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Abstract

When a wave breaks against a seawall containing a crack, such as might exist within the blockwork, pressure pulses can
travel through the fluid and propagate into the crack. This can cause high stresses to act on the sides and roof of the crack
and may even cause the constituent blocks to move. The Pressure Impulse, P, is used to model the effect of wave impact
against awall in which there is a fluid filled crack. A two-dimensional field equation is derived for P that is applicable in
plane cracks of non-uniform, narrow width. This is solved for several geometries relating to cracks between constituent
blocks of seawalls, in order to compare the impulsive forces with the gravitational force on a block. It is shown that alarge
block can be lifted due to the impulse exerted by the fluid in a crack beneath it. © 2001 Elsevier Science B.V. All rights

reserved.
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1. Introduction

This paper presents a theoretical investigation of
the impulsive fluid force that a breaking water wave
might exert on the internal surfaces of a narrow
crack, or crevice, in a sea wall. The crack might be
the gap between two blocks in a blockwork structure,
or the space opened up from a fracture in the ma-
sonry or natural rock. This enables estimates to be
made of the stresses acting in the wall; these stresses
could cause the constituent blocks of a breakwater,
or other coastal structure, to move.

Bagnold (1939) was the first to show that at a
fixed point on a vertical wall the pressure, during
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impact, initially rises to a peak value, p,, and then
decreases. The increase and decrease together last for
a time At, which is normaly from one to 10 ms.
This study focuses on a wave impact, which at full
scale might exert a pressure of several atmospheres
over this brief time interval.

Hattori (1994) and Chan and Melville (1988)
report a wide scatter in both py, and At at labora-
tory scales. In a plot of field data, Bullock et al.
(2000) in their Fig. 8 show that for any fixed At, py
may have a definite maximum. Also, the highest
values of p, are associated with the smallest values
of At. Bagnold (1939) suggested that the product
P At is amore consistent measure of impact among
the scattered data. This led him to consider the
time-integral of the pressure, a quantity referred to in
this paper as the pressure impulse, P. More recent
measurements by Allsop et al. (1996) also demon-
strate the consistency of P.
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The definition of pressure impulse used here is
ta
P(x.y,2) = [ "p(x,y,2.t)dlt (1)
b

where t, and t, are the times at the beginning and
end of the pressure pulse or spike, X, y, z are
Cartesian coordinates of position and p is the pres-
sure (above atmospheric datum). The pressure im-
pulse idea removes time from the eguations of mo-
tion, but p, can be estimated from a calculated
value of P using the approximate relation

1
P= EppkAt. (2)
That is
2P
ppk = E (3)

However, since At is prone to uncertainty, any
estimate of p, is also uncertain. Therefore, in the
present work, a case is presented where the pressure
impulse can by itsalf give useful information about
the violent effects of wave impact.

For extreme impacts py,, may be very large and
At very smal, but the product given in Eqg. (2) will
remain finite. The integral of P over a plane surface
is the impulse which the impacting fluid exerts on
that surface.

These ideas, which have been explained by Cooker
and Peregrine (1990, 1995) and Chan (1994) for
wave impacts, are now applied to the impulsive flow
in a crack. For a crack which initially contains both
air and water, the problem is complicated by (i) the
possibility of fluid impacting the interior surfaces,
and (ii) the reaction of air pockets and air bubbles to
applied pressure.

Muller (1997) hasinstigated an experimental study
into pressure propagation into cracks in seawalls. He
measured the impact pressures on a vertical wall and
then in a vertical crack in the wall. The top of the
crack was at still water level so that it remained
saturated with fluid throughout the experiments.
Muller found that impact pressures on the wall prop-
agated into the crack and were higher at the back of
the crack. (If the crack was open to the atmosphere
at the back, then the pressures were reduced on the
rear transducer and were less than those on the front
transducer.) The recorded pressures were, in general,

only dlightly less than those on the wall. He suggests
that these are due to compression waves in the crack
fluid, and that the impact pressures in these thin
cracks cause large lateral pressures, which can exert
high splitting stresses on the surrounding walls.

In this work the crack again remains saturated
with water in order to simplify the analysis as much
as possible. For the moment, any fluid compressibil-
ity will be due primarily to the presence of, perhaps
microscopic, bubbles. It is possible to show that
compressibility has a relatively minor effect on the
pressure impulse. Relative to an incompressible fluid
model the presence of compressibility reduces the
predictions of peak pressure, as found by Peregrine
and Thais (1996).

Another way to quantify compressibility is to take
a relationship between density p and pressure p in
the form

p(P) = po+ (4

where p, is the equilibrium density of the fluid and
c is the constant speed of sound in the medium.
Milller (1997) has measured ¢ to be as low as 50
m /s for pulses travelling in a laboratory crack under
fluid-saturated conditions. Now consider Euler's

equations:

u v 1V k 5
— 4 . - — —_

o T (U V)u=——Vp— ok (5)

where u is the velocity, g is the acceleration due to
gravity, k is a unit vector pointing vertically up and
V is the gradient operator (3 /0x, 9 /dy, 3,/0z). Sub-
stitution of (4) and expansion in a power series gives

— gk.

ou \Y
—‘+(u-V)u=——p(1— p2+...
= Po PoC

(6)
Even if a high value of p=6x 10° N/m? is taken,
and a rather low value of ¢c=50 m/s, the dimen-
sionless factor in Eq. (6) is p/p,c® = 0.24, which is
small compared with one. So Eq. (6) is well-ap-
proximated by its limiting form ¢ — o for incom-
pressible fluid:

u \% lV k 7
a—t+(9‘ )H——p—o p—oK (7)

with which the analysis begins in Section 2.



S.J. Cox, M.J. Cooker / Coastal Engineering 42 (2001) 241256 243

The definition of P in Eq. (1) remains valid for a
compressible fluid because one can adjust the time
limits t, and t, to be the instants just before and just
after the arrival of a wave-impact pressure pulse. The
further away one is from the point of impact, the
later the times t, and t, must be chosen. The
computation of P can be performed in the same way
as for an incompressible fluid, as explained in this
paper, but due care must be taken in estimating the
associated peak pressure and the time of its occur-
rence.

By treating an incompressible fluid the model is
incapable of accounting for the energy losses from
compression waves propagating into cracks, reported
by Miuller et a. (2000). However, the most recent
measurements (Muller and Makarov, personal com-
munication) indicate that the pressure impulse varies
by only +10% among measurements made at four
positions along the length of a 60-cm-long closed
crack. For the same data, the peak pressure halves
during the propagation of the pressure pulse over the
same distance.

Future theoretical work with a compressible fluid
may be able to account for dissipative effects, finite
sound speed and the complex response of bubbles to
violent impacts. The model of incompressible flows
presented here gives the engineer useful information
as to the most extreme conditions likely to occur.
The model requires as input data the pressure im-
pulse a the seaward edge; this information can be
obtained from the theoretical wave impact work of
Cooker and Peregrine (1990, 1995) and Chan (1994),
who show that P is directly proportional to the
speed of impact, wave height and fluid density. The
mode! allows us to caculate P(x,y) inside a crack
whose median surface is described by Cartesian co-
ordinates (x,y). From P one can caculate the sud-
den change in the fluid velocity inside the crack
which is brought about by the impact. The model
also quantifies the total impulse | on the internal
faces of the crack. Thisimpulseis directed normal to
the plane of the crack and it is suggested that the
impulse is responsible for moving blockwork. De-
pending on the orientation of the crack, the impulse
can either lift ablock or push it parallel to the line of
the sea wall or even impel the block seawards.
Expressions for | turn out to be quite simple for a
plane crack (which is open only on its seaward

edge): | is directly proportional to the area of the
interior surface of the crack.

The rest of the paper is arranged as follows: the
equations of pressure impulse theory are derived in
Section 2 and the discussion in Section 3 motivates
the application of the general theory to pressure
impulses in a crack. In Section 4 the partial differen-
tial equation for P(x,y) is derived for a crack whose
height (i.e. smallest dimension) h(x,y) varies with
position. This is solved for the simple case where
both P and h depend on x aone in Section 5.1.
Solutions for P which depend upon both x and vy
are summarised in Section 5.2 and are derived in
Appendix A. The effect on a solid block due to an
uplifting or a laterally directed impulse are discussed
in Section 6. Under the restoring forces of weight
and friction the displacement of a block can be
estimated.

2. Pressure impulse theory

Over the duration of the impact, the velocity field
before impact, u,, is regarded as quite distinct from
the velocity field after impact, u,. While before and
after impact the velocity may vary in time, suppose
that there is a short time interval [t,,t,] during which
the acceleration of the fluid, du/odt, greatly exceeds
its value at al other times. This causes a rapid rise
and fal in the pressure throughout the fluid and has
striking consequences for the equations of motion.

Integrating Euler’s equation (Eq. (5)) with respect
to time over the short duration of the impact, At=t,
—t,, gives

t, 1
b~y (U V)udt= — 7V [ "palt — gAtk
(8)

(where the subscript from the constant fluid density
has been dropped). Introduction of a length scale L
and a velocity scale u, shows that (away from the
free surface where a jet of high velocity may be
formed) the second term is of order Atu3/L and the
last term is of order gAt. These are both small
compared with |u, — u,|, which is of order u,. The
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only remaining term to balance Eqg. (8) is the pres-
sure integral. This gives, approximately, that

u,—u, = — EVP (9)
p
where P is the pressure impulse defined in Eq. (1).
If the fluid is incompressible before impact and
after impact, V-u,=0 and V- u, =0, then the di-
vergence of Eq. (9) shows that

V?P=P,+P, +P,=0 (10)

where subscripts denote partial derivatives. There-
fore, P satisfies Laplace’s equation throughout the
fluid. Eg. (10) is independent of time, and can be
solved in the domain occupied by the fluid at the
start of the impact. Appropriate Neumann or Dirich-
let boundary conditions can be supplied to solve for
P, which as well as giving information on peak
pressures, will determine the velocity field after im-
pact through Eq. (9), in which u, is prescribed and
needed in order to fix the boundary conditions for P.
It is assumed that the walls of the crack are imper-
meable so that equating the normal derivative of P
to zero will be the relevant boundary condition,
corresponding to u, = u, = 0 in Eq. (9). Notice also
that the curl of Eq. (9) shows that the vorticity is the
same before and after impact, so the flow need not
be irrotational.

Cooker and Peregrine (1995) calculate the pres-
sure impulse in a fluid domain, D, whose shape
models a sea wave at its moment of impact against a
vertical wall of height H. D is the region x> 0,
—H <y <0, with thewall at x = 0 and the horizon-
tal sea bed aa y= —H. Boundary conditions of
P = 0 are prescribed onthefreesurface y=0, P> 0
as x— o and dP/dy=0 on the sea floor. The
boundary condition on the wall is dP/dx= —pu,
where the wave impacts and 9P /0x = 0 below this
impact zone. The resulting distribution of P is shown
in Fig. 1, for an example where the wave breaks over
the top half of the wall. The wavefront hits the wall
in the negative x direction (i.e. it moves from right
to left before impact) with constant horizontal veloc-
ity component, —u,. The crack is assumed to be
beneath the impact zone (i.e. in the lower half of the
wall) so that before impact the fluid in the crack is at
rest (u, = 0).

:LJH
0 0.25 . 0.75 1

-0.25

S ——

~ -0.5
=

-0.75

-l
Fig. 1. Lines of constant pressure impulse for a wave impacting
with velocity u, on the top half of the wall, x=10, y[—05H,
0], with a vertical front face. Contour separation is 0.01 puyH
and P = 0 on the free surface y = 0.

The contours in Fig. 1 reveal a large gradient of
pressure impulse acting down the lower part of the
wall. This gradient is directly proportional to the
finite change in flow velocity which occurs through-
out the fluid domain during the impact, so that where
the contours are close together there is a high-speed
flow after impact, directed normal to the contours.
Thus, at the origin a high-speed vertica jet is ex-
pected.

3. Crack geometry and boundary conditions

In aseawall there are cracks through which water
can flow, and the interconnection of individua cracks
permits hydrodynamic pressures to be transmitted
deep into the wall. The purpose of this section is to
describe, with the aid of Fig. 2, the geometry of a
crack (or crack network) in a seawall, how the small
width of the crack simplifies the fluid flow equation
and what boundary flow conditions can be applied.

A typical crack contains a stratum of fluid that is
thin. That is, the distance h between the crack walls
is much less than the depth or width of the crack. To
a good approximation, the fluid flows parallel to the
walls, and more quickly where h is smaller (see
Lamb, 1932, Art. 80). In the present problem, the
fluid in the crack is driven by gradients in the



S.J. Cox, M.J. Cooker / Coastal Engineering 42 (2001) 241256 245

Fig. 2. The crack geometry. (a) Waves approach, in the direction shown by the arrows, towards the face of the sea wall in which there is a
crack AB. (b) This view of the back of the wall shows how the same crack extends backwards from AB, to become the crack with area
ABCD. Since the crack is thin and the pressures exerted are much greater than hydrostatic, the fluid flow in this curved stratum can be
approximated by flow in (c) a horizontal crack or (d) a vertical crack, where the side walls are now plane (or nearly plane).

pressure impulse, which varies with position accord-
ing to changes in h. Since the crack is thin, much
can be inferred about results in curved cracks (as in
Fig. 2b) from results for cracks which have one wall
plane and the other nearly plane (Fig. 2c and d).

The pressure exerted in the crack is many times
greater than any hydrostatic pressure due to the
weight of the fluid alone. Therefore the orientation
of the crack has little direct effect on the pressure
impulse distribution, and the governing equation
treats the horizontal and vertical cracks in Fig. 2c
and d as the same.

Inside the wall the edges of a single crack are
treated as impermeable, but where two cracks join
along a common edge the pressure impulse, P, and
the quantity oP/9x are continuous across the junc-
tion. (Here x is a coordinate that crosses the join
perpendicular to the common edge.) It is assumed
that the crack walls are rigid; thisis reasonable in the
early stages of damage when cracks are still thin and
the surrounding blocks are as yet unmoved. On the
seaward edge, P is given from a previous calcula

tion. Different data would be used in the cases
illustrated in Fig. 2c and d: in (c) a uniform value of
P may be appropriate, but (d) requires that P vary
with height up the wall. In this case Fig. 1 suggests
the validity of a linear approximation in a small
interval below the impact zone, y= —0.65H, of
P=05(1+y/H) puyH). It is assumed that P in
the exterior calculation is changed little by the pres-
ence of the cracks in the wall, which is reasonable if
there is no appreciable net flux from the wave into
the crack, such as might occur in a fluid saturated
crack. For aclosed crack (in which h shrinks to zero
and hence the walls meet) dP/ax = 0 must be pre-
scribed at the closed end. However, if the back of the
crack is open to the air (with p=0) then P=0
must be prescribed as the free surface boundary
condition. This condition is also appropriate for the
back of an open crack which lies submerged a
distance d, in still water. In this case p= pgd and
P = pgdAt which is negligible (for the short times
of impact which we treat) compared with the pres-
sure impulse values we expect at the entrance of the
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crack. Therefore, P =0 is again an appropriate free-
surface boundary condition.

The main purpose for calculating P is to find the
net impulse | on the crack walls, which is deter-
mined by integrating PA over one wall, where fi is
the unit normal to the wall’s surface. The impulse
can be interpreted as the product of a force F of
large modulus and a short time At, so F=1/At.
This impulsive force, F, on the roof of the crack can
be compared with, for example, the forces of block
restraint and weight. Further, once P has been calcu-
lated, the velocity field in the crack can be found via
Eq. (9), so that information will be available on how
loose material in the crack will be moved around.

The analysis of the crack interior begins by as-
suming that the crack is thin, so that the pressure
impulse changes little over the height of the crack.
Then a two-dimensional equation for the pressure
impulse in a three-dimensional crack can be derived.
This is solved for severa different geometries. the
sides of blocks are often plane surfaces placed face-
to-face and joined by cement. If the cement has
eroded away then a crack with plane walls remains.
A network of such cracks between many blocks thus
might consist of thin plane strata, each connected to
its neighbours along edges. Therefore, a crack is
modelled which is composed of plane surfaces, which
give the crack a height that varies with position. This
distance between the crack walls is necessarily ev-
erywhere much less than the length or width of the
plane surfaces which compose each of the crack’s
sidewalls. If the pressure impulse at the seaward end

of a simple crack, where h depends only upon the
distance x away from the seaward end, is constant
(P =Py), then because the walls are impermeable,
the pressure impulse is the same constant, Py,
throughout the crack. If this crack is plane-sided,
with unit normal f to the plane, and if the crack area
is A (ABCD in Fig. 2b), then | =P, AA. Thus, the
broader and deeper the crack the greater the impulse.
However, if the crack is uniform in height and open
to the atmosphere at the back (P =0), then the
solution for P decreases linearly from the front of
the crack to the back, P =Py (1 —x/L), where L is
the length of the crack and x € [0,L] is a coordinate
along the base of the crack. Note that x could also
be the arc length along the base of some more
complicated crack, in which case P would be the
same, provided that the crack was still uniform in
height. P isfound in some more complicated cracks
in Section 5. The discussion in Section 6 is con-
cerned with the effect of the wave impact on a crack
beneath a large concrete block, such as might be
found in a seawall. The conclusions are summarised
in Section 7.

4. An equation for the pressureimpulsein a crack

Consider two almost parallel, impermeable, sur-
faces, S, and S,, the gap between which is filled
with fluid, as in Fig. 3. In the fluid domain, P
satisfies the three-dimensional Laplace’'s eguation

z= fa(z,y)

2= fi(z,y)

Fig. 3. Notation for calculating the pressure impulse in a crack. S; and S, are impermeable surfaces confining incompressible fluid and n,
and n, are the respective normas. S is given by z=f(x,y) and S, by z=f,(x,y). The pressure impulse, P, satisfies the
three-dimensional Laplace’s equation with zero normal derivative on the bounding surfaces.
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(Eg. (10)), V2P =0. The boundary conditions are
that the walls are impermesble:

VP-nls=0, i=1,2 (11)

where n; is the normal to the surface S. If § is
defined by the equation z=f(x,y) then n =

(—af, /ax, —of, /0y, 1) and Eq. (11) becomes

aP|  oP| of aP| of

— | == —+—| —, i=12 (12)
0z |g  9X[sdX 3y |gdy

Integrating Laplace's equation across the height of
the crack, from z=f, to z=f,, for fixed x and y
gives (where x, y and z subscripts denote deriva-
tives)

f
/f P+ Pyy + Py,dz
1

f f
=/f2Pudz+/f2Pyydz+ P,ls,— P,ls, = 0.
1 1
(13)

If § deviates little from the (X, y)-plane then both of
the derivatives of each of the f; are small: f,, f;,,
fy, f2y <1 Thus, Eq. (12) implies that 8P /dz Is
small compared with 8P /dx and dP/dy on each of
the bounding surfaces. Therefore, P varies little
across the gap, and consequently the x and y deriva
tives of P vary little across the gap, and can be
treated as independent of z. Thus, Eg. (13) becomes,
approximately,

of,  of,
Pxx( f2 - fl) + Pyy( f2 - fl) + PX& + Pya—y
of,  of,
—p—-P— =0 (14)
X oy

Defining h(x, y)=f, —f, (and neglecting terms of
order h®) gives

hP, + hP,, + h,P,+ h,P, =V (hVP) =0 (15)

where V is now the two-dimensional gradient opera-
tor. Eq. (15) reduces to a two-dimensiona Laplace's
equation when h is constant, and in general, when
either P or 8P /0n is specified on the boundary, the
solution of Eq. (15) enables the pressure impulse in
the crack to be found, so it can be used to find the
impulse on the roof of the crack.

In Section 5 the special type of problem where P
depends on x alone is solved; two-dimensional solu-
tions of Eq. (15) are discussed in Section 5.2.

5. Results
5.1. One-dimensional solutions in open cracks

Consider initially a crack where h=h(x) and
P =P(x), such as might arise when the seaward
boundary data for P is uniform along the crack
opening. If the crack were closed at the back end
then, since 9P/dn=0 on each of the bounding
surfaces, the pressure impulse is constant and equal
to the pressure impulse specified at the open bound-
ary. Now consider a crack of length L, which is
open at the back (x=L). As shown in Fig. 4, the
boundary conditions are that P is specified at each
end of the crack: P(x=0)=P,>0 and P(x=1L)
= 0. If it is assumed that the base of the crack is flat
(f, =0), then h(x) =f,(x). Eq. (15) becomes
d dp
dx(hdx) 0, (16)
since P is afunction of x only, with solution

X L dx
. 17
[h(x)/f h(x’)) (17)
Therefore, P decreases monotonically from the en-
trance to the back of the crack, and the gradient of
pressure impulse, and hence the change in fluid

speed, is highest where h is smallest. The impulse on
the roof of the crack is

x dx L dx
SN X/fo m) (18)

so that | < P, L.

P(x) =Py 1

| =P,|L

:/l’/ P=0

! x
r=1L

Fig. 4. A one-dimensional crack is defined to have length L with
aflat base and a roof given by z=h(x). The y-axis is normal to
the plane of the figure and the boundary conditions are that
P(x=0)= P, and P(x=L)=0.



248 S.J. Cox, M.J. Cooker / Coastal Engineering 42 (2001) 241256

Now h(x) can be any function for which 1/h is
integrable and dh/dx is small. For example, if
h(x) = a — BX, where a >0 and o — BL > 0, then

P(x) = Po(l_ M)
log(1 - BL/a)

If B> 0 the greatest change in fluid speed occurs at

the back of the crack, but if 8 < 0 then this occurs at

the seaward end, where the crack is thinner. From

Eq. (18), the impulse on the roof of this crack is

L «a
| P°(|og(1_BL/a) " B) (20)
per unit length of crack normal to Fig. 4. Notice that
as B — 0, Eg. (19) gives the solution for a crack of
constant height, P(x) =P,(1—x/L). In this case,
the pressure impulse varies linearly between the two
ends of the crack and the impulse on the roof of the
crack is 1 =(1/2)P,L.

If the back of the crack is closed then « = BL
(i.e. h(L) =0) and the appropriate boundary condi-
tion is that dP/dx=0 a x=L. Then in place of
Eq. (19) the pressure impulse is given by P(x) = P,
for al x, which isindependent of the shape or height
of the crack and is thus of especia interest for the
study of realistic seawall cracks. The impulse on the
roof of the crack is | = Py L, which is greater than if
the crack were open at the back end. Further, this
impulse acts in the direction which widens the dis-
tance between the crack walls, if the walls are mo-
bile.

It is aso possible to find the pressure impulsein a
crack with a roof which is defined as a continuous
collection of segments for which P can be found
from Eq. (17). To construct a solution, the general
solution for P is found for each part of the roof and
then P and dP/dx are matched across the joins, to
find the pressure impulses at the ends of each seg-
ment. This is demonstrated for the analysis of Sec-
tion 5.2, where it is shown how to find P in a crack
which is closed at one end, whose roof is made up of
a continuous collection of piecewise linear segments
and where P also varies in the y direction.

(19)

5.2. Two-dimensional solutions in piecewise linear
closed cracks

The theory of Section 4 can also be applied to
cracks in which h = h(x) but the boundary condition

at x = 0 varies with y, the axis normal to the plane
of Fig. 4. The formulae satisfied by the pressure
impulse in these cracks are derived in Appendix A,
and two examples are given showing in detail how
the field equation is solved, and how the pressure
impulse distribution in the crack is affected by dif-
ferences in the height of the crack, even though the
fluid impulse on the roof of each crack is identical.
The main conclusion is that, as for closed one-di-
mensional cracks, the impulse on the roof of the
crack is proportional to both the area of the base of
the crack and the mean pressure impulse at the
seaward end of the crack. The calculation also gives
information about how any loose material will be
moved around the crack.

6. Discussion

When a wave breaks against a sea wall which
contains a plane saturated crack, there is a distribu-
tion of pressure (impulse) across the plane of the
crack. If the mean pressure impulse at the seaward
end of the crack is P, if the crack is closed at the
back, and if the area of one internal face of the crack
is A then each face of the crack receives an impulse
| =P, A, where fi is a unit normal to the plane of
the crack, directed into the solid. This corresponds to
an impulsive force of F= P, Afi/At.

A breaking wave in water of total depth H may
be expected to hit a vertical sea wall with speed
Uy = \/g_H The associated peak pressure impulse is
P, =0.175pu,H (from Fig. 1) and so

1 3

pg?H?A
Fl=0175—
Now, suppose that A is the area of the base of a
cubic block of side L which is part of the wall. Then
the force |F| due to the pressurised water in the crack
should be compared with the weight of the cube,
M = pg gL, where pg is the density of the wall
material. It can exceed W if one of At, L or pg is
small enough, or H large enough. Fixing H= 10 m,
pg = 3p and At=0.04 s shows that [F| > W if L is
less than about 15 m. S
For larger pressure impulses, or smaller At and
pg, itislikely that the wave will be able to (momen-

(21)
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tarily) lift blocks even larger than those of side 15 m.
Given the uncertainty in At, the corresponding mini-
mum size of block which will not be moved by
impact remains equally uncertain. These large up-
ward forces may be decreased by reducing the area
of the crack, for instance by avoiding the use of
materials that allow broad horizontal fissures to de-
velop.

A similar calculation can be applied to a crack
with any orientation. For a crack in a vertical plane
the resultant forces are horizonta and such latera
forces are likely to be resisted by the whole length of
wall, but not at a site adjacent to damage or at the
end of awall under construction. Consider a block of
mass m= pg AB, where B isits breadth perpendicu-
lar to the crack. The block lies on a horizontal
surface and the coefficient of friction between them
is w. The impulse due to the fluid in the crack
moves the block a distance d before it is brought to
rest by friction, where

. 12 P2
2ugn?  2pgpE B

(22)

Note the dependence of the displacement on the
square of the impulse (or mean pressure impulse at
the seaward end of the crack), and also the fact that
it does not depend on the area of the crack. If the
movement is resisted by a greater length of wall then
B increases and d is reduced. The values posited
above, together with pw=1/2, give d=3.4/B?
which, for sea walls, is likely to be a few centime-
tres. However, during a storm, the cumulative effect
of many wave impacts could cause considerable
displacement. In the absence of experimental data
with which to compare the work of this paper, it is
suggested that Eq. (22) may be one route by which
the theory can be checked, without recourse to mea-
suring detailed pressures within a crack.

If a crack extends up behind a block then these
calculations predict a seaward force, as well as the
lift force, which may or may not exceed the wave
impact force. When a wave impacts against a wall,
the pressure impulse field has a significant gradient
aong the sea floor, away from the wall. An object
on the sea floor will therefore experience a seaward
force, which can be calculated given knowledge of

the pressure impulse. Then Eg. (15) can be applied
to find P in the small gap beneath the object (see
Cox, 1998).

7. Summary

This paper has demonstrated how to find the
pressure impulse in a thin crack by deriving an
equation for the pressure impulse, Eq. (15):

0 P a P
V- (hVP) = —(h—) + —(h—) =0
ox\ ax oy | ay

with the boundary conditions that P is given at the
crack openings and that the normal derivative of P
is zero where the crack is closed. In particular, with
a view to discovering what happens when a wave
impacts against the face of a water-saturated crack in
a sea wall, the pressure—impulse distribution can be
found in a crack of constant width, W, and length, L,
whose roof is piecewise linear. The total impulse on
the roof of the crack is then | = P, LW, where P, is
the mean pressure impulse at the open end of the
crack, so the impulse does not depend on the distri-
bution of pressure impulse. This applies to a crack,
which is closed at the back, but, conversely, if the
crack is open to the air at the back then the impulse
is reduced, for which a general formula is given.

If the block, which forms the roof, is a cube
whose side length is less than a certain size then the
force of a wave breaking against the wall in which
the crack is situated could be large enough to over-
come the gravitational force acting downwards, and
lift the block. Also, the wave forces in cracks could
cause considerable lateral stresses on the constituents
of a sea wall. Further, these forces apply no matter
how thin the crack, and do not change with varying
crack height.

Cadlculation of the pressure impulse alows the
fluid velocity gradients to be found, showing how
debris may be swept into and out of the crack.

Notation

A area of the base of the crack

B breadth of the sea wall perpendicular to
crack
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d distance moved by block in sea wall

D fluid domain in which P is calculated

f,, f,  functions defining crack height
impulsive force in crack

g acceleration due to gravity

h, h,, crack height

H water depth

I impulse

i, j, kK unit vectorsin x, y, z directions

L crack length

m mass of block in sea wall

n, n;, n, normals to crack walls

p fluid pressure

Pok peak fluid pressure

P, P, pressure impulse

Po pressure impulse at seaward end of crack

S, S, crack sides

t time

t, time of end of impact

t, time of beginning of impact

u fluid velocity

u, fluid velocity after impact

u, fluid velocity before impact

Uy impact velocity

W weight of block in sea wall

X, y, z Cartesian coordinates
a, an, B, B, parameters defining linear crack
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Appendix A. Piecewise linear closed cracks

The work of Section 5.1 is extended here by
considering a crack with a cross-section as in Fig. 5
but where the boundary data at x = 0 depends on .
This also shows how the matching process works for
crack networks. The crack is closed at the back, the
floor is flat, and the roof is made up of piecewise
linear segments as demonstrated in Fig. 5. To sim-
plify the analysis, the crack is assumed to be uniform
in the y direction and to lie between impermeable
wallsat y=0and y =y, > 0. So the boundary data
a x =0 can be given as a Fourier cosine seriesin vy,
implying that although h = h(x) only, P =P(x,y).

A.1. The pressure impulse field

The starting point is Eq. (15):

heights
At ot —t, V- (hVP) =0 (A1)
I coefficient of friction where h=h(x) =f,(x) is the height of the crack,
p fluid density f,=0and P=P(x,y) is the pressure impulse in the
Ps density of sea wall materia crack. Recall that thisis only valid for small dh/dx.
z
Fo
21
h(z)
P S~ Zuo
[)m—f—l ZM
g P“”
0 T Tyn—1 Ty T Tp—1 T m v

Fig. 5. A piecewise linear crack is divided into M sections, each of which is such that h.(x) is linear. The crack is uniform in the y
direction (into the page), of length L = x,,, width W=y, and in the mth section P =P (X,y).
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The base of the crack is the plane x<[0,xy],
y €10,y,] and so the crack has a front-to-back length
of L=x, and width W=y,. The height, h, is a
continuous collection of segments of the form h, (x)
= a, — BnmX, each defined on the interva
[ Xm 12 Xm), Where o, > 0, X, =0and m=1,...,M,
asin Fig. 5. Then P is a differentiable function on
each of the M segments and on the mth segment,
P =P, (x,y), where each P, satisfies Eq. (15).
The crack is closed at x = x,, so that

oP,

a—)’:'(xM,y)=0. (A.2)

Theflat sides y=0and y =y, are impermeable, so

_— 0)=— 1 =0 =1 M
y(X,) y(X,y) orm y oo VL
(A.3)

The open (seaward) end at x = 0 has specified data
for P,, given as a Fourier cosine series,

PL(0.y) = Py+ ¥ Seos(iy) (A2)
j=1

for some constant P,. Notice that if the seaward
condition is constant, P,(0,y) = P,, then the pres-
sure impulse solution in the crack is P, everywhere.
To satisfy Eqg. (A.3), solutions for P, must be of the

form

nwy

Y1 )
foom=1,...,M. (A5)

So for each h,, the following equation must be
solved:

d*f,, h, df., nar
>+ — —|—] fan=0.
dx h, dx Vi

P.=Py+ Y fon( x)cos(

n=1

(A.6)

A.1.1. An arbitrary segment

For an arbitrary segment (m= M), there are two
possibilities (given below).

* (i) h,, is a decreasing function of x (if h,, is
increasing then the procedure is analogous),

X, — X
_—)(zm_l—zm) (A7)

h (x)=2z,+
n(0) =2+ | S —

and consequently it is convenient to define

hm XmZm-1" Xm-1Zm
fm(x)= _H_= —X

m Zn-1"Zm

(A.8)
for x € [ X,_ 1, X, ). With this change of variable, Eq.
(A.6) becomes
d*f, 1 df,, nm\?
TER T (71) ™
with solutions
lo(né(X) /Y1)
lo(nmén( Xm) /Y1)
KO(ngm( X)/yl)

" KO( nﬂ-gm( Xm)/yl)

where |, and K, are modified Bessel functions of
order zero. Then

ot nm
Pa(X,y) =Py + cos( y)
n=1 yl

lo(NTén( X) /Y1)
" IO( W?Tfm( Xm)/yl)

-0 (A.9)

fmn( X) = Amn

(A.10)

Ko(nmrén( X) /Y1) }
. A.ll
mn Ko(N7 & Xm) /Y1) ( )
« (ii) hy, is constant,
i (A.12)
and Eq. (A.6) becomes
dzfmn nm 2f =0 A.13
dx? _(y_l) " "
with solutions
- cosh( N Xx/y;)
S ey )
sinh(nmx/y,)
™ S XY) 9
Then
Pr(X.y) =Po+ X COS( mTY)
no1 Y1
cosh( N x/Yy;)
sinh(nwx/y,)
m} "
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A.1.2. The closed segment

For the closed segment, h= h,,, (Eq. (A.2)), the
zero-flux condition at x = x,, is applied on a verti-
cd wall. There are again two possibilities (given
below).

* (i) hy, is adecreasing function of x, when Eq.
(A.2) is applied to Eq. (A.11) a x=x, gives
Byn =0 and

Pu(X,y)
. = nmy lo(nméy (X) /Y1)
~hot ni—:lcos( Y1 )AM” lo(n7éw (Xm) /Y1)
(A.16)

A specia case of this solution is when h,, decreases
to zero at x = x,. Then
h Al A17

M(X)_ZM_lXM_XMfl (A.17)
and ¢&,(x)= —h,,/h), =X, — X so that instead of
the more general Eq. (A.16) one obtains

Pu(x,y) =Py + i cos( nﬂy)
n=1 Y1
X Ay lo(N ( Xy = X) /Yy ) (A.18)

« (i) hy, is constant. Then the solution for Py, is
given by Eq. (A.15), and applying Eq. (A.2) gives

* nir
Pu(Xx,y) =Py + > AMnCOS( yy)

n=1 1

cosh(n ( Xy — X) /Y1)
cosh? (N Xy /Y1)

(A.19)

A.1.3. The complete solution

The solution for P is completed by applying Eq.
(A4 to P, a x=Xx,=0 and by matching P,, and
0P, /dx at each x,, m=1,...,M — 1; that is

m?

Pm( Xm) =Py 1( Xm)’

al:)m al:)m-%—l
a_X( Xm) - ax ( Xm)

foom=1,...,M—1.

(A .20)

This gives a system of 2M — 1 equations for each
n>1,

A1, P(0) +By,s(0) = §,

Amn + Bion = Ams 1, P(M) + By gy S(M) form
=1,....M—1

Anmn [_3( m) + ané( m) = A(m+ 1), F=)( m)

+Bnip 8(m) form=1,....M—1. (A.21)

In this system the unknowns A, and B, are
sought, with the expressions for p(m), s(m),... and
By, chosen according to the choice of h,, and h,,,
respectively, as given in Table 1. When M > 2 the
system (A.21) can be solved using, for example, the
computer algebra package Maple (Vr3). Then, once
al the A, Bn,, have been expressed in terms of
the S,, the pressure impulse vaues, P,, can be
found from Egs. (A.11), (A.15), (A.18) and (A.19)
as required.

A.2. The impulses on a piecewise linear closed crack

In attempting to find the net fluid impulse, I, on
each segment of the roof and the back of the crack,

Table 1
Values of the constants for the system (A.21) in each of the two
cases, where h(x) either decreases with x or is constant

Case (i) hy, decreasing Case (i) h,, constant

p(m) lo(n7én s 1(Xm)/ Y1) cosh(Nmr X, / Y1)
lo(nméms1(Xms1)/ Y1) cosh(NT X4 1/ Y1)

«m) Ko(n'”'ngrl( Xm)/ Y1) snh(nm Xy, / Y1)
Ko(Néms 1(Xm+1)/ Y1) Snh(NT X4 1/ Y1)

— Il( nﬂ-gm( Xm)/ yl)

R CNERVES B

— Kl( nﬂ-gm( Xm)/ yl)

s(m) — m COth( nm xm/yl)

B(m) (M7 1(Xm)/ Y1) sinh(nm Xy, /' Y1)
lo(nméms1(Xms1)/ Y1) cosh(NT X1/ Y1)

Km - Ki(nmémy 1(Xm)/ Y1) cosh( N7 X, / Y1)

Ko(nrémy1(Xme1)/ Y1) Snh(na Xy, 1/ Y1)
By, O —tanh?(nm Xy, / y1)
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note that, due to the presence of the cosine termsin
the solutions for P, the only contribution to | comes
from the constant term, P,. Unit vectors i, j and k
are defined in the x, y and z directions, respec-
tively, then the horizontal component of impulse
from the seaward face of the crack is P,y z,i. (z, is
the height of the crack at the wall face.) The impulse
on the mth segment of the horizontal floor is
— Py Yo X, — Xin_ 1)k, Resolving components  hori-
zontally and vertically gives the impulse on the roof
of each of the m segments:

lm= POyl(( Zn1 Zm)i_+ (Xm_

mel)i_()'
(A.22)

If the crack has the roof of its Mth segment horizon-
tal then the i component of 1, is Pyy,z,_, and it
acts on the back wall rather than the roof. Notice
then that any other segment with a horizontal roof
has no horizontal component of impulse acting on it.

The total impulse on the roof and back of the
crack is

1= % 1= PoYi( Zi + LK). (A.23)

The following conclusions, which are independent of
the distribution of height within the crack, can now
be drawn. The horizontal impulse on the roof of a
crack of length L, width W and height H (at the
seaward end) is P,WH and the vertical impulse is
P, LW. The horizontal impulse will be small, since it
is directly proportional to the height of the crack.
The vertical impulse is P, multiplied by the area of
the crack roof, and is independent of the crack
height. So the important physical conclusion is that
the principle component of fluid impulse is directed
normal to the plane of the roof, and will act so asto
open up the crack, no matter how narrow it is. Also,
this component of impulse does not depend upon the
distribution of pressure impulse at the seaward end
of the crack, only it's mean value.

A.3. Example: plane-sided slot

Consider a crack with a flat horizontal roof from
the back to where it meets the seaward face of the

wall in which it is situated. The height of the crack is
arbitrary, though small, and there is just a single
segment, m= M = 1. So, the crack is a thin rectan-
gular box. Then Eq. (A.19) is applicable:

Po+ X Acos(nmry/y;)

P(x,y) =
n=1
cosh(nm( X, —X) /Y;)
cosh®( N X, /Y;) (829

Consider the crack to be in a vertical plane, similar
to the crack in which Muller (1997) measured the
pressures due to a breaking wave. A dimensional
seaward boundary condition of P(0, y)=(1+
y)X0.5pu,H) is taken from the earlier calculation
shown in Fig. 1, as discussed in Section 3. This
applies to a wave which impacts upon the top half of
the wall, above the crack, with a uniform velocity
profile. As a Fourier cosine series, P(0, y) can be
written

P(0,y)/(0.5pusH)=1+y

. A ﬂ = cos[(2j + 1) my/y,]
2 75 (2j+1)° .

(A.25)

Comparing coefficients gives A, /cosh(nm X, /y;) =
S,, where

4y,

1
—0and Sy, = ———2——— (A26

and P,=(1+(1/2)y;X0.5pu,H). Then

P(x.y)
0.5puy,H
> cos|(2n+1)w
TR TES [( )zy/yl]
2 7D (2n+1)

cosh((2n+ 1) 7 ( X, — X) /Y;)
cosh((2n+1)mx,/y;)

(A .27)

This pressure impulse solution is shown in Fig. 6.
The impulsive change in velocity is given by Eq. (9),
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u,—u,= —VP/p. If the fluid is stationary before
impact (u, =0) then the contours in Fig. 6 are
interpreted as lines normal to u,. Where the contours
are close together the speed,_lual, is larger, such as
near (0,0) (where P = 1(0.5pu, H), its lowest value)
and (0,3) (where P = 4(0.5pu, H), its highest value).
At the back of the crack the contours are spaced
further apart which implies a slower induced flow.
So the boundary condition applied at the seaward
end of the crack will, in this case, induce a flow into
the crack near (0,3) and out of the crack near (0,0).
Any small particles of debris are also impelled by
the pressure impulse field, and they will therefore be
swept around the inside of the crack. This might be
one mechanism by which solid particles become
lodged in, or extracted from, crevices.

05 1 15 2 25 3
X

Fig. 6. The contours of constant pressure impulse for a rectangular
crack with a flat horizontal roof, whose cross-section is shown in
the upper part of the figure. The lower part of the figure is a plan
view of the crack with contour separation 0.05(0.5pu,H) and
X, = 3.0, y; = 3.0. The seaward boundary condition is P(0,y) =
(1+ y)0.5puyH) and the contours are symmetric about the
centreline of the crack, y= 1.5, (which follows from the cosine
dependence) and show the variation of P away from Py, the
pressure impulse at the centre of the open end.

Fig. 7. The contours of constant pressure impulse, from Egs.
(A.31) and (A.32), for a chisel-shaped crack whose cross-section
is shown in the upper part of the figure. These should be com-
pared with those in Fig. 6. The seaward boundary condition is the
same and the contour separation is again 0.05(0.5puy H).

A4. Example: Chisel-shaped slot

Now consider a crack with two sections: the
seaward section (m= 1) has a horizontal roof and
the other section (m=2) has a doping roof that
joins the back edge to the seaward section. Thus

h, = a, on xe [0,x,]and
X, — X

h,=a, on X[ Xy,%],

A.28
M~ (A.28)

which is illustrated at the top of Fig. 7. At the open
end of the crack, Eq. (A.15) implies

P x,y) =Py + i cos( nwy)

n=1 1

cosh(nmwx/y;)
" cosh(n X, /y;)

. sinh(nmx/y,)
" sinh( narx, /y;)

(A.29)
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and at the sloping, back, end, Eg. (A.18) implies matching system from Eq. (A.21) requires the solu-
tion of
P,( X,
2(x.Y) A, = Scosh(nmrxy/yy)
* nm nar ( X, — X
=P,+ ). COS( yy)Aano(¥ Arn + Bin = Agplo(nar (X, —X1) /Y1)
n=1 1 1

(A.30) A, tanh(nm X, /y,) + Bycoth( narx, /y,)

=A, Li(nT (X, —X,) /Y
Asin the previous example, the dimensional seaward 2nli(N7 (% =) /)

boundary condition is P(0, y)=(1+ yX0.5pu,H)
so P,=(1+(1/2y,X05pu,H). Applying the where the S, are given by Eq. (A.26). Then

S

A =
2n lo(N7r (X, = Xq) /Yy )cosh(nar X, /y;) — Ly(na (X, — %) /yi)Sinh(nar X, /Y, )

|1( N (X, —X%;) /Y1) — IO( nmr( X, — Xl)/yl)tanh( nm X, /Y)
lo(n (X, = X;) /Yy )coth(nm X, /y;) — 1(nm (X, — %;) /Y1)

B1n = Scosh( nm X, /Y1)

and
P(X.Y) y, 4y, Z cosh[(2n+1)wy/y,]
= > T 2 cosh[(2n+ 1) 7 x 1+.7] A.31
P,( X, 4 cosh[(2n+ 1) =
P0Y) % _y21 v [( ) 2y/yd 2 A
0.5pU0H 2 n=0 (2n+ 1)
where

|1( nmr (X, — Xl)/yl)COth( nmX,/Y;) — Io( nmr( X, — Xl)/yl)
lo(nar (X, — X1)/Y1)C0th( nmXy/Y1) — Il( nm( X, — Xl)/yl)

FE=tanh[(2n+ 1) 7 Xx/y,] (A.33)

and

lL((2n+ 1) 7 (X, —X) /Y;)

Sl = - .
lo(n7r (X, = X;) /Yy )cosh(na X, /yy) — Ly(na (X, — %) /Y, )Snh(na X, /y;)

n

(A.34)
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2 Y ¥ v v N
& 4 13 . .
y 4 3 8 N

X

Fig. 8. The arrows show the direction and magnitude of the
induced change in velocity of the fluid in the crack, u,—u,, as
given by Eq. (9). The largest arrow corresponds to a speed of
2.1uy. It is evident that most of the motion occurs close to the
seaward end of the crack.

The contours of constant P, and P, are plotted, in
their consecutive domains, in Fig. 7. Comparing the
contours with those in Fig. 6 shows that the effect of
the dloping part of the roof is to increase the pressure
impulse gradient along the back wall. Similar com-
ments apply to those at the end of the previous
example, except that the change in velocity will be
higher along the back wall of this crack. Fig. 8 is a
sketch of the velocity field for the flow induced by
the seaward boundary condition given here, which is
applicable to both examples.

References

Allsop, N.W.H., McKenna, J.E., Vicinanza, D., Whittaker, T.T.J,
1996. New design methods for wave impact loadings on
vertical breakwaters and seawalls. Proc. 25th Intl. Conf. Coast.
Eng., Orlando.

Bullock, G.N., Crawford, A.R., Hewson, P.J., Bird, P.A.D., 2000.
Characteristics of wave impacts on a steep fronted breakwater.
Proc. Coastal. Structures’99, Santander.

Bagnold, R.A., 1939. Interim report on wave-pressure research. J.
Inst. Civil Eng. 12, 201-226.

Chan, E.S., 1994. Mechanics of deep water plunging-wave im-
pacts on vertical structures. Coastal Eng. 22, 115-133.

Chan, E.S., Melville, W.K., 1988. Deep-water plunging wave
pressures on a vertical plane wall. Proc. R. Soc. Lond. A 417,
95-131.

Cooker, M.J., Peregrine, D.H., 1990. A model for breaking wave
impact pressures. Proc. 22th Intl. Conf. Coast. Eng., Delft,
The Netherlands.

Cooker, M.J., Peregrine, D.H., 1995. Pressure—impulse theory for
liquid impact problems. J. Fluid Mech. 297, 193-214.

Cox, S.J., 1998. Pressure Impulses caused by Wave Impact. PhD
thesis. School of Mathematics, University of East Anglia
Hattori, M., 1994. Wave impact pressures on vertical walls and
the resulting wall deflections. Proc. Intl. Workshop on Wave

Barriers in Deepwaters, Y okosuka, Japan.

Lamb, H., 1932. Hydrodynamics. 6th edn. Cambridge Univ. Press,
Cambridge.

Muller, G., 1997. Wave impact pressure propagation into cracks.
Proc. Inst. Civil Eng Water Marit. Energy 124, 79-85.

Mller, G., Makarov, G., personal communication.

Mtller, G., Allsop, N.W.H., Bruce, T., Cooker, M.J., Franco, L.,
2000. Propagation of wave impact pressure into joints/cracks
in blockwork breakwaters and seawalls. Proc. Coastal. Struc-
tures ' 99, Santander.

Peregrine, D.H., Thais, L., 1996. The effect of entrained air in
violent water wave impacts. J. Fluid Mech. 325, 377-397.



