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Abstract. Experiments on a small cluster of bubbles in a nominally two-dimensional foam show an insta-
bility in which a topological change forces one of the bubbles to be ejected to the outside of the cluster at
a point where this is not predicted by a two-dimensional model of a foam. This is interpreted in terms of
the energy of the initial and ejected states and of the finite liquid content of the experimental system. A
description of the distribution of liquid in various experimental set-ups suggests that the exact response
may depend critically upon the type of system used. This is demonstrated experimentally with reference
to small clusters of bubbles undergoing a single topological change.

PACS. 82.70.Rr Aerosols and foams – 46.32.+x Static buckling and instability

1 Introduction

Before tackling a three-dimensional (3D) problem, one of-
ten tries first to find a two-dimensional (2D) model which
shares some of the properties of the full system and is
more amenable to analysis. This is particularly true in the
field of foams [1]. While three-dimensional foams are more
familiar from everyday experience, much can be learned
from the two-dimensional soap froth. The froth is, like
its three-dimensional counterpart, a minimal surface and
it has both elastic and yielding properties when stressed.
There are also analogies with many other physical sys-
tems, such as metallic grain growth and the territories of
nesting birds [2]. For both the experimentalist and the the-
orist, the 2D froth is a much easier system with which to
work. In particular, these 2D systems are currently enjoy-
ing something of a renaissance in the field of rheology [3,4].

The 2D foam is also an ideal system in which to study
surface-tension–dominated instabilities. The usual analy-
sis of most such instabilities relies on the approximation
of two-dimensionality (depending on, among other things,
the assumption that the distance between the two surfaces
confining the system is small compared with a length-scale
of the system such as the bubble diameter). The system is
also assumed to be dry, i.e. having a low liquid fraction.

Recently, Weaire et al. [5,6] introduced a class of
“flower” bubble clusters (see Fig. 1(a)), small groups of
bubbles that were shown to have many interesting prop-
erties. The study of those properties is continued here,
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introducing the experimental realization and subsequent
analysis. Weaire et al. [5] describe a buckling instability, in
which a 2D cluster of bubbles can show one of many differ-
ent equilibrated structures for given topology and (fixed)
bubble areas. The occurrence of this instability was con-
firmed by numerical simulations, and provides an inter-
esting application of the Hessian eigenvalue facility of the
Surface Evolver [7,8].

The cluster consists of a ring of n bubbles (petals)
of area A surrounding a central bubble whose area Ac is
varied. The cluster becomes unstable to buckling below a
critical value of the central area given approximately by
equation (2) of reference [5]

A∗
c/A ≈ 0.041(n − 6)2. (1)

Therefore, the buckling occurs only for clusters with more
than 6 petals. At this point the pressure in the central
bubble is equal to the pressure external to the cluster and
the cluster becomes “floppy”. That is, it can exhibit any
one of various modes of distortion, including those shown
in Figure 1(b)-(e), without any variation in energy (equiv-
alent to line-length in 2D).

In the next section we offer some further interpreta-
tion of the 2D buckling instability as background to the
description of the topological instability that follows.

2 The buckling instability

At the critical point for buckling, each petal has two
straight sides and two sides which are arcs of the same
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Fig. 1. Instabilities of 2D clusters. (a) A flower cluster consisting of a ring of n = 10 bubbles (petals) surrounding a central
one. (b)-(e) Examples of buckled flower clusters; (b) is the case in which only the elliptical mode of distortion is present. In
each case the energy of the configuration is identical. (f) A ten-petal cluster in which one bubble has been ejected after a single
topological change.

circle [8,9]. The centre of each bubble is therefore well de-
fined, so that we can idealize the cluster as a set of points
connected by freely hinged rods of fixed length. In the case
where all the petals are of equal size this corresponds to a
regular polygon with n sides, but note that this constraint
is no longer necessary, and the petals can have arbitrary
areas. We now ask: how can this chain buckle while con-
serving the area inside it?

For fixed central area less than or equal to a critical
value A∗

c , we now calculate the degrees of freedom. There
are 2n vertex coordinates, less n constraints for the fixed
rod-lengths, less three constraints for the possible transla-
tions or a rotation which we exclude. There just remains
the area constraint. At the critical point itself, the fixed
area of the central bubble is linearly dependent on the
rod-lengths. This shows that there should be n− 3 modes
of distortion, which correspond to the n − 3 decreasing
eigenvalues found in Surface Evolver simulations [5]. For
areas less than the critical one, there are therefore n − 4
modes that remain zero, and one increasing eigenvalue cor-
responding to the mode of distortion, shown in Figure 2.

When the area of the central bubble decreases below
the critical area, the energy landscape therefore contains
multiple, but energetically equal, minima. The modes of
distortion correspond to the central bubble assuming a
shape that relates to the possible modes of buckling of a
freely hinged rod. For small numbers of petals, they will be
elliptical modes; then as the number of petals increases,
triangular modes of distortion are allowed, followed by
square modes, etc. In general, the distortion will be com-
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Fig. 2. The lowest ten Hessian eigenvalues for a cluster of n =
10 petals surrounding a central bubble whose area is decreased
(cf. [5], Fig. 7). On the right are shown the multiplicities of
each eigenvalue. Dotted lines denote zero values: of multiplicity
three before buckling, and of multiplicity n − 1 afterwards.
Solid lines show the n − 3 eigenvalues that descend to zero
at the critical area, A∗

c ≈ 0.66. The dashed line is the single
eigenvalue which shows the distortion, in this case an elliptical
one as shown in Figure 1(b).

posed of a combination of these modes, as illustrated in
Figure 1(b)-(e) for a cluster with ten petals.

3 The ejection instability

The instability which we describe below concerns the
change in topology which should occur when the
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a)                                                  b)

Fig. 3. Experimental observation of bubble ejection. (a) A
stable cluster with n = 9 and Ac/A = 2.49. (b) Bubble ejec-
tion has occurred with A∗∗

c /A = 2.25. (See also Fig. 6 for the
interpretation of these pictures.)

reduction in the area of the central bubble is pursued be-
yond the buckling instability.

In the idealized dry foam, one of the internal edges
would shrink until its length is zero, initiating a T1
“neighbour-switching” transformation. This change in
topology reduces the energy by ejecting a bubble to the
outside of the cluster to give a configuration such as the
one shown in Figure 1(f).

In studying a flower cluster experimentally, we are pre-
vented from observing the buckling instability because it
is pre-empted by this topological change. This ejection in-
stability turns out to be of interest in its own right. We
will argue that it is due to the finite liquid content and
the three-dimensional nature of the experimental system.

We have performed experiments, described in Sec-
tion 4, which give the critical area of the central bubble
at which the ejection occurs. In Section 5 we calculate the
value of central area at which the energy of the ejected
state is lower than the symmetric one. It turns out that
the experimental results lie precisely along this line, which
we attribute to the influence of the underlying liquid in the
type of 2D system used here (identical to that described
in [10]). That is, the presence of the liquid allows the topo-
logical changes to occur when the relevant internal edges
still have non-zero length.

Since the natural explanation of this is in terms of
3D effects, we describe the various experimental systems
that have been used for the study of 2D foams in Sec-
tion 6, and indicate the precise distribution of liquid in
each of them. In future it may be necessary to carefully
distinguish between them. Before concluding, we describe
further experiments in Section 7 which show that the topo-
logical changes occur independently of the length-scale of
the system.

4 Experiments

The experimental apparatus consists of a liquid reservoir
containing water and a small amount of surfactant. A glass
plate is held over the reservoir, leaving a gap of approx-
imately h = 3 mm. A monodisperse cluster of n petal

bubbles is made by blowing air steadily through a cap-
illary tube. We first isolate one of these bubbles, which
is therefore circular, and measure its diameter d. We can
then calculate the area of the petals, A = πd2/4. The large
central bubble is then created with a syringe. The cluster
is adjusted, using the method described in [11], until the
large bubble lies at the centre of the cluster, as shown in
Figure 3(a). We then slowly reduce the area of the cen-
tral bubble by sucking air from it through a syringe. The
central bubble appears at all times to be roughly circular,
so that its diameter is uniquely defined. We record this
diameter dc at frequent intervals until the ejection occurs,
as in Figure 3(b). Using the last value of the diameter al-
lows the calculation of the critical central area for ejection,
A∗∗

c = π(dc)2/4.
Note that the central bubble is not exactly circular,

cf. Figure 1(a). The difference in area between a circular
bubble and one satisfying the 120◦ condition at vertices is
less than 4% for n between 7 and 18. We expect that this
is less than the experimental error.

We have found the critical central area for a range of
values of the number of petals n. The results are shown
in Figure 4 and are compared with the critical area at
which the buckling occurs (1). The experimental results
lie above the predicted central area for buckling.

This suggests that it should be possible to change be-
tween the ejected and symmetric states with only very
small changes in central bubble area. As the liquid con-
tent in the experimental system decreases, however, the
energy barrier is raised and the ejection is delayed until
lower values of central area.

5 Energy of the ejected state

At each value of central bubble area the cluster seeks its
minimum energy state. In a wet system, such as in the
experiments described here, the effect of the liquid is to
allow the system to avoid the energy barrier which sep-
arates alternative states in the strictly 2D model and to
move to the ejected state at a larger value of central area
than dry calculations would predict. Figure 5 shows this
schematically for energy values of the 12-petal cluster. In
the dry case, we would expect that as the central area
is reduced, the cluster would first buckle and then eject
a bubble (path X Bd En

d Y ). However, the presence of
liquid in the system means that the cluster ejects a bub-
ble at En

w. Pursuing the reduction in central area further
will, rather than allowing the cluster to buckle, show that
another bubble will be ejected (En−1

w ) before the point
is reached at which the cluster with one ejected bubble
might be expected to buckle.

By calculating the energy (line-length) of both the
symmetric and the ejected structures, we are able to pro-
vide an upper limit to the central area at which (the first)
ejection occurs. We shall find the largest value of central
area at which the energy of the 2D cluster is lowered when
a bubble is ejected. Comparison with the experimental re-
sults suggests that this limit is in fact the actual area at
which ejection occurs, because our experimental system
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Fig. 4. The central area, normalized by the petal area, Ac/A, at which a bubble is ejected in an experiment in which this
area is slowly decreased. Experimental data points are each averaged over three experiments and the standard deviation shown.
The crosses show the largest central area at which an ejected configuration has lower energy; it can be fitted approximately by
A∗∗

c = 0.06(n − 3.45)2A which is shown as a dashed line. Also shown is the theoretical critical central area at which a flower
cluster would buckle in a 2D theory of dry foam, equation (1).

contains enough liquid that it can slip to the ejected state
as soon as it becomes energetically favourable.

The energy of the symmetrical cluster in 2D is given by

Es = 2
√

n

(√
(Ac + nA)

(
sin θ+

2 sin(π/n)
+ θ+

)

−
√

Ac

(
sin θ−

2 sin(π/n)
− θ−

))
, (2)

where θ± = π/6 ± π/n [12]. We are unable to calculate
the energy of the ejected state analytically, but instead,
for a range of values of n, compute it for several values
of Ac, using the Surface Evolver in an efficient mode in
which edges are treated as arcs of circles [7]. We then find
the point at which these two energies are equal, shown in
Figure 4. The data fit very well to a quadratic power law:

A∗∗
c = 0.0602(n − 3.45)2A, (3)

representing the highest value of central area at which
ejection may occur, showing close agreement with the
experimental results.

These results suggest that a bubble could only be
ejected from the ring whenever there are more than three
petals in the cluster. This is reasonable, since with only
three petals the ejection process would leave an unstable
two-sided bubble that would undergo a further T1.

The proximity of the experimental data to this upper
bound suggests that it should be experimentally possible
to change between the ejected and symmetric states with
only very small changes in central bubble area. Unfortu-
nately, with our set-up we are only able to withdraw air
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Fig. 5. The energy of a 2D flower cluster is shown in the case
of n = 12 petals (surface tension is set equal to one). Con-
sider an experiment in which the central area is progressively
reduced from a high value. In the ideal 2D dry system, the
cluster remains symmetric until it buckles at point Bd. At En

d

(which depends upon the precise mode of buckling) an internal
length shrinks to zero and the cluster undergoes a T1 change
and ejects a bubble, following path X Bd En

d Y . The point Y
represents an (unattainable) buckled cluster with one petal
ejected. The presence of liquid in the real experimental system
allows the cluster to cross the apparent energy barrier at or
close to En

w and to eject a bubble. The (n − 1)-sided central
bubble might then be expected to buckle at point Bw, so that
the wet cluster follows path X En

w Bw Y . However, the pres-
ence of liquid causes the ejection of a second bubble close to
En−1

w . The cluster therefore progresses to point Z due to the
further cascades of bubble ejection which will always pre-empt
buckling.
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Fig. 6. Cross-sections through three distinct experimental systems which are used in experiments on nominally 2D soap froths:
(i) Bragg bubble raft on a liquid pool; (ii) bubbles between a liquid pool and a glass plate; (iii) bubbles between two glass plates.

from the bubble, so are unable to test this hypothesis. As
the liquid content in the experimental system decreases,
however, the energy barrier is raised and the ejection is
delayed until lower values of central area. We expect this
to result in hysteresis as the central bubble area is alter-
nately increased and decreased.

6 Two-dimensional froths: theory and
experiment

Before describing the distribution of the liquid in the ex-
perimental system in detail, we must first review the pre-
vailing theoretical and experimental models of 2D foams.
It will become clear that the experimental set-up may play
a significant role in determining the behaviour of the sys-
tem.

The standard theoretical model of a dry 2D foam im-
plies that it consists of arcs of circles which meet in threes
at angles of 120◦. For small numbers of bubbles, quanti-
ties such as the energy (line-length) and the bubble areas
can be calculated analytically. However, these 2D config-
urations are relatively straightforward to obtain compu-
tationally: early examples of such code were written by
Kermode and Weaire [13] and Herdtle and Aref [14]; re-
cently the Surface Evolver [7] has been commonly used.

To simulate a wet 2D foam, one approach is to “dec-
orate” each three-fold vertex with a small triangular
Plateau border [15]. For the more general wet case, soft-
ware written by Bolton and Weaire [16] was used to study
rheological properties [17]. In this 2D point of view, a
T1 process occurs when two neighbouring Plateau bor-
ders touch, i.e. when the length of the edge between them
shrinks to zero. As the foam becomes wetter, the size of the
Plateau borders increases and the edge length decreases,
so that topological change is more likely to occur. How-
ever, a calculation of the necessary size of the Plateau
borders shows that such a 2D model is insufficient to ex-
plain our experimental results. We must therefore seek a
different explanation, which entails looking closely at 3D
effects in the experimental system.

There are three standard experimental methods of pro-
ducing so-called 2D bubble clusters, and it appears that
their slight differences will cause different behaviour in
precise studies of instabilities of foams of the kind dis-

cussed here. These experimental set-ups are illustrated in
cross-section in Figure 6:

(i) The Bragg bubble raft [18], in which a single layer of
bubbles floats freely on a liquid surface.

(ii) The system used here in which the bubbles are trapped
between a glass plate and the liquid surface (e.g., [10]).
It is similar to the set-up perhaps first used by the au-
thor of [19], although he also used the following system.

(iii) A layer of bubbles trapped between two glass plates
[19,20].

Where a soap film meets a glass plate there is a (sur-
face) Plateau border running along the plate; these bor-
ders are smaller at the top plate due to the effect of gravity.
Where a soap film meets the liquid pool there is a menis-
cus of height lc =

√
2γ/ρg, where γ is the surface tension

and ρ the density of the liquid, and g is the acceleration
due to gravity. (For our system (i.e. water and surfactant)
the height of the meniscus, lc, should be approximately
2.5mm.) Both menisci and the surface Plateau borders
meet in threes and join with a vertical Plateau border to
give a fourfold vertex.

The principal difference between the usual realization
of a 2D soap froth (case (iii)) and the other two may lie in
the replacement of the lower Plateau border by a menis-
cus which is not of finite extent. Neighbouring menisci
interact, as described by Nicolson [21] and by Shi and
Argon [22] in their analysis of the Bragg raft, with a po-
tential energy which decreases with separation. Such an
analysis should be possible for the case of vertical Plateau
borders on a liquid surface, and in future work we hope to
explore this situation using three-dimensional simulations
with the Surface Evolver.

7 Length-scale effects

In the meantime, however, we performed another series of
measurements which allow us to make one further obser-
vation: the topological changes, caused by the attraction
between neighbouring fourfold vertices via the meniscus,
occur at a critical bubble area ratio which appears to be
independent of the scale of the experimental system.

These experiments involved a cluster of only four bub-
bles of equal size. We varied both the separation h of the
glass plate from the liquid surface and the volume V = Ah
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T1

Fig. 7. To investigate the effect of the meniscus, we start with
a cluster of four bubbles with equal volumes. The volume of
one bubble is then slowly decreased until a topological change
occurs. In the ideal dry limit, this T1 occurs only when the
critical volume is vanishingly small, but our experiments show
that it happens at a finite volume that depends upon the sep-
aration of the glass plate from the liquid in the experimental
system.

of the bubbles. For each value of V and h we slowly re-
duced the volume of one of the four bubbles using the
same techniques as above, until a T1 change occurred.
This is shown schematically in Figure 7. In the dry limit,
we should not expect the T1 to occur until the volume of
the shrinking is vanishingly small, but the experiments on
a wet system show that the critical area is finite.

This critical area of the shrinking bubble is recorded
in Figure 8, showing data for values of h greater than the
capillary height lc (the behaviour for h < lc is markedly
different due to the dominant effect of the meniscus). The
critical area at which the T1 occurs is independent of the
separation of the glass plate from the liquid surface, and
depends linearly on the area of the large bubbles. We ra-
tionalize this by appeal to the following scaling argument,
which shows that the elastic resistance of the soap films
to allowing a T1 decreases with increasing cluster size.

Consider a cluster of fixed shape, with linear scale
L(∝ √

A), in which two vertices in the meniscus inter-
act. We denote their initial separation by l, which is also
proportional to L. We now perturb the system, reducing
this separation by a distance ∆l. To lowest order, ∆l is
determined by a balance between the attractive force F of
the vertices, and the elastic resistance R of the soap films,
which we express as the ratio ∆l = F/R.

For all but the shortest distances, the attractive force
F can be treated as a constant to lowest order. We ap-
proximate the elastic resistance by the second deriva-
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Figure 7, at which a T1 topological change occurs in a cluster of
four bubbles. The T1 occurs at a critical area of the shrinking
bubble which is independent of the separation h. Moreover, the
critical area depends linearly (the dashed line is a guide for the
eye with slope one-half) on the area of the large bubbles. We
show data only for values of h greater than the capillary height
lc, since the behaviour for h < lc is markedly different due to
the dominant effect of the meniscus.

tive of the energy of the (dry) cluster with l, so that
R ∼ L/L2 = L−1. Then ∆l/l is constant.

The condition for a topological change is that ∆l is
approximately equal to l, so that a cluster that satisfies
this condition will do so independently of the scale L.

8 Conclusions

While investigating experimentally the multiple states of
two-dimensional foams, we have encountered an unex-
pected ejection instability. This is provoked by a topolog-
ical (T1) change that moves the system to a lower energy
state. The instability occurs before that predicted by a
theory based upon dry foams: the presence of even a small
amount of liquid in the experimental system provokes the
T1 as soon as the energy of the ejected state is lower.

We chose one of the three possible experimental sys-
tems used for studying 2D froths, the case of a cluster
sandwiched between a glass plate and a liquid surface. In
describing the distribution of liquid in such a cluster, it
becomes apparent that perhaps the three systems do not
show the same response. In this case it appears to be the
meniscus that causes the discrepancy. This may be a sig-
nificant factor in the differences between the rheological
results of Debregeas et al. [3] and Lauridsen et al. [4] for
example.

We are currently undertaking further work to eluci-
date and quantify further these effects, and identify more
clearly than heretofore the essential differences between
the three experimental systems of Figure 6. In particu-
lar, it now seems worthwhile to perform identical experi-
ments on the systems shown in cases (ii) and (iii), with as
little entrained liquid as possible, to ascertain the effect
of the meniscus. While it seems likely that the Plateau
borders that are present in the case of two glass plates
would also engender a discrepancy from the dry case, this
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effect should decrease to zero as the liquid content is de-
creased [16].

Together with other related investigations, such stud-
ies are needed to understand in fully quantitative terms
the properties of real 2D foams. Whereas they were intro-
duced by Smith [19] with qualitative effects and general
topological properties in mind, today they are subject to
much closer scrutiny. They seem to provide an excellent
test bed for the development of models of the behaviour
of soft matter, which may prove to be of much wider rel-
evance.
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