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Abstract

The minimal perimeter enclosing N planar regions, each being simply
connected and of the same area, is an open problem, solved only for a few
values of N. The problems of how to construct the configuration with the
smallest possible perimeter EðNÞ and how to estimate the value of EðNÞ are
considered. Defect-free configurations are classified and we start with the naı̈ve
approximation that the configuration is close to a circular portion of a
honeycomb lattice. Numerical simulations and analysis that show excellent
agreement to within one free parameter are presented; this significantly extends
the range of values of N for which good candidates for the minimal perimeter
have been found. We provide some intuitive insight into this problem in the hope
that it will help the improvement in future numerical simulations and the
derivation of exact results.

} 1. Introduction
What is the surface energy of a two-dimensional foam? The surface, or

‘capillary’, contribution to the energy of a two-dimensional foam is exactly its
perimeter multiplied by the surface tension (Smith 1952, Weaire and Rivier 1984,
Weaire and Hutzler 1999, Vaz and Fortes 2001). Can we estimate it? In other words,
what is the perimeter of a finite cluster of N bubbles with free-boundary conditions?
We intend to provide some intuitive insight into this problem and hope that it can
help us to improve future numerical simulations and to derive exact results.

The total perimeter e of the cluster is the sum of the lengths of the sides. All
bubbles have the same area A. We are looking for the globalminimum in perimeter e,
without constraints on the topology. This amounts to finding both the minimal
perimeter EðNÞ ¼ minðeÞ, at fixed N, and the configuration that realizes this value
(hereafter the ‘minimal’ configuration). The minimal configuration exists for all N
(Morgan 2000). It has been found for N up to 2 (Morgan 2000), and a proof has
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recently been suggested for N ¼ 3 (Wichiramala 2002), but there are very few exact
results for the value of E for N > 3, although estimates have been suggested by Vaz
and Fortes (2001) for N between 1 and 22 and by Alfaro et al. (1990) and Morgan
(1994) for N between 1 and 8. Note that more than one pattern could realize the
same E.

Hales (2001) has recently proved the following ‘honeycomb conjecture’ (see also
Hales (1999), Klarreich (2000) and Morgan (2000)). Consider an infinite regular
honeycomb lattice of side L consisting of bubbles of identical areas A (where
A=L2 ¼ 33=2=2 � 2:598). Each side is shared by two bubbles and each bubble has
six sides; so the perimeter per bubble is 6L=2 ¼ 3L. Hales has shown that this is the
minimum perimeter enclosing bubbles of identical area. With periodic boundary
conditions, a finite number N of bubbles with the same area A also reaches its
minimal perimeter when bubbles are regular hexagons of side L: the minimal acces-
sible perimeter is 3NL. Hales’ result implies that EðNÞ=NL is always larger than 3
and tends towards 3 at large N, as we shall discuss.

In this paper we build on this result and estimate the minimal perimeter for a
finite cluster, that is with free boundary conditions. In } 2, we recall some of the
constraints on possible cluster topologies and classify defect-free configurations. In
} 3, we present an analytical expression valid for clusters with sixfold symmetry. In
} 4, we present simulations for N ¼ 3 to N ¼ 42, and then N ¼ 50 and N ¼ 100 using
the Surface Evolver (Brakke 1992). In } 5, we discuss the results, fit the simulations
with our analytical expression and compare them with previously published
estimates.

Note that throughout this paper, lower-case letters denote generic quantities: e
for perimeter, p for the number of bubbles at the periphery of the cluster; E and P are
the values that they reach at the minimal configuration; Ea and Pa are our analytical
estimates of E and P, while Es and Ps are the values we find in numerical simulations.

} 2. Topological classification

2.1. Total topological charge
The topological charge of a bubble in a cluster can be defined as q ¼ 6� s, where

s is its number of sides. This quantity is additive and the total charge Q ¼
P

q of a
cluster is Q ¼ pþ 6, where p is the number of bubbles which touch the periphery of
the cluster (Smith 1952, Aste et al. 1996). We can thus define a similar quantity q*
(Graner et al. 2001): for a bubble not at the periphery,

q* ¼ 6� s; ð1 aÞ
and, for a bubble at the periphery,

q* ¼ 5� s: ð1 bÞ
Then the total of this charge is always

Q* ¼
X

q* ¼ ðpþ 6Þ � p ¼ 6; ð2Þ

whatever the cluster (for N > 1).
Our purpose here is to look for candidates for the minimal configuration; we

consider clusters that have an overall round shape, and topologies close to that of a
honeycomb (figure 1). Typically, the clusters that we have in mind are those where
the internal bubbles (those not at the periphery) have six sides; the bubbles at the
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periphery have five sides, except for six bubbles that have four sides to satisfy the
condition (2). In deviations from this model, defects must appear in pairs, one
bubble having one more side (charge �1) and another having one side less (charge
þ1). The number q� of negative charges in the cluster is equal to the number of
defect pairs, or ‘dislocations’; the number qþ of positive charges is always equal to
6þ q�, in order to fulfil condition (2). We thus use q� to characterize a configura-
tion; it is the number of bubbles coloured black in figure 1. We expect that the
minimal cluster will have few such defects. Charges �2 or more are also acceptable
in principle, although we do not observe any (see below).

2.2. Candidates for the minimal configuration
As suggested above, we expect that the minimal configuration will be close to a

defect-free cluster (q� ¼ 0), that is a section of a hexagonal lattice with exactly six
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(a)

Figure 1. Candidates for the cluster configuration with the minimal perimeter found in
simulations for different number N of bubbles: (a) N ¼ 3 to N ¼ 22; (b) N ¼ 23 to
N ¼ 42; (c) N ¼ 50 and N ¼ 100; (d) N ¼ 200. Note that we have little confidence that
our suggestion for N ¼ 200 is minimal. Bubbles with a positive charge q*, as defined in
equation (1), appear in light grey; bubbles with a negative q* appear in black.
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N = 23           N = 24          N = 25          N = 26           N = 27

N = 28           N = 29            N = 30        N = 31          N = 32

N = 33            N = 34          N = 35        N = 36            N = 37

N = 38           N = 39           N = 40         N = 41           N = 42

(b)

N = 50                      N = 100                          N = 200

(c)

Figure 1. (continued)
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(a)

(b)

(c)

Figure 2. Explanation of the simulation procedure: (a) circular-like initial condition, for
N ¼ 13; (b) chain-like initial condition, for N ¼ 13; (c) side-swapping (T1) process,
in which bubbles 1 and 3 lose their common side, a new side appears between bubbles
2 and 4.



four-sided bubbles at its periphery. We can construct (K. Kassner 2001, private
communication) a defect-free cluster which consists of i concentric shells (Aste
et al. 1996), all internal cells having six sides. It is therefore sufficient to define a
central i ¼ 0 shell; by definition, this kernel has no internal bubbles; it is a chain of n
bubbles (analogous to the configuration shown in figure 2 (b)). Varying n and i will
explore a large range of defect-free clusters. The same N will appear for several pairs
(n; i). How do we choose the best pair for each N?

If n > 1, the shell 1 has nþ 6 bubbles and the ith shell has nþ 6i bubbles. The
total number of bubbles and the number of bubbles at the periphery are thus (Vaz
and Fortes 2001)

Nðn; iÞ ¼ ði þ 1Þðnþ 3iÞ; ð3 aÞ

and

pðn; iÞ ¼ 6i þ n: ð3 bÞ

respectively. The case where n ¼ 1 is special, since there are six bubbles in shell 1, and
6i bubbles in the ith shell, so that

Nð1; iÞ ¼ 3i2 þ 3i þ 1; ð4 aÞ

pð1; iÞ ¼ 6i: ð4 bÞ

As n decreases, p also decreases, and hence the cluster looks rounder. In particular,
n ¼ 1 corresponds to sixfold symmetric clusters: N ¼ 1, 7, 19, . . . .

For each given value of N, there can be different pairs (n; i). There is always at
least one, namely the pair (N; 0). It corresponds to the chain and is not a good
candidate for the minimal configuration. We could look for the pair (n; i) with the
lowest possible n, and hence highest i. Since this is impossible to do analytically, to
our knowledge, we present an approximate approach in the next section.

} 3. Analytical expression

3.1. Cluster extracted from a honeycomb lattice
Consider an infinite honeycomb lattice and extract from it a cluster of N bubbles.

In creating the cluster a number b of lattice ‘bonds’ must be broken to leave p
bubbles on the periphery. They are related by (Smith 1952, Aste et al. 1996):

b ¼ 2pþ 6: ð5Þ

The corresponding contribution of the clusters’ external sides to the perimeter is
typically of order bL. Hence twice the perimeter, 2e, which was of order 6NL, is
now equal to 6NL plus a correction of order bL. It is in fact slightly smaller, since the
sides, which still meet at 1208 angles, are no longer straight; they decrease e by
relaxing to arcs of circles (Smith 1952, Weaire and Rivier 1984, Weaire and
Hutzler 1999).

Estimations of a cluster’s energy based upon the number of broken bonds (Vaz
and Fortes 2001) lead us to define the correction "ðNÞ to EðNÞ, of order 0.5, by the
reduction in the perimeter EðNÞ=L� 3N associated with the presence of the cluster’s
periphery:

EðNÞ=L ¼ 3N þ "ðNÞ½2PðNÞ þ 6
; ð6Þ
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where we denote by EðNÞ and PðNÞ the values reached by e and p respectively in the
minimal configuration. We now suggest analytical estimates of PðNÞ and EðNÞ,
which we denote Pa and Ea.

3.2. Sixfold symmetric clusters
For N ¼ 1, 7, 19, 37, . . . we presume that the sixfold symmetric configuration is

actually the minimal configuration. Eliminating i in equation (4) yields

N > 1: PaðNÞ ¼ �3þ ½3ð4N � 1Þ
1=2; ð7Þ
where we have excluded the unphysical case N ¼ 1, P ¼ 0.

Now, for simplicity we assume that the relaxation of the bubbles close to the
cluster’s boundary does not depend much on the number of bubbles inside the
cluster. We thus assume that "ðNÞ does not vary much with N. Equations (6) and
(7) together would thus yield

EaðNÞ
L

� 3N þ 2"½3ð4N � 1Þ
1=2: ð8Þ

3.3. Nearly symmetric clusters
To proceed further, we assume that for other values of N the minimal config-

uration is still close to a round shape. Treating i as a real parameter, we interpolate
equations (7) and (8) to any value of N in equation (4); we assume that the cluster
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Figure 3. Estimates of the minimum perimeter E for each value of N up to 42, for L ¼ 1
(A ¼ 33=2=2): (——), Ea, from the analytical equation (8 0); (&), Es, from simulation;
(þ), energy of the relaxed unshuffled circular initial cluster; (~), estimates from Vaz
and Fortes (2001), up to N ¼ 22, for comparison; (– – –), upper and lower bounds
(equations (9) and (10)). The inset shows the same plot, including values N ¼ 50 and
N ¼ 100, on a log–log scale.



chooses an integral value of P closest to the value given by the interpolated equation
(7). We therefore suggest the expressions

PaðNÞ � �3þ ½3ð4N � 1Þ
1=2; ð7 0Þ

EaðNÞ
L

� 3N þ 2"½3ð4N � 1Þ
1=2: ð8 0Þ

The value of " will be obtained by fitting equation (8 0) to simulations. We expect " to
be close to its value 0.447 calculated for N ¼ 19 (see table 4 of the paper by Vaz and
Fortes (2001)). We thus use this value to plot equation (8 0) in figure 3. The value of
PaðNÞ is compared with simulations in figure 4.

} 4. Simulations

For each given value of N, the problem is to simulate a sufficient number of
different topologies to have a significant chance of actually reaching the minimal
configuration. Using an undirected simulation, such as a Monte-Carlo-like algo-
rithm, would explore an unnecessary large random set of independent configura-
tions. As mentioned, we expect and will check below that the configurations that we
find are all very close to that obtained by extracting N bubbles from a honeycomb
lattice. We thus choose to start from an initial configuration and locally to shuffle the
cluster. This requires a careful choice of both the initial configuration and the
shuffling procedure (figure 2).

1400 S. J. Cox et al.

Figure 4. Number Pa of bubbles at the periphery of each cluster, from the analytical expres-
sion (7 0) (——) Ps, from simulations (&) and number q� of topological defect pairs,
from simulations (~). The same plot, including the values N ¼ 50 and N ¼ 100, on a
log–log scale (hence the zero values of q� are not shown).



4.1. Initial configuration
We prepare a circular initial pattern by drawing a circle on top of a honeycomb

lattice. We progressively decrease the radius of the circle, erasing all bubbles outside
the circle. We make sure that the centre of the circle does not coincide with a centre
of symmetry of the lattice, so that we erase the bubbles one by one. We stop when
the number of remaining bubbles is exactly the prescribed number N. Most bubbles
have six sides, and only a fraction of order N�1=2 of the bubbles are at the cluster’s
periphery. This method prepares an almost circular cluster (figure 2 (a)), close to the
minimal configuration that we find.

We also prepare an elongated initial configuration. We cut from a honeycomb
lattice a long strip, two bubbles wide and N=2 bubbles long. This creates a chain-like
configuration, where each bubble has four neighbours except for the four bubbles at
the ends (figure 2 (b)). Its perimeter e is much higher than EðNÞ. Shuffling it also
leads towards the same final configuration as with the other circular initial condition
(we tried this for N ¼ 12, 13 and 34), although this is a slow procedure, both in terms
of waiting for the cluster to become roughly circular and then in trying many
possible ‘circular’ configurations to find the best.

4.2. Shuffling procedure
We use the Surface Evolver (Brakke 1992) to shuffle each cluster. We perturb the

cluster’s perimeter gently using the Evolver’s jiggle command; the magnitude of this
random shift in the positions of each of the vertices is chosen independently for each
cluster to allow for small changes in topology. We then select at each step the
shortest side, and apply to it a neighbour-swapping (T1) topological process (figure
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Table 1. For each N we tabulate the energy Es of the candidate for the minimal cluster
obtained from the simulations. Equation (8 0) allows us to estimate the value of " for
each cluster (cf. figure 5).

N Es=L " N Es=L "

3 14.175 0.450 458 25 90.418 0.447 310
4 18.033 0.449 691 26 93.665 0.445 567
5 21.854 0.453 917 27 96.823 0.441 563
6 25.430 0.447 223 28 100.325 0.447 308
7 28.898 0.438 761 29 103.577 0.446 239
8 32.566 0.444 130 30 106.706 0.442 088
9 36.192 0.448 528 31 110.193 0.447 524
10 39.602 0.443 871 32 113.460 0.447 254
11 43.154 0.447 009 33 116.583 0.443 470
12 46.495 0.441 926 34 120.018 0.447 664
13 50.047 0.446 548 35 123.268 0.447 280
14 53.372 0.442 675 36 126.386 0.443 837
15 56.919 0.447 948 37 129.503 0.440 550
16 60.234 0.444 967 38 132.989 0.446 091
17 63.691 0.447 579 39 136.247 0.446 282
18 66.979 0.444 654 40 139.369 0.443 412
19 70.179 0.439 287 41 142.832 0.448 408
20 73.723 0.445 718 42 146.047 0.447 817
21 77.015 0.444 074 50 171.834 0.446 797
22 80.465 0.447 696 100 330.880 0.446 273
23 83.848 0.449 327 200 644.179 0.451 186
24 86.928 0.442 124



2 (c)). These T1 processes occur either close to the boundary or in the neighbourhood
of defects that have migrated into the bulk of the cluster. Then we relax the config-
uration in quadratic mode and record its perimeter e. We iterate this shuffling-and-
relaxation step, performing of the order of 102 steps for small N to 104 steps for large
N, and select the configuration with the smallest perimeter e, which we record as
EðNÞ. The resulting candidate for the minimal cluster is shown in figure 1, while the
energies are listed in table 1 and plotted in figure 3. We also record its topological
properties: the number PðNÞ of bubbles at the periphery and the number q�ðNÞ of
topological defect pairs (both in figure 4). We have performed this procedure for
each N from 3 to 42, for N ¼ 50 and for N ¼ 100. In figure 1 (d) we show the
configuration obtained for N ¼ 200. We have little confidence that this is minimal,
because of the large number of negative charges; it is also unchanged from the
starting configuration, suggesting that our method breaks down at large N.

} 5. Discussion

5.1. Agreement between analysis and simulations
Despite our rough approximations, the agreement between analytical and

numerical estimates of the perimeter EðNÞ is surprisingly good (figure 3). We also
plot analytic upper and lower bounds for the energy (F. Morgan 2002, private
communication). An upper bound can be found by considering the sixfold sym-
metric clusters; the worst case is adding a single bubble to the boundary (e.g.
N ¼ 2, 8, 20, . . .), for which

E

L
4 3N þ ½3ð4N � 5Þ
1=2 þ 2: ð9Þ

This corresponds to " � 0:5, which can be brought down to " � 0:454 (F. Morgan
2002, private communication). A lower bound is given by (Hales 2001, F. Morgan
2002, private communication)

E

L
> 3N þ ½33=4ðp=2Þ1=2 � 1:5
N1=2; ð10Þ

which has " � 0:196. We can also estimate a probable lower bound in the large-N
limit; when N goes to infinity, since we check that E=L� 3N goes like N1=2, we first
obtain that E=NL goes towards 3, as expected (Hales 2001). Equation (34) of the
paper by Graner et al. (2001) evaluates "ðNÞ at large N (that is N � N1=2, so that
boundary terms are small corrections to the bulk term) by assuming that the sides of
a hexagonal lattice relax into arcs of circles, so that the length b decreases by a factor
p=31=2. This yields the estimate "ðNÞ � const � p=ð2½31=2
Þ � 0:5 � 0:407. This value
is probably too low, since it takes into account only the relaxation of the sides at the
periphery; it neglects the change in curvature and increase in length of the sides
within the bulk of the cluster, required to conserve each bubble’s area.

The simulation data are also compared with the energy of the relaxed unshuffled
cluster from which the simulations started. The difference between the two is always
less than 3%, justifying our choice of circular starting condition; the minimal con-
figuration is always close to a portion of a regular honeycomb. In the small-N limit,
Vaz and Fortes (2001) calculated E for N up to 22; their results are plotted on figure
3 and agree with the present data.
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The number q� of defects in our minimal clusters, shown in figure 4, is never
greater than one. That is, the clusters all do well in minimizing the number of defects.

We observe that our estimates Ps and Pa of the number of bubbles at the
periphery remain close to each other (figure 4); the simulated configurations are
close to sixfold symmetry. As expected, the relative deviation ðPs � PaÞ=Pa becomes
smaller as N increases, meaning that the symmetric approximation becomes better.
To estimate " we plot Es=L� 3N versus 2Ps þ 6 (figure 5) and obtain a linear fit of
slope 0.446, close to the value that we expected; this validates the assumption that
"ðNÞ is constant (equation (9)). Moreover, the linear fit includes the data for N ¼ 50
and 100, increasing our confidence in these results. The values of "ðNÞ are given in
table 1.

5.2. Refinements
As mentioned in } 2.2, the minimal configuration requires a compromise between

two conditions.

(i) The periphery of the cluster should be as round as possible.
(ii) While defects are unavoidable, their total number should be as low as

possible.

This optimization is subject to two trivial but strong constraints.

(iii) The number of bubbles is an integer number.

(iv) The topology is one that is actually realizable.

Minimal perimeter for N identical bubbles in 2D 1403

Figure 5. Es � 3N plotted versus the number of ‘broken bonds’ 2Ps þ 6 (&), together with
the linear fit with zero intercept, slope 0:446� 0:001 (——). The inset shows the same
plot, including the values N ¼ 50 and N ¼ 100, on a log-log scale.



The analytical expressions (equations (7 0) and (8 0)) are only an optimization of
conditions (i) and (ii). On the other hand, the simulations do take into account
conditions (iii) and (iv). It is thus interesting to focus on their differences.

We observe that the deviation Ps � Pa from sixfold symmetry correlates with the
presence of a defect (variable q� in figure 4). At first, we thus expected it would also
correlate with the error Es � Ea of our analytical approximation. However, in figure
6 (a), data separate into two groups. It seems that the perimeter of a cluster is related
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(a)

(b)

Figure 6. (a) Error Es � Ea of our analytical approximation versus the deviation Ps � Pa

from symmetry. (b) The same plot, with Ps � Pa þ 1 replacing Ps � Pa each time that
it is negative (see text): (——) (linear fit of slope 0.25), guide for the eye.



to the ‘fractional part’ of Ps � Pa, that is its distance to the integer immediately
below. This appears in figure 6 (b) where, each time that Ps � Pa was negative, we
have replaced it by Ps � Pa þ 1; we now observe a correlation with the error Es � Ea:

In addition to condition (ii), Graner et al. (2001) also derived a formal analogy
between the energy of defects and the interaction energy of electrostatic charges.
Accordingly, the perimeter should be lower when charges of the same sign are as far
as possible from each other, and charges of different sign are close to each other. This
is difficult to quantify and test, especially owing to topological constraints (the above
conditions (iii) and (iv)). However, we note that figure 1 conveys exactly this impres-
sion.

Note that the sixfold symmetry is striking for all N up to 100 (figure 1), but for
N ¼ 200 its effect is not felt any longer. This might be the limit of validity of our
assumption (equation (7)); it should probably be replaced, at higher N, by an
assumption of circular symmetry. We are currently trying to refine both the analysis
and the simulations using a more efficient simulated annealing procedure. We also
apply this approach to polydisperse clusters, that is clusters with bubbles of different
areas (Vaz et al. 2002).

} 6. Conclusions

In this paper, we have examined the minimum perimeter enclosing a cluster of
N planar, simply connected bubbles of identical area A ¼ 33=2L2=2 � 2:598L2. We
considered the problem of how to construct the configuration with the smallest
possible perimeter EðNÞ, and how to estimate the value of EðNÞ. We started with
a configuration that is close to a circular portion of a honeycomb lattice and wrote a
simple analytical expression for the perimeter (equation (8 0)) that showed excellent
agreement with our simulations for N up to 42, for N ¼ 50 and for N ¼ 100. A
catalogue of candidates for the minimal cluster has been given; these clusters show
no more than a single defect, and the number of bubbles on the periphery agrees
closely with equation (7 0). We hope that, with a similar approach and an improved
simulation method, it should soon be possible to provide minimal candidates for
larger N, although a rigorous proof that these are the true minimizers remains a
much more difficult problem.
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