decreas-
ing their contact perimeter with their neighbours. Their
shapes are locally governed by the following Plateau’s
laws [2, 21]. (i) Each side is a film separating two bub-
bles; its curvature is determined by the difference of pres-
sure between these two bubbles: thus each side has con-
stant curvature, that is, it is an arc of circle. (ii) The
sides meet in threes at 120◦ angles.

Due to the simplicity of these local laws, a bubble has
a rather regular shape. Despite the existence of correla-
tions between the number of sides of neighbouring bub-
bles [1, 2, 22, 23], it happens that the correlations be-
tween the size and number of sides of a bubble are close
to those of a regular bubble (i.e. with sides of same length
and curvature) [2, 8, 24]. Therefore, the elongation e is
always close to the average elongation of a regular bub-
ble, which in turn is close to that of a hexagon, whatever
n. In practice e is close to ē ' 23/231/4 ' 3.72:

P ' ē
√
πR. (1)

Thus for a given area distribution, the total foam energy
is almost fixed. Within a macro-state, the set of micro-
states is defined as the set of all accessible local energy
minima: we assume they all have the same probability,
and that energy does not play any role of selection be-
tween micro-states. We now discuss the extensive vari-
ables that define a macro-state.

In a shuffled foam (see section IV for discussion of this
notion), bubbles can undergo topological changes (called
“T1 processes” [1, 2, 16]) in which they change neigh-
bours, without changing their area, and thus swap sides
and side-numbers. We define a bubble curvature κ as the
sum of the algebraic curvatures of its sides. We count
the curvature of a bubble side as positive if the centre of
curvature is outside the bubble. In the same mean field
approximation, where neighbour correlations are disre-
garded and every bubble is surrounded by a homoge-
neous and isotropic foam, the 2D Gauss-Bonnet theorem
implies that each side of an n-sided bubble has on average
a curvature (n− 6)π/(3P ) [2, 8]. Hence

κ =
n(n− 6)π

3P
≈
√
π

3ēR
n(n− 6), (2)

for n ≥ 2 (n = 1 is not a stable configuration as the two
above Plateau laws cannot be simultaneously satisfied).
For n = 3, κ reaches its lower bound, which is negative:
κmin = −3

√
π/(ēR). On the other limit, at large n, κ is

positive and can be arbitrarily large.
Each T1 contributes to the redistribution between

neighbouring bubbles of two quantities: the curvature
and the number of sides. That is, during a T1, two bub-
bles lose a side and two other bubbles gain one side, while
the sum of n over the four bubbles involved, and hence
the total number Ns =

∑
n of sides in the foam, remain

constant. Similarly, the sides created or destroyed dur-
ing a T1 have a curvature contributing positively to a
bubble and negatively to its neighbour. Thus the total
curvature is strictly conserved. Since, in the mean-field
approximation, the curvature of a bubble is related to its
number of sides [Eq. (2)], the sum of κ over the four bub-
bles involved in the T1 also remains constant. A foam’s
macro-state is then defined by its total curvature κtot and
total number of sides Ns, which are constant during any
shuffling from one micro-state to another. We denote by
〈.〉 the average over all bubbles in a foam. For a very
large foam (N → ∞), the constraint of space-filling sets
the values [2, 16, 25]:

〈κtot〉 → 0,

〈Ns〉 → 6N. (3)

B. Grand-canonical description

Eqs. (3) provide an implicit relation between the dis-
tributions of bubble sizes and side numbers. We thus
turn to a grand-canonical description: for a given bubble
with size R, the rest of the foam constitutes a reservoir of
sides and curvature, exchanged through T1s. We denote
by p(R) the bubble size distribution, and p(n) the side
number distribution. The probability pR(n) for a bub-
ble with size R to have n sides (conditional side number
distribution) is

pR(n) =
1

ξ (R)
exp

[
−β
√
π

3ēR
n(n− 6) + µn

]
, (4)



3

where the partition function of the bubble is

ξ(R) =
∑
n≥2

exp

[
−β
√
π

3ēR
n(n− 6) + µn

]
(5)

Here β−1 and µβ−1 are analogous to the “tempera-
ture” of the reservoir of curvature, and the “chemical po-
tential” of the reservoir of sides, respectively [26]. Their
values are unambiguously related to the mean values of
κtot and Ns through

〈κtot〉 = −∂ ln Ξ

∂β
,

〈Ns〉 =
∂ ln Ξ

∂µ
, (6)

where Ξ is the partition function of the entire foam, de-
fined as

ln Ξ = N

∫ ∞
0

p(R) ln ξ(R)dR. (7)

Combining Eqs. (3) and (6) yields, in the limit of a
large foam, the system of equations:

∂ ln Ξ

∂β
= 0,

∂ ln Ξ

∂µ
= 6N. (8)

Solving Eqs. (8) yields the values of β and µ.

III. PREDICTIONS

For a perfectly monodisperse foam, an exact analyt-
ical resolution of Eqs. (8) is possible, and as expected
yields only six-sided bubbles [19]. Otherwise, the exact
resolution of Eqs. (8) is more difficult. In Ref. [20]
we derived analytical predictions, using approximations
valid for a foam with moderate polydispersity. We now
want to extend this approach to a wider range of disper-
sities (section III A), and compare it with the numerical
resolution of the equations (section III B).

A. Analytical resolution

Let us first introduce notation to simplify Eqs. (4,5).
By defining

β̃ =

√
π

3ē
β = 0.1587 β (9)

we can rewrite Eq. (4) as

pR(n) = c(R) exp

[
− (n− n̄(R))2

2σ2

]
, (10)

with n̄(R) and σ(R) defined by

n̄(R) = 3 +
µR

2β̃
,

σ2(R) =
R

2β̃
, (11)

and the normalisation prefactor given by

c(R) =
1

ξ (R)
exp

[
β̃

R
n̄2(R)

]
. (12)

Calculating ξ(R) requires that we calculate the series∑
n≥2 exp

[
−(n− n̄(R))2/(2σ2)

]
which defines c (R) [Eq.

(10)].
The terms of this series naturally suggest to approx-

imate it, perhaps crudely, by a Gaussian integral. Al-
though n is an integer larger than 2, we replace it by
a real number that varies continuously from −∞ to ∞.
This amounts to approximating c(R)−1 as

1

c(R)
≈
∫ ∞
−∞

exp

[
− β̃
R

(n− n̄(R))
2

]
dn. (13)

Within this approximation, n̄ and σ represent the av-
erage and the standard deviation of the Gaussian law.
Using Eqs. (12, 13) we immediately obtain the partition
function:

ξ(R) ≈ exp

[
β̃n̄2(R)

R

]√
πR

β̃
, (14)

and, through Eqs. (8), we solve for β (or β̃) and µ:

1

β
=

6
√
π

ē

(〈
1

R

〉
− 1

〈R〉

)
, (15)

1

µ
= 3

(
〈R〉

〈
1

R

〉
− 1

)
. (16)

As a first product of the calculation, we obtain the
average side number for a given bubble size:

n̄(R) ' 3

(
1 +

R

〈R〉

)
. (17)

This predicts a linear correlation between the geometry
and topology of individual bubbles.

Second, we obtain the average of the square of the side
number:

〈n2〉 =

∫ ∞
0

p(R)

ξ(R)

∂2ξ

∂µ2
dR. (18)

The topological disorder ∆n/〈n〉 =
√
〈n2〉 − 〈n〉2/〈n〉

can then be calculated, and expressed in terms of the
characteristics of the size distribution:(

∆n

〈n〉

)2

=
1

4

(
〈R〉

〈
1

R

〉
+
〈R2〉
〈R〉2

− 2

)
. (19)
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The r.h.s. of Eq. (19) defines a new parameter which
characterises the size disorder:

D =
1

2

√
〈R〉〈R−1〉+ 〈R2〉〈R〉−2 − 2, (20)

i.e.

4D2 = 〈R〉
〈

1

R

〉
− 1 +

(
∆R

〈R〉

)2

(21)

B. Numerical resolution

We compare the analytical expressions [Eqs. (15,16)]
with the numerical solution of Eqs. (8) for the follow-
ing distributions of bubble areas: bidisperse, tridisperse,
and log-normal. Figures (1) and (2) show that the an-
alytical expressions are very good approximations in a
range which is much larger than in Ref. [20]. At larger
disorder, the analytical expressions are valid as long as
〈R〉β−1 . 1 and D2 . 0.4. At smaller disorder, the an-
alytical expressions are valid down to the crystallization
transition, which we now study in detail.

0

0.5

1

1.5

0 0.5 1 1.5

bidisperse
tridisperse
log-normal
y=x

bidisperse
tridisperse
log-normal
y=x

0

0.5

1

1.5

0 0.5 1 1.5

FIG. 1: Analytical approximation [Eqs. (15,16)] versus nu-
merical solution of Eqs. (8). Each point corresponds to a
different foam with bidisperse, tridisperse or log-normal dis-
tribution of bubble areas. Top: effective temperature β−1,
rescaled by the averaged bubble radius. Bottom: effective
chemical potential µβ−1. The solid red line y = x is a guide
for the eye.

C. Order-disorder transition

For clarity, in Fig. 3 only two bidisperse foams ex-
tracted from Fig. 2 are shown. We observe: (i) crystal-

0
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0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

bidisperse
tridisperse
log-normal
y=x

FIG. 2: Topological disorder vs geometrical disorder param-
eter D: comparison between numerical solution of Eqs. (8)
(symbols) with the analytical approximation [Eq. (19)] (solid
red line) for foams with bidisperse, tridisperse and log-normal
distributions of bubble areas. Each point corresponds to a dif-
ferent foam. Abscissa is the r.h.s. of Eq. (19), defined in Eqs.
(20, 21).

lization (only 6-sided cells) of foams with low dispersity;
(ii) a range of “forbidden” values of topological disor-
ders (gap); (iii) good agreement between analytics and
numerics above the crystallization threshold.

Crystallization, which implies ordering (vanishing
topological disorder), occurs even at finite geometrical
disorder: all bubbles are hexagons although their areas
differ slightly. This is simply due to the fact that the
number of sides is an integer. The topological disorder
is non-zero only when the foam contains bubbles with
n 6= 6 sides, which implies a discontinuous transition.
Points corresponding to the crystallized configurations
are below the y = x line in Fig. 3.

Although mean-field approximations are seldom ap-
propriate for describing phase transitions, we can esti-
mate the threshold at which the order-disorder transition
takes place, that is, for the value of geometrical disorder
at which our equations admit a solution with at least one
non-hexagonal bubble. In the side number distribution
[Eq. (10)] n = 6 is the dominant term, followed by n = 5
and 7. More precisely, since n̄(R) is an increasing func-
tion of R, large bubbles have 6 or 7 sides only, and small
bubbles have 5 or 6 sides only. Thus, just at the transi-
tion, at least one small bubble is 5-sided and one large
bubble is 7-sided: they appear simultaneously in order
to preserve the average 〈n〉 = 6. The following argument
is valid for any shape of bubble size distribution, but we
present it first for the bidisperse case, which is easier to
explain.
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0.4

0 0.1 0.2 0.3 0.4

bidisperse
bidisperse
analytical approximation

FIG. 3: Comparison between numerical resolution of the
equations of the model, and their analytic approximation for
two bidisperse foams with different fractions of small bubbles
α, extracted from Fig. 2. Black dots: α = 0.1; Blue dots:
α = 0.5. Solid red line: analytic approximation of the model
[Eqs. (19, 20)]. The dashed lines indicate the coordinates
of the respective crystallization thresholds predicted by Eqs.
(25) and (32).

Consider a bidisperse foam, which mixes two popula-
tions of bubbles with different sizes. We denote by Rs

the radius of small bubbles, α their proportion, and by
Rl and 1 − α for the large bubbles. The size ratio is
r = Rl/Rs > 1. We introduce the simplified notation
psn = pRs

(n) and pln = pRl
(n) for the proportions of n-

sided small and large bubbles. Below the transition, the
proportions ps6 and pl6 are one, all other proportions are
zero. Above the transition, the proportions ps5 and ps7 are
finite but small, while ps6 and pl6 slightly decrease accord-
ingly. Normalization implies:

ps5 + ps6 = 1,

pl6 + pl7 = 1. (22)

With this notation, and using Eq. (2), just above the
transition Eqs. (3) become

α
5

Rs
ps5 = (1− α)

7

Rl
pl7, (23)

α ps5 = (1− α) pl7. (24)

Dividing Eq. (23) by Eq. (24) indicates that the transi-
tion occurs for a critical large-to-small size ratio of

rc =
7

5
= 1.4. (25)

Figure 4 shows that the prediction of Eq. (25) is in excel-
lent agreement with the numerical solution of the model,

0
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0.15

0.2

0.25

0.3

0.35

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

bidisperse

{

FIG. 4: Topological disorder vs large-to-small-radius ratio
r = Rl/Rs for bidisperse foams with various small bubble
proportions α.

which yields rc ' 1.4 for any proportion α of small bub-
bles.

In fact, this result is not sensitive to the details of the
model. It does not depend either on the respective pro-
portions of bubbles, or even on the foam being bidisperse:
in a well-shuffled foam with any bubble size distribution,
the order-disorder transition occurs when there exist at
least two bubbles with sizes in a ratio ≥ 1.4.

This crystallization threshold sheds light on the pecu-
liar behavior investigated by Aste & Sherrington [39].
They considered 2D foams from a purely topological
point of view, characterizing bubbles only by their lists
of neighbours (and not by their size or shape). They sim-
ulated large numbers of bubble rearrangements in such
foams, and observed a “glass transition” as their param-
eter βAS reaches the critical value ' 2.4. This parameter
corresponds, in our notation, to

βAS =
β̃

R
=
〈R〉
18R

1

〈R〉〈R−1〉 − 1
. (26)

Taking R = Rs and α = 0.5, we obtain at r = rc the
value 2.33 for this parameter, which is close to the Aste
& Sherrington value.

It is interesting to compare our value of rc = 1.4
[Eq. (25)] with that of hard discs, where the determina-
tion of rc is sensitive to the definition of neighbourhood.
Hamanaka and Onuki [40] define two Lennard-Jones par-
ticles as neighbours if their distance is less than 1.5 times
the Lennard-Jones distance; with this definition they find
a transition at rc ≈ 1.17− 1.2 [40]. Taking a stricter def-
inition, as for instance in the case of perfectly rigid hard
discs, would result in an even smaller value of rc.
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This shows that, due to their deformability, bubbles
can accommodate more dispersity than hard discs while
all bubbles remain 6-sided. This is reminiscent of the
“kissing problem”: while a hard disc can have at maxi-
mum only six identical neighbours, a deformable bubble
can accommodate twelve neighbours of the same area
[41].

D. Disorder at crystallisation threshold

0
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0.08

0.1

0.12

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

 Numerics          

 Eq. (32)

 Eq. (19) with 

FIG. 5: The value of topological disorder at the crystallisa-
tion threshold versus the proportion of small bubbles. Dots:
numerical resolution. Red line: prediction from the model for
a bidisperse foam [Eq. (32)]. Blue line: value obtained by
the analytical approximation [Eq. (19)] taken for a bidisperse
foam with bubble size ratio r = rc = 1.4.

For a bidisperse foam, the proportions of 5-, 6-, and
7-sided bubbles at the transition are easily calculated,
since Eq. (4) gives

ps5
ps6

= exp

(
5β̃

Rs
− µ

)
, (27)

pl7
pl6

= exp

(
−7β̃

Rl
+ µ

)
. (28)

Multiplying Eq. (27) by Eq. (28) and using Eq. (25)
shows that, at the transition (r = rc),

ps5 p
l
7 = ps6 p

l
6. (29)

Solving the four Eqs. (22, 24, 29) for the four unknowns
ps5, ps6, pl6, pl7, yields:

ps5 = pl6 = 1− α
ps6 = pl7 = α. (30)

At the transition, ∆n can be calculated:

(∆n)2 = αps5 + (1− α)pl7 = 2α(1− α), (31)

so that the critical topological disorder value (∆n/〈n〉)c
at the transition is:(

∆n

〈n〉

)
c

=

√
2α(1− α)

6
. (32)

Fig. 5 compares this expression with the numerical solu-
tion. The values obtained confirm that the approxima-
tion is very good up to the crystallisation transition. We
also report on this figure the critical value obtained from
the approximate solution [Eq. 19] for a bidisperse dis-
tribution with bubble size ratio r = rc = 1.4. Despite a
slight asymmetry in the latter prediction, the agreement
is surprisingly good, given that Eq. (19) relies on a mean
field approximation and treats the integer n (n ≥ 2) as
if it could take all real values.

The details of the model and of the bubble size distri-
bution do play a role to estimate the proportions of 5-,
6-, and 7-sided bubbles at the transition. For an arbi-
trary bubble size distribution, what matters are the tails
at small and large sizes. More precisely, in Eq. (32)
the number α should be replaced by the proportion of
bubbles, in these tails, which have sizes in a ratio ≥ 1.4.

IV. TESTS

The notion of “shuffling” is empirically defined as
“having enough T1 processes per bubble to forget about
the foam’s initial preparation” [5, 17], that is, to re-
move both residual trapped stresses and spurious corre-
lations. Numerical simulations and theoretical analyses
have made precise the conditions under which the ini-
tial preparation can really be forgotten for a foam under
shear; they have shown that perfect shuffling is seldom
reached in practice, but can be well approximated by cy-
cles of shear along all directions, with an amplitude that
is at first significantly larger than the yield strain, and
then progressively decreases [27, 29].

Experiments were performed with 2D foams with a
small fraction of water (rather “dry” foams). Simulations
were performed in the completely dry limit. The distri-
butions of areas were either bidisperse, or polydisperse
(in simulations we used normal (Potts), Poisson (SE1),
or log-normal (SE2) distributions, as described below),

with relative width ∆A/〈A〉 =
√
〈A2〉 − 〈A〉2/〈A〉 rang-

ing from 0 to 6.46. Most experiments and simulations
used here have already been presented in Ref. [20].

Briefly, in experiments [Fig. 6], a bubble monolayer
of up to N = 2700 bubbles is confined at the air-water
interface by a glass plate [30]. The foam is enclosed in a
324 cm2 square with two parallel rigid boundaries (one
fixed, one driven by a motor) and two passive lateral
boundaries formed by a rubber band [31]. It can thus be
deformed into a parallelogram at constant area to apply
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FIG. 6: Experiments: mono, bi and polydisperse foams.
FIG. 7: Cellular Potts model simulations: mono, bi and poly-
disperse foams. For the bidisperse foam, the population of
small bubbles is highlighted.
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FIG. 8: Surface Evolver simulations SE1: mono, bi and poly-
disperse foams.

FIG. 9: Surface Evolver simulations SE2: foams with moder-
ate and high polydispersities.

pure shear cycles with an amplitude much larger than
the yield strain. For details see [5, 31].

Cellular Potts model simulations [8, 32] [Fig. 7] are
fast, enabling us to scan a large range of disorders and
accumulate statistics. They describe each bubble as a set
of pixels, like in experimental images. Initially, we dis-
tribute at random N = 112 nine-pixel bubble seeds on a
200× 200 pixel lattice. They are grown until they reach
approximately the average bubble size 〈A〉, chosen to be
400 pixels. They are then randomly assigned target ar-
eas according to the desired area distribution. To shuffle
the foam, we choose the effective temperature, and thus
the amplitude of bubble edge fluctuations, high enough
that T1s occur spontaneously [33]. The simulations are
run for 2 × 106 Monte Carlo Steps (MCS), at which we
checked that ∆n/〈n〉 reaches a steady value. Measure-
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ments presented here are averages over images in this
steady regime.

Surface Evolver [34, 35] simulations are more precise.
They represent each side as an arc of a circle [Figs. 8 and
9]; they provide detailed information about each bubble’s
position and shape. In our first set of data (hereafter
“SE1”), already used in Ref. [20], each foam is prepared
from a Voronoi construction based on seed points gener-
ated by a random Poisson point process [36, 37], with the
bubble areas adjusted to fit the desired area distribution
where necessary, before convergence to an energy mini-
mum. We cyclically shear, by deforming the shape of the
periodic box, about four hundred foams with N = 2500
bubbles in two perpendicular directions with strain am-
plitude 1.5.

New Surface Evolver simulations (hereafter “SE2”)
were performed to create random 2D foams with very
large polydispersity by adapting the methods of Kraynik,
Reinelt and van Swol [27, 28] for modeling random 3D
foams. First, molecular dynamics was used to generate
dense packings of rigid disks with densities ranging from
0.84 to 0.91. Then, Laguerre (weighted-Voronoi) tessel-
lations were used to fill space with convex polygonal cells
that enclose each disk and set the cell-area distribution.
Foam polydispersity was controlled by using a lognormal
distribution of the disk diameters, and varying the width
of the distribution as well as the maximum diameter (to
control the formation of extremely large cells). The Sur-
face Evolver [34, 35] was then used to relax the Laguerre
structures to satisfy Plateau’s laws. In strong contrast to
3D simulations, the 2D relaxation process involved very
few if any topological transitions that are triggered by cell
edges shrinking to zero length. Consequently, the topo-
logical statistics of the Laguerre tessellations and fully
relaxed foams are virtually identical. The foams were
not shuffled. Finally, a slight distortion of the spatially
periodic unit cell is performed until the stress becomes
isotropic.

These experiments and simulations show a linear cor-
relation between the geometry and topology of individual
bubbles, as predicted by Eq. (17), with a 7% difference
in the slope [Fig. 10]. They also successfully test the
prediction of Eq. (19) [Fig. 11]. Actually, the analytic
approximation (19) seems to work far beyond its domain
of validity (see section III B). The comparison of the
whole distributions of sides (see Fig. 12), rather than
simply their second moments [42], shows that for slightly
polydisperse foams (Fig. 12a), the agreement between
the data and the model is extremely good. For larger
dispersities (Fig. 12b), both the analytic approximation
and the exact solution of the equations depart from the
data as the size polydispersity increases. However, con-
sidering that our model has no adjustable parameters,
and that SE2 foam samples are not shuffled, the shape
and position of the distribution peaks are reasonably well
predicted. The model could still be improved by revisit-
ing the equiprobability hypothesis and/or the mean field
approximation [19].
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FIG. 10: Average number of sides n̄ of a bubble vs its relative
size R/〈R〉 =

√
A/〈
√
A〉. This figure is the same as Fig. 2a

of Ref. [20], with more data and larger polydispersities. Each
foam contributes several points: two points for a bidisperse
foam, more dispersed points for a polydisperse foam. Solid
red line: Eq. (17). Dashed green line: polynomial fit of
degree 1 of the raw data: n̄ − 6 = (3.22 ± 0.02) (R/〈R〉 − 1).
Inset: same data plotted vs A/〈A〉, highlighting the nonlinear
dependence of n̄ on A.

V. LOW DISPERSITY LIMIT

At very low dispersity, we do not observe in experi-
ments or in simulations the order-disorder transition pre-
dicted by our model. Although mean-field approxima-
tions are seldom adapted to provide a good description of
phase transitions, there are several possible reasons why
this transition is not clearly observed in simulations and
experiments. First, unlike simulations, which can use pe-
riodic boundary conditions (or boxes with sides meeting
at π/3 or 2π/3 angles, such as triangular or hexagonal
boxes), experiments usually have rectangular or square
boundaries, which are incompatible with a honeycomb
pattern. Since each boundary locally orients the honey-
comb lattice, in a rectangular box there are at least two
perpendicular orientations of the honeycomb, resulting in
at least two grain boundaries with length of order N1/2 .
Topological considerations [38] imply a minimal number
of paired five- and seven-sided bubbles per unit line of
grain boundaries: the topological disorder is at least of
order 3−9/82−1/4N−1/4 [5].

Second, when the density of defects decreases, bubbles
with 5 and 7 sides tend to appear in pairs, surrounded by
a large sea of 6-sided bubbles [8]. Two 5-7 pairs can dis-
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FIG. 11: Test of Eq. (19) using experiments and simulations.
Abscissa is the r.h.s. of Eq. (19), defined in Eqs. (20, 21).
Each point represents a foam. Solid red line: expected range
of validity of the analytic approximation [Eq. (19)]. The
distributions of sides of the two foams indicated with arrows
on the graph are shown on Fig. 12.

appear if they get close together, in an opposite direction,
to form a 5-7-7-5 quadrupole, that can be transformed
into four 6-sided bubbles by a T1 process. At decreasing
defect density, it can take an increasingly large experi-
ment or simulation time to obtain such low-probability
T1 events. Thus, in practice, even with a very monodis-
perse foam, if we start from a disordered configuration
and shuffle it during a finite time, we seldom reach more
than 90% hexagons; this means 5% pentagons, 5% hep-
tagons, and thus ∆n/〈n〉 ≈ 5%. Better ordering requires
special care during the foam preparation. In must be also
emphasized that, for the new set of data (SE2) presented
here, foams are not shuffled, hence we do not expect to
see crystallisation here.

Both above effects imply a finite topological disorder
even at vanishing geometrical disorder: bubbles of the

same size are not all hexagons. Corresponding points
would be above the y = x line in the graph of Fig. 3.
Both are practical limitations and are not considered in
our statistical model of perfectly shuffled foams.

VI. CONCLUSION

In summary, we have implemented a theoretical
method to correlate geometrical and topological disor-
der in 2D liquid foams with low liquid content. We have
identified the relevant parameters and variables, includ-
ing a new parameter D characterising the geometrical
disorder. We have then written equations based on clas-
sical statistical mechanics, solved them with controlled
approximations tested numerically, and compared them
to experiments and simulations. In particular we have
shown that the model works even at extreme (high or
low) dispersities, which had not been fully treated previ-
ously. This enables us to predict that a bidisperse foam
crystallises when the ratio of bubble radii is 1.4, irrespec-
tive of the proportion of small bubbles. While hard discs
crystallise around 1.2, due to the deformability of the
bubbles, foams can crystallise over a larger range of size
dispersities. Our method might be extended to various
patterns and to higher dimensions.
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sophical Magazine 93, 31-33, 4030-4056 (2013).
[24] A.E. Roth, C.D. Jones, and D.J. Durian, Phys. Rev. E

87, 042304 (2013).
[25] W.C. Graustein, Ann. Math. 32, 149 (1931).
[26] F. Reif, “Fundamentals of Statistical and Thermal

Physics”, Waveland Pr Inc. (2008).
[27] A. M. Kraynik, D. A. Reinelt, and F. van Swol, Phys.

Rev. E 67, 031403 (2003).
[28] A. M. Kraynik, D. A. Reinelt, and F. van Swol, Phys.

Rev. Lett. 93, 208301 (2004).
[29] C. Raufaste, S. J. Cox, P. Marmottant and F. Graner,

Phys. Rev. E 81, 031404 (2010).
[30] A. Abd el Kader and J.C. Earnshaw, Phys. Rev. Lett. 82

2610 (1999).
[31] C. Quilliet, M. Idiart, B. Dollet, et al., Colloids Surf. A

263, 95 (2005).
[32] D.J. Srolovitz, M.P. Anderson, G.S. Grest and P.S. Sahni,

Scr. Metall. 17, 241 (1983).
[33] P. Marmottant, A. Mgharbel, J. Käfer, et al., Proc. Nat.
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