Simulation of defects in bubble clusters
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Abstract. Topological defects in a foam, either isolated (disclioas and

dislocations) or in pairs, affect the energy and stress, @ag an important role
in foam deformation. Surface Evolver simulations were @erfed on large finite
clusters of bubbles. These allow us to evaluate the effébhtedbpology of the defects,
and the distance between defects, on the energy and prexfstoem clusters of
different sizes. The energy of such defects follows tremu#a to known analytical

results for a continuous medium.
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1. Introduction

Soft materials, such as aqueous foams, block copolymersaltmidal emulsions

exhibit ordered structures which present a wide varietyarhglex geometries and
topologies. These ordered structures are not perfect agccardain several types of
defects.

Defects can be classified into two types: topological defeghich engender no
change in area, and geometrical defects, which do. Distotaand disclinations are
included in first class, and it is these that we consider hdiee study of defects
is important because defects in the crystal structure amoresible for many of the
physical, chemical and mechanical properties of a matefial example, the plastic
deformation of metals occurs due to the motion of dislocetifd]. For elastoplastic
materials, an extensive analysis has been made to find exalgtiaal solutions for
all characteristic fields of screw and edge dislocations \&dge [3] and twist [4]
disclinations.
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In two dimensions (2D), crystal structures are based uperhéxagonal lattice
(or its dual, the triangular lattice). This perfectly oréérstructure has been studied
extensively, particularly in the context of 2D foams (i.e.omolayers of bubbles),
but the situation in which the lattice contains a small nunmifeopological defects
has been rather neglected. Exceptions include experirfieAt$ and simulations [8],
with an emphasis on determining the coarsening behaviotimeofoam over time. In
contrast, rather more authors consider single geomettéfatts [9-12].

A 2D foam can be viewed as a cellular pattern for which thesmigrenergy is the
total perimeter multiplied by the value of surface tensagsimed here to be constant).
The ordered state is hexagonal [13] and a disclination is #hoon-hexagonal bubble,
while the elementary dislocation (i.e. that with the snstlBurgers vector) is a pair
of 5- and 7-sided bubbles [14, 15]. We next survey resultdHerstrain energy of
disclinations and dislocations before describing simaoitet of 2D foams containing
them and comparing the two.

2. Strain energy of disclinations and dislocations

2.1. Disclinations

A useful way to think about disclinations in a solid is prosdby the \olterra
construction. Consider a torus of material lying in the-plane: disclinations are
produced by insertingK > 0) or removing P < 0) a wedge of anglé®=/3 in the
torus [16, 17], where we denote Bythe strength of the disclination. To accommodate
the wedge, the torus has to be cut from the outer edge to tlehodre. Disclinations
are classified according to the relative motion of the twostufaces: rotation around
the axis of the torus will produce a wedge disclination [1#jereas rotations around
axes perpendicular to the axis of the torus will produce ttgisclinations. In what
follows only 2D wedge disclinations are considered.

Disclinations are rarely observed in 3D structures suche&talsbecause they are
energetically very costly [18], but are seen occasionalljppams [6, 7] and they often
appear in block copolymers [19] and liquid crystals [16, 285-22], particularly in
nematic liquid crystals. The latter typically consist adreyjated molecules that tend to
be oriented in the same direction, but are positionallyrdieeed. In a nematic liquid,
the energy of a wedge disclination is

w=7KP*In (B) , Q)

a
where p is the distance between the dislocation line and the costainis the

molecular dimension andl is the average elastic constant [16].

In addition, disclinations may occur in pairs with opposigns. They tend to be
coupled at short distances since this reduces long-rasgertion [20]. In a nematic
liquid the energy per unit length of liney, for two wedge disclinations of opposite
strengths+ P and— P a distancel apart is

w = 21K P?In <C—i> . (2)

a



S mulation of defects in bubble clusters 3

Compared to equation (1) a factor of two is introduced arsdreplaced by the distance
d between the two defects [16, 20].

The strain field due to a disclination can be evaluated wlielastic continuum
model that assumes a strain field with radial symmetry [23]heW applied to a
hexagonal 2D foam, the strain energy densityi.e. the energy per unit area per
unit length, of a disclination cluster of strengthwas found to be

G 2
w = %P , 3)
whered is the shear modulus [23]. For a given distandéem the core to the external
part of the defect, the strain energy is thus proportionattpand independent of.
In a 2D incompressible medium, the elastic modulusatisfiest = 4G, and for a 2D

hexagonal lattice
L v
G= 7
2v/3 ag
whereaqy is the edge length of a hexagonal bubble with atgae. A = %3\/§a%) and
~ is the film tension [23].

(4)

2.2. Didlocations

Dislocations in a continuous medium can likewise be undetbtin terms of the
Volterrra construction. The torus is cut again from the owdge to the hollow
core; any motion of the two cut surfaces that has no rotaltiom@ponent yields a
dislocation. The motion can be in one of three directiong:atcurs along one of the
two axes that are perpendicular to the axis of the torus, ddfgcations are obtained.
If the motion is parallel to the axis of the torus, it definesceew dislocation [18].
Only edge dislocations will be considered in this work.

Morral and Ashby [24] analysed dislocations in detail, utthg the pair of 5-
and 7-sided cells in a cellular structure. Dislocationsaarhs have been observed
since the pioneering work of Bragg and Nye [25], who notedrtirebubble rafts. 5/7
dislocations were also observed in other types of liquidfe$26] and are responsible
for the propagation of plastic deformation in foams [26,.27]

The energy of a dislocation can be described by the well-kneguations of the
elastic strain field of an edge dislocation [23, 28—-30]. Tinails energy density of a
dislocation with Burgers vectds in an incompressible foam cluster is
— £B2i

4 12’
Note thatw decreases with the distancérom the core as 2 [23]1.

The interaction energy of two edge dislocations with opieosigns a distancé
apart in the same glide plane can be adapted from [28, 29]:

-5 ()

T We believe the factor of? in the denominator of equation (21) in [23] to be in error.

w

(5)
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Figure 1. Examples of clusters with isolated disclinationsiior 5 (V=4101,s = 40
shells) anch=7 (N=5741,s = 40 shells).

When two dislocations of opposite signs are in the same glaee, they attract each
other to reduce their total elastic energy. That is, theodadions act as dipoles and
the strain energy changes wiik(d) and tends to zero akapproaches the bubble size
from above. Any closer, and they will combine and annihikdeh other.

In the present work we study the effect of the presence ohisdldefects, both
dislocations and disclinations, on the energy of a 2D clusted the interaction of
pairs of defects.

3. Simulation method

We simulate large polygonal foam clusters [31], consisthg/ bubbles of unit area,
almost all of which are hexagonal. The clusters consist efdral bubble withn sides
surrounded by shells of hexagonal bubbles, and therefore ha¥eld symmetry. In
addition to the central defect, there ardour-sided bubbles at the outer “corners”
of the cluster. All internal bubbles have six neighbourg, dwe to the strain in the
foam induced by the defects the bubbles neighbouring trecteére no longer regular
hexagons.

The clusters are constructed from a Voronoi partition of amyaof points.
Defects are introduced by removing points from an orderedyar The resulting
partition is then imported into the Surface Evolver [32] ahe surface energy
(equivalent to total perimeter) is minimized.

An isolated disclination in a cluster was formed by creatirggntral bubble with
n sides @ # 6), surrounded by shells of hexagonal bubbles. We define the strength
of the disclination to be”? = n — 6. Examples are shown for = 5 andn = 7
disclinations in figure 1. Disclinations with= 8 and 9 were also considered.

Clusters containing pairs of disclinations were formed tyipg two of these
clusters, containing central bubbles wiih and n, sides, and eliminating a certain
number of bubbles between the two disclinations to vary #pagkationd between
their centres. This introduces two seven-sided bubbleleapériphery of a cluster,
one at each end of the join, which we presume does not chaageténaction between
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Figure 2. Examples of clusters with a single 5/7 dislocatiofnq1925,s = 25 shells)
and a pair of 5/7 dislocations\(=1261,s = 20 shells) in a six-fold symmetric cluster.

Figure 3. Examples of clusters with pairs of separated disclinations:,; = no =
5 (N=3252,s = 25 shells,d ~ 42) andn; =5, ny =7 (N=2740,s ~ 25 shells,
d =~ 30).

the two centralized defects. We considered pairs of diatbns of the same strength
(n1=ny=5 or 7) or oppositer(; = 5 andn, = 7). Examples are shown in figure 3.

A 5/7 dislocation is constructed from a hexagonal cluster(6) by removing a
wedge of bubbles originating at the centre (figure 2). To &teypairs of dislocations
we again start from a hexagonal cluster and perform a siogleloégical change on
an edge near the centre [15]. This allows us to study the @pease in which the
two dislocations have opposite sign and are in the same glatee (figure 2). To
change the distance between the defects, we perform fugpelogical changes. The
Burgers vector of a dislocation is the vector between adjdoexagons, parallel to the
5/7 edge, which defines the direction of gliding. The twoabskions of figure 2 have
opposite Burgers vectors, i.e. have opposite signs, bue ha same glide plane.
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Figure 4. Energy per unit areaf, for all clusters. (a) Clusters with isolated
disclinations forn = 5 to 9; the lines are fits to the fortV—'/2 forn = 5,6, 7,

and the horizontal line is half the perimeter of a regularag®n of unit area. Also
shown are clusters with 5/7 dislocations. (b) Clusters iirs of defects separated
by different distanced. The continuous lines are the fits shown in (a). Points joined
by lines are for the same number of shellsThe energy of a pair of dislocations
varies relatively little withd and is shown as a single point.

4. Results

4.1. Disclinations

The energy (or perimeter) per unit area (i.e. per bubile}; £/N, decreases as the
number of shells (bubbles) increases for giveras shown in figure 4(a). For given
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s, E is least forn = 6. In fact, the data is described very well by the following
two-parameter fits:

E5(N) = 1.86898 + 1.90172N /2,
Eg(N) = 1.86171 4 1.90625N /2, 7)
E7(N) = 1.86701 4 1.92538N /2,

which are also shown in figure 4(a). Note the valug6 that recurs — it is close to
half the perimeter of a regular hexagon of unit area in an itefinoneycomb, since
each side is shared between two bubbles. This means tha¢d¢badsterm of each
expression for the energy can be regarded as an excess #marggflects the effect of
the topology of the defect on the external boundary of theteluas will be discussed.

The energy of a bubble cluster can be expressed as a sum aftibelareast;
and pressures; [33]: E = 2 A;p;, relative to an external pressure taken as zero.
In the monodisperse case considered here, we thereforehfihthe average pressure
is (p) = %E so that the average pressure in a cluster containing aesiiigtlination
decreases in the manner shown in figure 4(a).

The individual bubble pressures vary significantly aboet éverage, however.
The pressure of the central bubble is strongly correlatédnyiand varies only weakly
with N (figure 5(a)). Fom < 5, P < —1 the bubble pressure is highest at the centre
of the cluster, while fon > 7, P > +1 itis higher at the periphery, as can be seen in
figure 5(b-c).

The energy per unit area in a cluster containing two distbing is shown in
figure 4(b). It decreases in much the same way as for clustersioing a single
disclination, showing a similar dependence on the cluster, 8.

4.2. Dislocations

The energy per unit area in an approximately six-fold clust¢h a 5/7 defect at the
centre is shown in figure 4(a). The energies of this type aéctedre close to the value
for a defect-free (hexagonal) cluster, suggesting thabftiiedislocation has a lesser
cost than a disclination as would be the case in a solid drysta

This is confirmed by the energy of a pair of dislocations aadhised apart (figure
4(b)): the dependence ahis not significant compared to the dependencé\Vgrand
the energy/unit area is close to the value for a defect-fiestar.

The pressure distribution in a dislocation cluster is shawifigure 5(d): the
average pressure in each shell is much the same as for a-ttefectuster{ = 6), but
the scatter in pressures increases to a maximum close teie of the cluster. The
two become coincident about 15 shells from the centre oflirster, giving a measure
of the “screening length” [34].
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Figure 5. (a) Pressure in the central bubble of a cluster containingngles
disclination. The pressure depends strongly on the valueg, &fut weakly on the
size of the cluster. (b-d) Bubble pressure as a function diitalistance from the
centre of the cluster, and the average pressure in each(strell bars show standard
deviation) for clusters with (b} = 5 disclination,s = 40, N = 4101, (c)n = 7
disclination,s = 40, N = 5741, (d) n = 6 disclination,s = 25, N = 1951 and
5/7 dislocation,s = 25, N = 1926. Notice the change of slope far = 5 versus
n = 7 and that the dislocation introduces only a local pertudvatf the pressures
compared to the hexagonal case.

5. Discussion

5.1. Disclinations

The variation of £ with N may be interpreted as follows. Exact calculations for
clusters with disclinations and different areas prediet tihhe energy of a cluster is
[35]
1/2
3.72
E = TZA§/2+2.04 (ZA,») , (8)
in terms of the bubble areat. The second term of the equation is related to the shape
of the cluster boundary, aritdl04 corresponds to a rounded cluster. For clusters with
regular hexagonal boundary the facfob4 decreases t0.94 [35]. For clusters with
unit area this leads to

. E
BE=< =18+ 1.94N 12 (9)

This is in accordance with our finding84(1, equation (8) and figure 4), although it
does not distinguish between clusters with different.e. it does not take topology
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Figure 6. (a) Excess (strain) energy = £ — Eg(N), for all clusters with isolated
disclinations forn = 5 to 7 and a 5/7 dislocation. The horizontal line is the
value given by equation (3) for bubbles of unit area. (b) Escéstrain) energy
w = E — Eg(N') for clusters with pairs of disclinations. Points joined liyels
are for the same number of shedls Also shown is a logarithmic fit to the data for
n; = 5,ny = 7,s = 19. All data converge to the values for a single disclination,
shown in (a).

into account.

For isolated disclinations of strengthin a 2D foam the energy density should
be determined by equation (3). This is the excess energytdealstive to the energy
of a perfect hexagonal 2D foamv (= 0 if P = 0). In order to compare the energy of



S mulation of defects in bubble clusters 10

isolated defects in foams, we propose to calculates
w = E — E¢(N), (10)

whereE is the total perimeter per unit area obtained in the simariatisee figure 6(a).
Equation (3) implies that the energy density forras= 5 disclination (P = 1) is the
same as for am = 7 disclination ¢ = +1), for the same radius, which is indeed
seen to be approximately the case, but the magnitude isfonly about half of that
predicted.

For paired disclinations a distandeapart, we define the strain (excess) energy
in a similar way by subtracting the energy of a joined clustéhout defects. The
number of rows of bubbles that are removed when the clustergomed varies as
s —d, wheres is the number of shells. We therefore propose the followkpgression:

w = FE — Eg(N") with N' = N + kys(kos — d) (11)

wherek; andk, are two fitting parameters extracted from the case- n, = 6; we
find k&, = 1.1 andk, = 0.5. This should take into account the shape of two joined
clusters and the presence of two extra defects at the ene tihthwhere they join.

Figure 6(b) shows that, = n, = 5 andn, = ny, = 7 have similar strain energies,
which decrease, as expected, as the separation of the fiketsilbecomes greater.

The energy density of two disclinations of opposite streagih a nematic
liquid crystal is predicted to depend on their separatidghrough equation (2). We
hypothesize that the energy density of two disclinationa @D foam has a similar
functional form: assuming that the defect core is the sizhefcentral bubblel, we
takea = v/A = 1 and write

9 d
w= MP*In <ﬁ> , (12)

where M is an elastic constant. The cagse = 5,n, = 7, shown in figure 6(b),
certainly increases witth, and a logarithmic fit withl/ = 2.5x 1073 seems reasonable.

5.2. Didlocations

The Burgers vector of the dislocation of figure 2 can be rdldtea,, the edge
length of a bubble with ared, to give B = v/3ao, which is the smallest possible
component of the vector in a hexagonal cell, equivalentéatntre-to-centre distance
between bubbles. Thus for a hexagonal foam containing bsldflunit area we have
B = 1.074. Equation (5) gives the energy density of a dislocationtelusf sizer in
an infinite honeycomb. Although it was derived for a cylindtibody, we take as
the radius of a circle with perimeter equal to the perimétaf the periphery of the
cluster, so that ~ /N .

Figure 7 shows that the energy density decreases with tred sz of the cluster
asl/r* with o = 1.88 + 0.24; this is not far fromn = 2 as predicted by equation (5),
although the prefactor appears to be out by a factor of 4.

For paired dislocations a distanéeapart (figure 2, right), we calculate the strain
energy by subtracting the energy of the same (hexagonadjeclwithout defects,
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shown in figure 7(b). The strain energy increases almostribgaically with d,
according to (6), shown in figure 7(b). In this case it is polesio compare the data
with the same defects embedded in an infinite (periodic) e@xal foam, eliminating
the effect of the cluster boundaries. Taposteriori confirmation that the boundaries
do not have a large effect on the interaction between defecipparent from the
proximity of the lines in figure 7(b). The strain energy in thexagonal foam is fit
better by a function of the forim(kd + 1)

6. Conclusion

This work describes simulations of 2D finite aqueous foanstelts containing

topological defects. The presence of one defect, in pdatiaudisclination, clearly

affects the energy and the pressure of the cluster. Theeoérdisclination cluster

deviates from the energy of a defect-free cluster if the nemalb sides of the central
cell is different from six, and decreases as the number dfssimereases. Both the
energy and the pressure of a cluster with- 6 match very well with those found for
a 5/7 dislocation cluster. In fact, the average pressurach shell is the same in the
two cases.

Many processes, such as plastic deformation, deal withntieeaictions between
defects. Our simulations of pairs of defects reveal how ttesgnce of one defect
is “felt” by the other defect as a function of their sepamticAnalytic approaches
have been developed, in the context of solids or of liquidtadg, for the same cases
as studied here. For most of them defects in foams follow tkdipted trends. For
example, the energy of two disclinations with oppositergjtbs a distancé apart
appears to be proportional kod.

Nonetheless, a perfect match between analytical resultsiarulations is not to
be expected, as the assumptions under which the former werked are not always
satisfied in the systems considered here. Clustersmiths andn = 7 are examples
of this: because these disclinations have the same stréimgébbsolute value), one
would expect that they would have the same energy, yet thelwsters have different
boundaries, and itis clear that the energy of a clusterosgty dependent on boundary
shape. Further work still needs to be undertaken to fullassp the contributions of
defect shape and cluster shape to the energy of a foam.
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