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Abstract

The effective yield stress of foam in porous media depends on the capillary resistance of
the soap films between bubbles, or lamellae, to forward movement. This resistance de-
pends in turn on the shapes lamellae take as they move across pores. Even in idealized,
radially symmetric pores, lamellae spontaneously jump to asymmetric shapes in their drive
to minimize their surface area. These shapes affect the overall capillary resistance to foam
movement. Earlier theoretical study of quasi-static lamella movement in two dimensions
(2D) is extended here to three dimensions (3D) using the Surface Evolver computer pro-
gram. Whereas in 2D the lamella can take flat, asymmetric shapes in the pore body, in 3D it
can take a sequence of saddle-shapes of increasingly negative mean curvature as the trailing
edge of the lamella approaches the middle of the pore. The results based on 2D lamellae are
altered in detail but not in essence: the asymmetric jump increases the capillary resistance
to foam movement, and for small bubbles in small pores the minimum pressure gradient
required to drive gas flow in foam is substantial.
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1 Introduction

Foams are used worldwide in the petroleum industry for diverting acid flow in
well stimulation [1], and on a pilot basis for gas diversion in improved-oil-recovery
processes [2, 3] and environmental remediation [4]. In all these cases, when the
foam enters the porous medium, the bubbles in the foam are thought to be as large
as, or larger than, the pores in the medium [3, 5]. Moreover, most of the gas in
the foam is trapped [6, 7], so that the bubbles that do flow move in “bubble trains”
through pore pathways in the midst of trapped gas [8], as schematically illustrated
in Fig. 1.

Developing a fully mechanistic and predictive model for foam [8, 10, 11] requires
an understanding of how foam of a given average bubble size affects gas mobility in
the porous medium. (Other components of the model would describe the processes
that control bubble size.) In particular we focus here on the effective yield stress that
foam imparts to the gas phase in porous media [10]. This yield stress arises from
the resistance to forward movement of the soap films, or lamellae, that separate
bubbles in the train. In the limit of zero velocity, this resistance arises from each
lamella in the train trying to minimize its surface area, subject to conserving the
volume of gas in each bubble and to the geometric constraints of the pore walls.

Rossen [12] addressed this problem by idealizing the pore walls between which
the bubble train passes as a series of identical bi-conical pores with either sharp
or rounded corners at the widest part of the pore body. The rounded shape is more
realistic, even if the solid pore wall has a sharp corner at the pore body, because
water would fill the sharp corner, in approximate capillary equilibrium with the
surrounding medium [9, 13]. The pore-geometrical parameters based on this model
are defined in Fig. 2. In the absence of contact-angle hysteresis, the lamella is every-
where perpendicular to the pore wall. The minimum pressure gradient required to
advance a series of bubbles and lamellae as in Fig. 1 is the population-average pres-
sure drop across the individual lamellae, multiplied by the number of lamellae per
unit length in the direction of flow [12]. For incompressible foams, the population-
average pressure drop per lamella in turn equals the time-averaged pressure drop��� ave for one lamella traversing one of the pores in steady volumetric flow [14].
In a fully mechanistic foam model one could either apply this minimum pressure
gradient for flow directly or represent it as an effective yield stress for the gas phase
in foam [10].

With an idealized pore geometry that is front-back and up-down symmetric (in 2D)
or radially symmetric (in 3D), it is natural to assume that the lamella shapes would
also show this same symmetry. Rossen [12]–[16] showed that this is untrue, in both
2D and 3D. The breaking of front-back symmetry in lamella movement across the
pore (referred to hereafter as a symmetric jump) gives foam a nonzero yield stress,
and the breaking of axial symmetry (an asymmetric jump) further increases the
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yield stress. Rossen [14, 15] shows examples. Any experimental demonstration,
however, must confront doubts about possible contamination of the solid surface,
non-uniform wetting of the surface, slight asymmetries in the pore, etc. Rossen was
unable to represent asymmetric lamella shapes analytically in 3D, and had to revert
to 2D geometry in an analysis of lamella shapes that break axial symmetry.

In 2D the asymmetric jump increases the value of
��� ave markedly. It is unclear

whether the effect is as large in 3D, for several reasons. Firstly, in 2D the asym-
metric shapes have zero curvature as the lamella straddles the pore body, which
gives a sequence of shapes with zero

���
. In 2D the lamella contacts the pore wall

at only two points; in 3D, as the lamella advances, its perimeter contacts more and
more of the converging pore wall, and the requirement that it be perpendicular to
this wall imposes more and more drive toward negative curvature. Therefore, the
asymmetric jump may not raise

��� ave as much in 3D as in 2D.

Rossen [16] reports rough measurements of lamella curvature in a sequence of posi-
tions as a lamella traversed a model glass pore of length about 10 cm. (Pore size was
too large, and capillary

���
too small, to measure

���
directly in this experiment.) In

this case there were also complications of interactions with other lamellae lodged
in pore throats fabricated into the pore body. Rossen then compared his rough mea-
surements with the corresponding pore modeled in 2D. The value of

��� ave in 3D
was about one-quarter of the estimate based on the 2D model; moreover, given the
roughness of the measurements, the uncertainty in

��� ave was nearly as large as its
value. Thus there is uncertainty about the magnitude of

��� ave and the role of the
asymmetric jump in 3D.

Recently, the Surface Evolver computer program [17] has made it feasible to deter-
mine computationally the lamella shapes and pressure drops in complex situations
that include volume constraints and the requirement that the lamella contact a solid
surface such as a pore wall. Adapting the Surface Evolver to this problem requires
some care, as discussed below. This paper describes calculations of lamella shapes
in 3D pores, the time-average pressure drop across the 3D lamella, and the impli-
cations for effective yield stress of gas in foam flow through porous media.

We treat here the quasi-static problem, i.e. we assume that the motion is slow
enough that (i) there are no gradients of surface tension, (ii) there is no viscous drag
on the ends of the lamella, and (iii) there is no contant-angle hysteresis. The relax-
ation of these conditions leads to higher time-average pressure drops [9, 12, 13].
It is therefore appropriate to choose a contact angle of ����� between the lamella
and the pore wall, and uniform surface tension for the lamella. The evolution of
the lamella then proceeds by short increments, minimizing area at each step. The
Surface Evolver then tells us which lamella has the lowest surface area among all
possible lamellae that meet a given pore wall perpendicularly and enclose a given
volume.
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We shall consider two shapes for the pore body, each in two and three dimensions.
In � 2 we will motivate our work with reference to the two-dimensional bi-conical
pore proposed by Rossen [12]. This provides a verification of the use of the Sur-
face Evolver for this problem. In 3D it is not clear if the time-averaged pressure
drop increases significantly for an asymmetric compared to a symmetric jump, as
it does in 2D [16]. We therefore describe Surface Evolver simulations in � 3 which
have enabled us to visualize, for the first time, the lamella shapes and pressure dif-
ferences across lamellae undergoing asymmetric jumps. We show that the average
pressure drop is lower than in 2D, but still larger than for a symmetric jump. Finally
we discuss the case of a sinusoidal pore in � 4 which has a much smoother shape
and correspondingly low average pressure drops. In each case we will consider the
same dimensions of the pore, i.e. throat radius, body radius and length, presum-
ing that these are representative of the behaviour of the lamella and the average
pressure drop in a wide range of pore-shapes.

2 Bi-conical pore in two-dimensions

We start by considering the motion of a single lamella through a two-dimensional
bi-conical, or wedge-shaped, pore, shown in Fig. 2(i). In two dimensions the lamella
is always a circular arc that meets the pore wall perpendicularly, since it minimizes
its surface energy (length in 2D). The pore is of length ��� and at its widest part has
height (or radius) �� . The throat region is of height ��!#"$�&%���� and we introduce a
rounded region at the centre of the pore body of width �(')� . In the rounded region
the pore wall is defined by a parabola that smoothly fits the slope of the pore wall
on both sides of this region. The shape of the pore wall is therefore given by

*,+.-0/21 "
34444445 4444446

�7!98 - �: #;<�=! 1 /� �?> / >@� -BA ;C' 1�= #; '� - �: D;E�=! 1 ; �: D;E�=!��'F� � -G/ ;E� 1 � � -BA ;<' 1 > / >@� -HA 8I' 1���: #;E�=!J; - �: #;E�=! 1 /� � -BA 8I' 1 > / >K�(�L% (1)

In 2D, *,+.-0/21 represents the distance of the pore wall from the / -axis – it is reflected
in the / ; axis to define the body of the pore. This notation, and pore shape, will
also be used later for a radially symmetric 3D pore, with *�+ corresponding to its
radial distance from the axis of rotation. In what follows we use parameter values
of �: M"N� (pore diameter equal to pore length), ��!O"N�P%Q��� and 'R"S�P%	�UT .
The pressure drop across a lamella is

��� "S�(VDW�� , where V is surface tension and �
is the radius (of curvature) of the lamella. This is non-dimensionalized by dividing
by the capillary entry pressure of the pore throat in 2D:���YX " ��� W - �(VZW��=! 1 % (2)
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Then the time-averaged pressure drop is��� aveX " �[ \ ���YXM] -G^�_D1 % (3)

Here the dimensionless volume ` X is the volume behind the lamella divided by the
total volume of the pore. With a steady volumetric injection rate, this variable also
represents dimensionless time.

Lamella shapes are known analytically in 2D, and there are stability criteria to pre-
dict when the lamella makes asymmetric jumps [9, 15]. Thus the 2D case provides
a test of the accuracy of the Surface Evolver calculations before we tackle the 3D
case, where for some of the lamella shapes there are no checks on the Surface
Evolver results.

2.1 Symmetric jump

Since the idealized pore is up-down symmetric, one might assume that the lamella
is also symmetric. Rossen [12] first made this assumption in his analysis of 3D
pores. Fig. 3(i) shows schematically the sequence of lamella shapes, where for
simplicity we have left out the rounded region at the pore body ( 'a"b� ). In this
case it is straight-forward to calculate the sequence of lamella shapes, the volume
behind the lamella, and the pressure drop across the lamella as in Figs. 4 and 5.

Fig. 4 shows how the volume behind the lamella changes with the positions of
attachment, / � and / � , of the lamella to the pore wall. For small ' , the volume
goes through a maximum as the lamella enters the rounded region at the pore body
( / � W��c" / � W��d" A ;S' ), with ` X "e�P%Qf(gUh in the case 'a"e�P%	�UT . At this point
the lamella has spent about f�g�i of its time in the pore with a positive curvature
(bulging forward), i.e. resisting forward movement. Continuous forward movement
of the lamella from this point is impossible without violating the volume constraint
on the rearward bubble; therefore the lamella jumps forward, from / W(�$"c�&%Q�UT(� ,
to a position / W��K" A %	h�gUj with the same volume as before the jump. The lamella
now bulges backwards with negative curvature. Thus the front-back symmetry of
the boundary conditions (pore wall) is broken in the movement of the lamella.
From this point forward lamella shape is the mirror image of that when the lamella
entered the pore.

Fig. 5 shows how the pressure drop across the lamella changes during this process,
referring for the moment only to the analytical result. Initially the lamella is flat
(shape a in the pore throat ( / "k� )). Then it rapidly bulges forward to its shape
of maximum positive curvature (b) before it leaves the throat. The pressure differ-
ence across the lamella decreases as the radius of the lamella increases, until the
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lamella jumps (from point c at the pore body). From this point forward the curva-
ture bulges backwards and the pressure drop is negative. Surface tension here pulls
the lamella forward into the throat just as it resisted forward movement from the
preceding throat. The dotted line in Fig. 5 shows the pressure difference that would
be observed if the lamella reversed direction after its jump.

For the case 'R"S� , Rossen [12] showed that the time-averaged pressure drop is��� aveX "S�P% A ��� 2D bi-conical pore; symmetric jump; 'l"S�
with this value decreasing as ' increases: the increasing roundness of the pore wall
makes the jump less severe. For ' greater than about �&%���T , there is no maximum in
the volume and we therefore expect no symmetric jump.

2.2 Numerical procedure

We used the Surface Evolver [17] in this 2D case to verify that we find the same
lamella shape and pressure drop, as a function of volume, as the analytical values.
In its basic mode of operation, this software finds the minimum-energy configura-
tion of a system for the given topology, subject to volume and boundary constraints.
It requires a set of vertices to be defined, which are then joined by (oriented) edges.
An ordered loop of edges defines, in 2D, a bubble. Each of the edges may be dis-
cretized into small elements, and then each of these can be moved to determine the
shape of minimum energy.

We therefore define two constraints which correspond to the upper and lower edges
of the pore body according to (1) and define edges that lie on these constraints. A
single edge, the lamella, is defined to connect them with tension 1, and the pore
throats at each end of the body are capped by fixed straight lines of zero tension.
The region to the left of the lamella is defined to be a bubble of given volume ` ;
the region to the right has zero pressure, so that the pressure associated with the
bubble is also the required pressure difference

���
.

We commence the quasi-static evolution of the lamella by first ensuring that the
discretization is accurate enough to capture the shape of the curved region at the
apex of the pore body, using about four levels of refinement (in 2D, each refinement
step corresponds to halving the length of each edge) and “quadratic” mode (each
edge is parabolic rather than straight) which corresponds in this case to about j��
edge segments. We then increase the volume of the bubble by a small amount,m ` no�P%	� A ` , and iterate many times until the lamella reaches its new minimal
shape. Current volume, pressure difference and the point of contact between the
lamella and the pore boundary are then recorded, and the process repeated. The
resulting pressure-volume data are shown in Fig. 5, indicating that the agreement
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of the Evolver results with the analysis is excellent.

We are also able to calculate the time-averaged pressure drop using a trapezoid-
rule calculation which involves adding the bubble’s pressure at each point in the
evolution. For 'l"K�P%	�UT we find��� aveX "S�P%Q��jUT�h 2D bi-conical pore; symmetric jump; 'R"S�P%	�UT
which agrees precisely with the analytic calculations (Table 1). This is significantly
less than the result for 'p"q� , and decreases further with increasing ' . Thus, the
rounder the pore boundary, the lower the average pressure drop.

2.3 Asymmetric jump

Even in perfectly radially symmetric pores, however, lamellae spontaneously make
asymmetric jumps, as shown by Rossen [12]. The case for a pore with a sharp cor-
ner, 'r"s� , is shown schematically in Fig. 3(ii). Given the volume constraint on
the bubble behind the lamella, the positions of attachment of the two ends of the
lamella to the pore walls, / � and / � , determine lamella shape. In 2D, lamella sur-
face energy is then a function of / � and / � . As the lamella approaches the pore
body, the Hessian of energy with respect to / � and / � becomes singular. More-
over, the eigenvector corresponding to the zero eigenvalue indicates that one side
of the lamella moves forward and one back in an unstable perturbation. The lamella
therefore jumps to an asymmetric, flat shape (e in Fig. 3(ii)) with zero pressure dif-
ference, as shown in Fig. 5. It retains this shape as it advances, until its trailing edge
approaches the apex of the pore body (shape f), at which point it jumps back to a
symmetric shape with negative curvature for the remainder of its passage through
the pore. In Fig. 4 the split in the path corresponds to the jump to the asymmetric
shape, with / ��t" / � .
Fig. 5 shows the consequences for the dimensionless pressure difference

���OX
. The

jump to the asymmetric shape replaces part of the sequence of symmetric shapes
with negative curvature, and therefore increases the value of

��� aveX . For the case
shown, we find��� aveX "S�P% Avu j 2D bi-conical pore; asymmetric jump; 'R"N�P%	�UTw%
As ' decreases, the value of

��� aveX increases – it is equal to 0.217 for 'R"N� [15].

The Surface Evolver simulations show the same asymmetric jumps. In other words,
the algorithms in the Surface Evolver, seeking to minimize surface area, find the
same asymmetric shapes taken by a lamella seeking to minimize its surface area
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[9, 15, 16]. Examples are shown in Figs. 4 and 5. If, however, the volume incre-
ment

m ` is too large, then, rather than the asymmetric jump, the Evolver simula-
tions show the symmetric jump. That is, if

m ` is of the order of the volume of the
rounded region, the program may converge on a symmetric shape on the other side
of the pore body (this is how the Surface Evolver models the symmetric jumps dis-
cussed in the preceding section). This is similar to the finding of Xu and Rossen
[9] regarding lamella jumps at finite velocity in 2D. If the lamella is moving fast
enough, it may clear the pore body and converge on a symmetric shape across the
pore body before perturbations away from the symmetric shape have time to grow
and push the lamella toward converging on an asymmetric shape. An animation of
bubble movements in 2D, including quasi-static movement, is available at
http://www.cpge.utexas.edu/foam/.

3 Bi-conical pore in three dimensions

We now consider the motion of a lamella through a bi-conical pore in three dimen-
sions. We use (1) to describe the radially symmetric pore wall. In this case, when a
lamella is also radially symmetric it takes the shape of a spherical cap, perpendic-
ular to the pore wall. The pressure drop across a lamella is g�VDW�� , where � is the
radius (of curvature) of the spherical lamella. The dimensionless pressure drop is
now ���YX " ��� W - g�VZW��=! 1 (4)

while the time-averaged pressure drop is given by (3) as before.

In 3D we have analytical results for comparison while the lamella remains sym-
metric (i.e. spherical), but no analytical results for asymmetric shapes.

3.1 Symmetric jump

If the lamella remains symmetric, the sequence of shapes is analogous to that in
2D. The lamella flips to the rearward-facing spherical cap at / W(�N" A ;I' , where` X "x�P%	f�h u for '�"x�&%Q�UT . Fig. 6 shows how the volume behind the lamella varies
as it moves along the pore. The lamella shapes and the formulae relating volume,
pressure difference and position of attachment are all analytic in the symmetric
case, and the Evolver simulations show excellent agreement with these analytical
results.

The pressure difference across the lamella is shown in Fig. 7 and the time-averaged
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pressure drop in this case is��� aveX "S�P%Q� u ��h 3D bi-conical pore; symmetric jump; 'R"S�P%	�UT&%
compared to �&% A �(f in the case '�"y� [12]. Thus, after starting from a higher value
at '="y� , the value of

��� aveX decreases more quickly, as ' increases, in 3D than in
2D for the symmetric jump.

3.2 Asymmetric jump

To calculate the pressure drop for the asymmetric jump, it becomes absolutely nec-
essary to use the Surface Evolver, since determining the asymmetric shape of the
lamella is a rather intractable mathematical problem. Since the simulations agree
well for the 2D results and the 3D symmetric jump, we are confident that the
Evolver should accurately predict the motion of a lamella in a 3D pore.

In 3D an oriented edge loop defines a face, which the Evolver immediately dis-
cretizes into triangular facets. A body is then made up of several faces, which can
themselves be refined. There are, however, complications in using the same Evolver
methodology in 3D as in 2D. The most serious of these is that the vertices defin-
ing the (initially circular) intersection of the lamella with the wall can shortcut
the pore-wall constraint by sliding around the wall and “bunching-up”, since this
reduces the energy (area) of the lamella. We therefore define the constraint to be
“convex”, which introduces a penalty function to prevent this bunching, but also
prevents the use of the Hessian facility which aids in determining stability. We
also use “vertex averaging” which keeps the vertices well-spaced but increases the
number of iterations necessary for convergence.

There is a further small but unavoidable error in that the Surface Evolver minimizes
the area of the triangular elements, but the elements do not exactly represent the
(curved) surface of the pore. Therefore there is a small error in both computed
lamella area and bubble volume. This error shrinks as the refinement of the surfaces
is increased.

In fact, we find that it is not possible to determine when the calculation has fully
converged. In order to get an accurate estimate of the shape of the lamella in com-
parison with analytic calculations, we used of the order of A ��z iterations for each
increment in ` , as well as the necessary tidying of the tessellation (removing small
triangles, refining large ones, etc.). As before, we use approximately four levels of
refinement (a refinement step partitions each triangular facet into four smaller ones)
i.e. roughly 256 triangular, parabolically curved, faces to represent the lamella.

Notwithstanding these difficulties, we find good agreement in the data for the sym-
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metric 3D jump, shown in Figs. 6 and 7. Our calculations for the asymmetric jump
show that it occurs when ` X "N�P%	f�h u , that is, when the trailing edge of the lamella
meets the curved region of the pore wall (Fig. 6), as for the symmetric jump. After
jumping, the shape of the lamella in 3D is a saddle – see Fig. 8. As it moves far-
ther into the pore, the mean curvature (which is proportional to the pressure differ-
ence) of the saddle becomes increasingly negative, leading to more strongly curved
shapes, as Rossen conjectured [16]. A qualitative comparison between Rossen’s
experiments [15] and the lamella shapes found here is shown in Fig. 8.

The pressure data for the asymmetric jump is shown in Fig. 7, where it is compared
with the curve for the symmetric jump in 3D. The asymmetric jump occurs at the
same volume ` X as the symmetric jump, at the beginning of the curved region.
In the asymmetric case, however, the pressure doesn’t immediately drop as low,
thereby increasing the time-averaged pressure drop, which in this case is��� aveX "S�P% A ��g 3D bi-conical pore; asymmetric jump; 'R"N�P%	�UTw%
To enable further comparison with the 2D results, we wish to calculate the time-
averaged pressure drop for an asymmetric jump in a bi-conical pore with 'R"N� , that
is, a sharp corner. To estimate this, we performed a simulation with 'l"S�P%Q����T (half
the value used previously). The value of the pressure at each point in the evolution
of the lamella during the asymmetric phase is virtually indistinguishable from the
values for the higher value of ' and the lamella jumps back to the symmetric shape
at the same position, shown in Fig. 9. Moreover, the volume of the pore remains
constant up to order ' � . Therefore the only significant difference is the delay in the
jump occurring. So in the case 'R"N� we can estimate the pressure drop by assuming
that an asymmetric jump occurs at / "{� , where ` X "|�P% u � A , and hence calculate
the time-averaged pressure drop. We find��� aveX "S�P% A h�j 3D bi-conical pore; asymmetric jump; 'R"N�P%
This is a relatively small increase on the value for '}"~�&%Q�UT - ��� aveX "o�P% A ��g 1
and also only a small increase on the value for the symmetric jump in 3D with'�"��P%Q��T - ��� aveX "��P% A ��f 1 . Contrast this with the large difference in the average
pressure drop between symmetric and asymmetric jumps in the 2D bi-conical pore
– the latter is almost twice the former. We therefore find that, except for a symmetric
jump with '<" � , the dimensionless average pressure drops are lower in three
dimensions in each case. This is particularly marked for the asymmetric jumps,
although the values of

��� aveX are still significant.
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4 Sinusoidal pore

We now extend the results for the bi-conical pore to a sinusoidal shaped pore. Such
a pore shape is interesting because it has zero slope at both the throats and the apex
of the pore body. One might therefore expect that no jump in the lamella would
occur, but as we show below this is not the case. Even in such a smoothly-bounded
pore body, there is a significant time-averaged pressure drop due to an asymmetric
jump. Rossen discusses the 3D case with a symmetric jump [12] and the 2D case
with an asymmetric jump [14].

In general, there is no simple stability criterion for predicting when a jump should
occur in a given 2D or 3D pore. Whereas for the bi-conical pore the jump occurred
at the beginning of the rounded region, it is not usually possible to make such a
prediction. We expect a symmetric jump when the volume, as a function of distance
along the pore, goes through a maximum. However, for the asymmetric jump we
must examine the eigenvalues of the Hessian of energy to make such a prediction.

In both two and three dimensions we define the boundary of the sinusoidal pore,
shown in Fig. 2(ii), by*v��-0/21 "�� �=!98I�: � � ;�� �: �;C�=!� ������� �9� /��� (5)

for ��> / >���� , with parameters having the same meaning as for the bi-conical
pore.

4.1 Symmetric jump

The area behind the 2D sinusoidal pore goes through a maximum when / "N�&%Qj���� ,
for which ` X "{�P%QT A j (for the same parameter values as above, that is ��!�"y�&%����
and �: p"���" A ). The results for the volume as a function of the positions of
attachment of the film and for the pressure as a function of volume are shown in
Figs. 10 and 11 respectively. In the 3D sinusoidal pore there is no maximum in` X -0/21 and therefore no symmetric jump. We find��� aveX "S�P%	� A ��h 2D sinusoidal pore; symmetric jump��� aveX "S�P%	������� 3D sinusoidal pore; symmetric jump

The value for the symmetric jump in 2D is very low in comparison with that for the
bi-conical pore, due to the more rounded nature of the pore shape.
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4.2 Asymmetric jump

There are asymmetric jumps in both 2D and 3D, however, whose properties we
explore using the Evolver. We must first ensure that we can accurately predict the
point of instability, and to do this we examine the Hessian eigenvalues in a restricted
2D model.

We wish to look for the eigenvalue corresponding to the eigenmode in which one
point of attachment moves forward while the other moves back. When the value
of this eigenvalue shrinks to zero, the asymmetric jump is initiated. To do this in
the Evolver, using the “Hessian menu” suite of commands, we first create just the
opening half of the sinusoidal pore with the lamella inside. Since the only degrees
of freedom which we wish to allow are those corresponding to the movement of the
lamella, we must fix all other vertices (and edges) which define the pore boundary;
this restricts the level of refinement that we can use, since these fixed vertices must
not be close to the ends of the lamella. Then for a range of values of ` X we can find
the value of the lowest eigenvalue (which does indeed correspond to the required
mode). We find that it shrinks to zero at ` X "{�P%	g�g , and therefore predict that this
should be the point of instability for the asymmetric jump.

We are currently unable to do the same in the 3D case, because of the need for a
high level of refinement to accurately model the surface of the pore. It does not
seem likely that, as opposed to the case of the bi-conical pore, the lamella will flip
to the asymmetric shape at the same position as in 2D. Indeed, the full Evolver sim-
ulations described below find a slightly different value of both the critical position
and volume.

Results from full Evolver simulations for the pressure drop across a lamella and
its two points of attachment are shown for 2D and 3D in Fig. 10. The jump to the
asymmetric shape occurs much earlier than in the bi-conical case, when / n$�&% u h��
( ` X n��&%	g�T ) in 2D, in good agreement with the prediction above, and when / n�P% u T�� ( ` X n{�&%	gUh ) in 3D.

In 2D, in contrast to the bi-conical case, the pressure is not exactly zero during
the asymmetric phase of the lamella’s motion, since the walls of the pore are not
parallel. However, as before, there is a larger time-averaged pressure drop in 2D
compared to 3D:

��� aveX "S�P%	��� u � 2D sinusoidal pore; asymmetric jump��� aveX "S�P%	� u&A f 3D sinusoidal pore; asymmetric jump %
The values for the asymmetric jumps are roughly half the values for the respective
cases in the bi-conical pore.
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5 Discussion

The values of the time-averaged pressure drop in each of the cases discussed are
collated in Table 1. It shows that an asymmetric jump always leads to higher time-
averaged pressure drops than a symmetric jump for the same pore shape. In the
bi-conical pores, as the degree of smoothing, ' , increases, the pressure drops all
decrease; this decrease is more rapid in 3D. For instance, as ' increases from zero
to 0.05, the pressure drop due to the symmetric jump in 2D decreases from 0.120 to
0.085, while in 3D the pressure drop associated with the symmetric jump decreases
more steeply from 0.126 to 0.079. This decrease in pressure drop culminates in the
very low values for the sinusoidal pore, for which there is no 3D symmetric jump,
and therefore

��� aveX "N� .
As a representative calculation, consider a 3D porous medium with bi-conical pores
with '�" �P%Q��T , a capillary entry pressure of 3000 Pa (about 1/2 psi), and bub-
bles 1 mm long. In this case the minimum pressure gradient for flow would be
(0.104)(3000)/(0.001) or 312,000 Pa/m (about 14 psi/ft). Estimates can be much
larger if the bubbles are smaller or the capillary entry pressure higher.

Liquid present in the Plateau borders plays several roles in the movement of lamel-
lae through pores that are not accounted for here. First, if insufficient liquid is
present, i.e. if capillary pressure is too high, the lamella may break, especially as
it stretches across the pore body [3, 4]. We assume here that the lamella does not
break.

Secondly, water occupying the corner at the pore body effectively rounds off the
pore body, reflected here in the parameter ' . ' represents the distance from the pore
body at which the Plateau border at the end of the lamella “senses” the water in the
apex; in 3D it is related to the capillary pressure

� + as follows [9]:� +�9�+ " �7!�(��' -����(��-���1 8 �,����-���1F1 (6)

where
� �+ is the capillary entry pressure from (4) and � "N�)���O  � -F- �= �;¡�=! 1 W�� 1 , as

defined in figure 2. In 2D
� + W � �+ is twice the value in (6), because

� �+ is half as large.
For the parameter values used here for the bi-conical pore, - �¢ HW��£" A�¤ '7"¥�P%Q��T 1 ,
the capillary pressure

� + is about 2.8 times the capillary entry pressure of the pore.
A smaller value of capillary pressure would correspond to a larger value of ' , and
a smaller value of

��� ave. The sinusoidal pore, however, gives confidence that the
yield stress does not go away even for highly rounded pore geometries.

Third, if the capillary pressure is sufficiently low, bubbles may separate completely
from each other in the pore throat [13]. This increases the value of

��� ave [13].
Exactly what ensues depends on whether liquid in the Plateau borders is in equi-
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librium with or isolated from the surroundings (or something in between), and the
solution for that case is not fully worked out. Finally, if capillary pressure is suffi-
ciently low, a process of snap-off can produce new lamellae splitting a long bubble
into two [3, 12].

These effects of liquid are not accounted for here, except, implicitly, the effect of
liquid occupying the corner at the pore body.
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Table 1
The time-averaged pressure drop for the motion of a lamella through a pore in each of the
cases considered. Results followed by a reference are analytic results given by Rossen, with
which the Surface Evolver results agree.

Shape Jump ¦ §l¨ aveX
2D bi-conical pore Symmetric © ©�ª¬«®,©�¯ 12 °
2D bi-conical pore Symmetric ©�ª±©�² ©�ª±©�³v²v´
2D bi-conical pore Asymmetric © ©�ªµ�«.¶�¯ 15 °
2D bi-conical pore Asymmetric ©�ª±©�² ©�ª¬«.¶,³
3D bi-conical pore Symmetric © ©�ª¬«®v·U¯ 12 °
3D bi-conical pore Symmetric ©�ª±©�² ©�ª±©�¶,¸v´
3D bi-conical pore Asymmetric © ©�ª¬«®´v³
3D bi-conical pore Asymmetric ©�ª±©�² ©�ª¬«¹©,º
2D sinusoidal pore Symmetric » ©�ª±©U«¹©�´
2D sinusoidal pore Asymmetric » ©�ª±©�¸�¶¼©
3D sinusoidal pore Symmetric » ©
3D sinusoidal pore Asymmetric » ©�ª±©�¶�«®·
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Fig. 1. Schematic of a “bubble train” moving through a porous medium. Reproduced from
[9].
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Fig. 2. Pore-geometry parameters (i) Bi-conical pore. (ii) Sinusoidal pore. Each pore is of
length ,Ì . The widest part of the pore body has radius Í: and the throat has radius Í ! .
The points of attachment of the lamella to the pore walls are denoted Î � and Î � , which are
equal when the lamella is a circular arc/spherical cap. The bi-conical pore has slope Ï and
its apex is rounded over a length v¦HÌ .
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h hj jd
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Fig. 3. Lamella shapes for the symmetric and asymmetric jumps in a 2D bi-conical pore
(the rounding at the apex of the pore body is excluded). (i) In the symmetric case the lamella
reaches c and then flips to the rearward-facing arc d while keeping the same volume behind
it. (ii) In the asymmetric case, there is a region at the centre of the pore where the lamella
is a straight line (e – f) before flipping back to the rearward-facing arc at g. The symmetric
jump in 3D is similar, but the 3D asymmetric jump allows the lamella to assume more
complicated shapes.
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Fig. 4. The dimensionless volume (area) Ò X behind a lamella in a 2D bi-conical pore with¦�Ó¥©�ª±©�² , as a function of the positions of attachment to the pore wall, Î �ÕÔ Ì and Î �.Ô Ì .
The solid line beyond point c shows the volume if the jump were suppressed and symmetry
enforced as the lamella passed through the centre of the pore; the volume decreases after
reaching the rounded region at the centre of the pore. Also shown are Evolver simulations
for the symmetric and asymmetric jumps. Before and after the jumps all expressions agree.
The symmetric jump occurs at Î � ÓyÎ � ÓÖÌl×Ø«7»Ù¦FÚ , which is the maximum of Ò X ×ÛÎÜÚ ,
showing excellent agreement between the Evolver simulation and the analysis. The effect
of increasing ¦ is that the jumps occur at lower Î , the drop in the analytic expression for
volume is reduced and smoothed, and the time-averaged pressure drop is reduced (see Fig.
5). The letters refer to the lamella shapes in Fig. 3.
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Fig. 5. The dimensionless pressure difference §l¨ X across a lamella in a 2D bi-conical pore
as a function of dimensionless volume (area) Ò X behind the lamella. Both the symmetric
and asymmetric jumps are shown for ¦¢Ó¥©�ª±©�² . The dotted line shows the pressure drop
that would be observed in backward motion through the pore. The integral of each curve
gives the time-averaged pressure drop §l¨ aveX . This is largest for the asymmetric jump, but
decreases with increasing ¦ for both symmetric and asymmetric jumps. The letters refer to
the lamella shapes in Figs. 3 and 4.
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Fig. 6. The dimensionless volume Ò X behind a lamella in a 3D bi-conical pore with¦âÓI©�ª±©�² , as a function of the maximum and minimum positions of attachment to the pore
wall, Î �FÔ Ì and Î �.Ô Ì . As in 2D (Fig. 4) there is good agreement between simulation and
theory for the symmetric jump. The asymmetric lamella shape (see Fig. 8) doesn’t stretch
as far toward the pore throats as in 2D but returns more quickly and more smoothly to the
spherical cap.
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Fig. 7. The pressure difference §l¨ X across a lamella in a 3D bi-conical pore as a function of
dimensionless volume Ò X behind the lamella. Both the symmetric and asymmetric jumps
are shown for ¦ãÓÖ©�ª±©�² (same data as Fig. 6). As in 2D, there is a larger time-averaged
pressure drop for the asymmetric jump.
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Fig. 8. Lamella shapes in 3D were obtained in experiments by Rossen [15]. Shown on the
left are a series of photographs (time increases downwards) showing the asymmetric flip as
the lamella is pushed through the pore from left to right. On the right we show an oblique
view of the calculated shape of the lamella, for a similar bubble volume, from the Surface
Evolver simulations. In the pore throats at each end, the lamella is a spherical cap, but close
to the centre of the pore it flips to a saddle shape of constant mean curvature; the value
of the mean curvature increases (i.e. becomes increasingly negative) as the volume of the
bubble behind it increases.
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Fig. 9. The pressure difference across a lamella in a 3D bi-conical pore, as a function of
the dimensionless volume Ò X behind it, for different values of ¦ . The close proximity of
the data from the Surface Evolver for non-zero values of ¦ shows that the pressure changes
little, even for the asymmetric shapes; the only difference is the point at which the jump
occurs. This allows us to infer a value for the dimensionless average pressure drop for¦MÓC© .
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Fig. 10. The dimensionless volume Ò X behind a lamella in a sinusoidal pore in 2D and
3D as a function of the maximum and minimum positions of attachment to the pore wall,Î � Ô Ì and Î � Ô Ì . In the Evolver simulations we find only the asymmetric jump, but we note
that the analytic calculations show a maximum in the area behind the lamella in 2D. We
therefore expect a jump in this case, with only a small average pressure drop. Both of the
asymmetric jumps are similar, occurring at almost the same value of Î , although in 3D the
relative volume that this represents is smaller.
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Fig. 11. The pressure difference §l¨ X across a lamella in a sinusoidal pore in both 2D and
3D as a function of dimensionless volume Ò X behind the lamella. In 2D the asymmetric
lamella doesn’t have zero pressure difference as it does in the bi-conical case. There is no
symmetric jump in the 3D pore.
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