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We propose an analytical model for the statistical mechanics of shuffled two-dimensional foams
with moderate bubble size polydispersity. It predicts without any adjustable parameters the cor-
relations between the number of sides n of the bubbles (topology) and their areas A (geometry)
observed in experiments and numerical simulations of shuffled foams. Detailed statistics show that
in shuffled cellular patterns n correlates better with

√
A (as claimed by Desch and Feltham) than

with A (as claimed by Lewis and widely assumed in the literature). At the level of the whole foam,
standard deviations ∆n and ∆A are in proportion. Possible applications include: correlations of
the detailed distributions of n and A; three-dimensional foams; and biological tissues.
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Cellular materials are interesting both as disordered
media with well-defined structural elements, and as mod-
els for more complex systems such as biological tissues
[1]. Among them, foams are ubiquitous in our daily lives
and in many industries [2–4]. Bubble monolayers are
much easier to observe and to study (Fig. 1). Such quasi
two-dimensional foams are characterised by their num-
ber of bubbles, N, area distribution, p(A), and number-
of-sides distribution, p(n). Their bubbles are polygonal,
with shapes that are locally governed by Plateau’s laws
[3, 4]. Each side is a thin liquid film with a uniform sur-
face tension; its curvature is determined by the difference
of pressure between the two bubbles it separates.

Bubble size distribution and packing (or “topology”)
are crucial in determining e.g. rheological properties [4].
Statistically, a relatively large bubble, within a given
foam sample, has more neighbours than a smaller one.
To quantify this intuitive impression, bubbles which have
the same number n of neighbours can be grouped, and
their normalized average size plotted versus n. One de-
bate [6–15] concerns whether n correlates with A or

√
A

(Fig. 2(a),2(b) and Eqs. (1),(5)). A second debate
[11, 12, 14] asks: can we understand these empirical cor-
relations, and prove them; what is their physical origin,
and why do they apply only to some cellular patterns?
We ask the same questions about empirical observation
[16] of proportionality between the geometrical disorder,
or area polydispersity, ∆A

〈A〉 =
√

〈A2〉 − 〈A〉2/〈A〉, and the

topological disorder, ∆n
〈n〉 =

√

〈n2〉 − 〈n〉2/〈n〉, where 〈.〉
denotes the average over all bubbles in a foam and ∆ the
standard deviation (Fig. 2(c)).

Existing models [2, 9, 11, 12, 17–20] seek distributions
of n and A which are optimal in some sense. This is rel-

evant at times long enough for p(A) to vary, e.g. under
coarsening or bubble coalescence [2–4]. At shorter time
scales, N and p(A) are fixed: only the number of sides of
the bubbles varies, when they undergo “T1” neighbour
changes (Fig. 1d). At most instants the foam is in a
local energy minimum, that is, a metastable state; each
T1 is instantaneous and followed by a relaxation towards
a new local energy minimum [4]. Local minima have al-
most the same energy, and are separated by high energy
barriers corresponding to T1s [18]. There is no process
leading towards a global energy minimum. T1s instead
induce a random exploration of local minima, effectively
“shuffling” the foam [16]. This notion of shuffling is em-
pirically defined [16, 17] as having had enough T1s per
bubble to forget about the foam’s initial preparation. Nu-
merical simulations and theoretical analyses have shown
that cycles of shear of amplitude significantly larger than
the yield strain almost completely remove (although sel-
dom perfectly) both residual trapped stresses and spuri-
ous correlations [21].
In the present paper, we obtain, for shuffled foams of

moderate polydispersity, an analytical expression for the
distribution of n for any given distribution of A. We use a
grand-canonical description [22] with a constraint based
on mechanical equilibrium and space-filling (the curva-
ture sum rule [2–4]) rather than on energy. Predictions of
geometry-topology correlations agree with shuffled foam
data obtained from existing experiments on liquid foams
[16] and new, refined, numerical simulations of two sorts.
In our experiments (Fig. 1a), a bubble monolayer of

up to N = 2700 bubbles is confined at the air-water
interface by a glass plate [23]. The foam is enclosed in a
324 cm2 square with two parallel rigid boundaries (one
fixed, one driven by a motor) and two passive lateral
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FIG. 1: Examples of shuffled foams. (a) Experiment, after 10
shear cycles. (b) Potts model simulation, after increasing the
effective temperature. (c) Surface Evolver simulation, after
10 compression-extension cycles. Monodisperse, bidisperse
and polydisperse foams are all generated in both experiments
and simulations; only polydisperse foams are shown here. (d)
Sketch of a T1 event: bubbles 1 and 3 gain one side, bubbles
2 and 4 lose one; they also exchange some curvature.

boundaries formed by a rubber band [24]. It can thus be
deformed into a parallelogram at constant area to apply
pure shear cycles with an amplitude much larger than
the yield strain. For details see [16, 24].

Potts model simulations [18, 25] (Fig. 1b) are fast,
enabling us to scan a large range of disorders and ac-
cumulate statistics. They describe each bubble as a set
of pixels, like in experimental images. Initially, we dis-
tribute at random N = 112 nine-pixel bubble seeds on a
200× 200 pixel lattice. They are grown until they reach
approximately the average bubble size 〈A〉, chosen to be
400 pixels. They are then randomly assigned target areas
according to the desired area distribution. To shuffle the
foam, we choose the effective temperature, and thus the
amplitude of bubble side fluctuations, high enough that
T1s occur spontaneously [1]. The simulations are run for
2 × 106 Monte Carlo Steps (MCS), at which we checked
that ∆n/〈n〉 reaches a steady value.

Surface Evolver (SE) [26] simulations represent each
side as an arc of a circle (Fig. 1c); they provide detailed
information about each bubble’s position and shape.
Each foam is prepared from a Voronoi construction based
on seed points generated by a random Poisson point pro-

cess [27, 28], with the bubble areas adjusted to fit the
desired area distribution where necessary, before conver-
gence to an energy minimum. We cyclically shear, by
deforming the shape of the periodic box, about four hun-
dred foams with N = 2500 bubbles in two perpendicular
directions with strain amplitude 1.5.

In experiments and simulations we made bidisperse
foams, with the ratio of large to small bubble areas rang-
ing from 1 to 8, and polydisperse foams with normal
(Potts), Poisson (SE), or intermediate (experiments) dis-
tributions of areas, with relative width ∆A/〈A〉 ranging
from 0 to 1.15.

The topology of the foam clearly depends on the rela-
tive (and not absolute) bubble sizes. To enable compar-
isons with simulations and theory, in what follows all data
are plotted as dimensionless. We first present averages n̄
over individual bubbles. Fig. 2(a) shows the intuitively
expected increase of n̄ with the bubble size. Moreover,
it shows that all simulation data of n̄ vs

√
A/〈

√
A〉 are

grouped, and display a linear variation, on a much wider
range than n̄ vs A/〈A〉. These ensemble averages require
that we bin together bubbles of similar sizes. In addi-
tion, in SE simulations we track for each bubble the fluc-
tuations of n with time (A being fixed) and check (not
shown here) that time-averages yield exactly the same
dependence of n̄ on A as ensemble averages.

Second, representations of bubble sizes averaged over
bubbles of the same n, without binning, are easy to
extract from experiments or simulations, which prob-
ably explains their prevalence in the literature [6–12].
Fig. 2(b) shows the intuitively expected increase of√
A(n)/〈

√
A〉 with n, but here without obvious superpo-

sition of the data; plots (not shown) with bubble perime-
ter P rather than

√
A are similar. The fit is linear; its

slope is very different from the inverse of the slope in Fig.
2(a), due to the statistical character of the relationship
between

√
A (or A) and n [14].

Third, Fig. 2(c) shows measures of the foam’s disorder.
The topological disorder is proportional to the geometri-
cal one up to ∼ 0.4. At higher polydispersity, measures
of disorder are less correlated.

Our model for these data is based on the ideas in-
troduced in [22], which we now briefly recall. Each T1
keeps two quantities constant: the sum of n over the four
bubbles involved, and the sum of the four bubbles’ cur-
vatures κ [5]. A foam’s macro-state is thus defined by
its total curvature (summed over N bubbles) κtot =

∑

κ
and total number of sides Ns =

∑

n. Within a macro-
state, the set of micro-states is defined as the set of all
accessible local energy minima: we assume they all have
the same probability, and use a grand-canonical descrip-
tion: consider one particular bubble of area A, the rest
of the foam constitutes a reservoir of sides and curvature,
exchanged through T1s. We then use a mean field ap-
proximation, disregarding neighbour correlations and as-
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FIG. 2: (color online). Geometry-topology correlations. Purple diamonds: bulk shear experiment; filled black circles: Potts
simulations; open blue circles: Surface Evolver simulations. Lines are drawn over the expected range of validity. (a) Average

number of sides n̄ of a bubble vs its relative size
√
A/〈

√
A〉. Each foam contributes several points: two points for a bidisperse

foam, more dispersed points for a polydisperse foam. Green dashed line: linear fit, slope 3.03±0.04, intercept 2.97±0.04; solid

red line: Eq. (1). Inset: same data plotted vs A/〈A〉; solid red line: Eq. (5). (b) Desch-Feltham representation:
√
A/〈

√
A〉 vs

n [6–9]. Green dashed line: linear fit, slope 0.19± 0.02, intercept −0.12± 0.03. Inset: Lewis representation, A/〈A〉 vs n [9–12].
(c) Topological vs geometrical disorder. Each point represents a foam. Green dashed line: linear fit with zero intercept, slope
0.37 ± 0.03; solid red line: Eq. (6).

suming this reservoir foam is homogeneous and isotropic.
The probability for a bubble with size A to have n sides

is: pA(n) = χ (A)
−1

e
− π

3ē
√

A
βn(n−6)+µn

, where χ(A) =
∑

n≥3 e
− π

3ē
√

A
βn(n−6)+µn

is the partition function of the

bubble. Here ē = P/
√
A is close to 3.72 for most bubbles

[18]; β−1 and µβ−1 are analogous to the “temperature”
of the reservoir of curvature, and the “chemical poten-
tial” of the reservoir of sides, respectively. Their values
are unambiguously related to the mean values of κtot and
Ns through 〈κtot〉 = −∂ ln Ξ/∂β and 〈Ns〉 = ∂ ln Ξ/∂µ,
where Ξ is the partition function of the entire foam, de-
fined through lnΞ = N

∫∞

0
p(A) lnχ(A)dA. For a very

large foam (N → ∞), the constraint of space-filling sets
the values 〈κtot〉/N → 0 and 〈Ns〉/N → 6 [2, 4, 29]. This
(implicitly) relates the distribution of sides p(n) to the
distribution of sizes p(A): p(n) =

∫∞

0 p(A)pA(n)dA [22].

Using the above ideas, we now derive analytical pre-
dictions for β and µ, applicable to a foam with small
or moderate polydispersity. We first note that pA(n)

can be rewritten as c(A)e−
(n−n̄(A))2

2σ2 , where n̄(A) =
3 + 3ēµ

√
A/(2πβ), σ2 = 3ē

√
A/(2πβ), and c(A) =

χ(A)−1e
πβn̄2(A)

3ē
√

A . Thus pA(n) is a normal distribution.
It is truncated at n ≥ 3 (since there are no 1- or 2-sided
bubbles [4]), but if it is narrow enough, σ ≪ n̄(A)−3, we
neglect the effect of such truncation on its integral. We
also treat n as a continuous rather than an integer vari-
able. We thus approximate n̄(A) by the mean number of
sides of a bubble with area A. Then

∫∞

0
n̄(A)p(A)dA is

equal to 〈n〉 = 6, which implies 2πβµ−1/ē = 〈
√
A〉. We

thus predict and explain the linear variation [13–15]:

n̄(A) ≃ 3

(

1 +

√
A

〈
√
A〉

)

, (1)

which agrees with experimental and numerical data (Fig.
2(a)).
To proceed, we obtain the values of β and µ by

solving the system: ∂ ln Ξ/∂µ = 6N and ∂ ln Ξ/∂β =
0. Still assuming that n varies continuously from
−∞ to ∞, we approximate c(A)−1 by the integral
∫∞

−∞ e
− πβ

3ē
√

A
(n−n̄(A))2

dn. We obtain the partition func-
tion:

χ(A) =
1

c(A)
e

πβn̄2(A)

3ē
√

A ≃ e
πβn̄2(A)

3ē
√

A

√

3ē

β
A1/4, (2)

and then solve for β and µ:

β−1 =
6π

ē

(

〈A−1/2〉 − 〈A1/2〉−1
)

, (3)

µ−1 = 3
(

〈A1/2〉〈A−1/2〉 − 1
)

. (4)

We can determine a posteriori the domain of validity
of neglecting the truncation in n. Using Eqs. (3) and (4),
our assumption σ ≪ n̄(A) − 3 requires A1/2/〈A1/2〉 ≫
〈A1/2〉〈A−1/2〉 − 1. Thus, the criterion on the width of
p(A) is 〈A1/2〉〈A−1/2〉 − 1 ≪ 1. It is more intuitive to
characterize the width of p(A) by its normalised standard
deviation ∆A

〈A〉 . For that purpose, we change variable and

use the relative deviation ε from monodispersity [30], as-
sumed to be ≪ 1: the condition of validity of this approx-
imation, and thus of Eq. (1), reduces to (∆A/〈A〉)2 ≪ 4,
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and is thus obeyed by both small and moderate disper-
sities.
Using the same change of variable, n̄(A) can be ex-

pressed as a function of A [30], instead of
√
A. For foams

with a small area dispersity (∆A/〈A〉 ≪ 1) we can write:

n̄(A) ≃ 3

2

(

3 +
A

〈A〉

)

. (5)

The inset of Fig. 2(a) shows the linear variation predicted
by Eq. (5). Eqs. (1) and (5) are consistent. As expected,
Eq. (1) has a range of validity larger than that of Eq.
(5): roughly A/〈A〉 ∈ [0.16, 2.56] vs [0.50, 1.50]. Note
that we have no simple prediction for the Desch-Feltham
or Lewis representation (Fig. 2(b)).
We can also calculate ∆n/〈n〉, using 〈n2〉 =

∫∞

0
p(A)χ(A)−1

(

∂2χ/∂µ2
)

dA and Eq. (2). This yields

(∆n/〈n〉)2 =
[

〈A1/2〉〈A−1/2〉+ 〈A〉〈A1/2〉−2 − 2
]

/4. For
shuffled foams with a moderate dispersity we obtain [30]:

∆n

〈n〉 ≈ 1

23/2
∆A

〈A〉 ≈ 0.35
∆A

〈A〉 . (6)

Despite the approximations involved in the analytical
derivation of Eq. (6), its prediction is indiscernible from
the linear fit to the data over the whole expected range;
that is, up to a geometrical disorder of 0.4 (Fig. 2(c)).
Note that the agreement is better with experiments than
numerics, especially at low disorder. We attribute this
small discrepancy to the lower number of bubbles in Potts
simulations (∼ 2500 bubbles for experiments and SE ver-

sus 112 for Potts), and to the much lower value of the liq-
uid fraction for SE simulations (∼ 10−3 − 10−2 for Potts
and experiments versus ∼ 10−5 for SE [21]). At larger
dispersities the relation between ∆n/〈n〉 and ∆A/〈A〉 de-
pends on the exact shapes of the area distributions: this
explains the scatter in the data.
In conclusion, in shuffled two-dimensional foams we

predict without any free parameter the correlation be-
tween topology and geometry: n correlates better with√
A than with A (Eq. (1)), and the two measures of

disorder are proportional (Eq. (6)). Although the exact
shape of the area distribution plays a role in principle,
we expect that in a linear approximation its mean and
width play the dominant role. This is what our linear
derivation captures. These results should lead to a more
accurate description of other shuffled cellular patterns
such as some biological tissues and metallic grains, and
of shuffling and ergodicity in soft matter.
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