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The pressure impulse in a fluid saturated crack in a sea wall
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Abstract

When a wave breaks against a sea wall containing a crack, such as might exist within the blockwork, pressure pulses can
travel through the fluid and propagate into the crack. This can cause high stresses to act on the sides and roof of the crack
and may even cause the constituent blocks to move. The Pressure Impulse, P, is used to model the effect of wave impact
against a wall in which there is a fluid filled crack. A two-dimensional field equation is derived for P that is applicable in
plane cracks of non-uniform, narrow width. This is solved for several geometries relating to cracks between constituent
blocks of sea walls, in order to compare the impulsive forces with the gravitational force on a block. It is shown that a large
block can be lifted due to the impulse exerted by the fluid in a crack beneath it. q 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

This paper presents a theoretical investigation of
the impulsive fluid force that a breaking water wave
might exert on the internal surfaces of a narrow
crack, or crevice, in a sea wall. The crack might be
the gap between two blocks in a blockwork structure,
or the space opened up from a fracture in the ma-
sonry or natural rock. This enables estimates to be
made of the stresses acting in the wall; these stresses
could cause the constituent blocks of a breakwater,
or other coastal structure, to move.

Ž .Bagnold 1939 was the first to show that at a
fixed point on a vertical wall the pressure, during
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impact, initially rises to a peak value, p , and thenpk

decreases. The increase and decrease together last for
a time D t, which is normally from one to 10 ms.
This study focuses on a wave impact, which at full
scale might exert a pressure of several atmospheres
over this brief time interval.

Ž . Ž .Hattori 1994 and Chan and Melville 1988
report a wide scatter in both p and D t at labora-pk

tory scales. In a plot of field data, Bullock et al.
Ž .2000 in their Fig. 8 show that for any fixed D t, ppk

may have a definite maximum. Also, the highest
values of p are associated with the smallest valuespk

Ž .of D t. Bagnold 1939 suggested that the product
p D t is a more consistent measure of impact amongpk

the scattered data. This led him to consider the
time-integral of the pressure, a quantity referred to in
this paper as the pressure impulse, P. More recent

Ž .measurements by Allsop et al. 1996 also demon-
strate the consistency of P.
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The definition of pressure impulse used here is

ta
P x , y , z s p x , y , z ,t d t 1Ž . Ž . Ž .H

tb

where t and t are the times at the beginning andb a

end of the pressure pulse or spike, x, y, z are
Cartesian coordinates of position and p is the pres-

Ž .sure above atmospheric datum . The pressure im-
pulse idea removes time from the equations of mo-
tion, but p can be estimated from a calculatedpk

value of P using the approximate relation

1
Pf p D t . 2Ž .pk2

That is

2 P
p f . 3Ž .pk

D t

However, since D t is prone to uncertainty, any
estimate of p is also uncertain. Therefore, in thepk

present work, a case is presented where the pressure
impulse can by itself give useful information about
the violent effects of wave impact.

For extreme impacts p may be very large andpk
Ž .D t very small, but the product given in Eq. 2 will

remain finite. The integral of P over a plane surface
is the impulse which the impacting fluid exerts on
that surface.

These ideas, which have been explained by Cooker
Ž . Ž .and Peregrine 1990, 1995 and Chan 1994 for

wave impacts, are now applied to the impulsive flow
in a crack. For a crack which initially contains both

Ž .air and water, the problem is complicated by i the
possibility of fluid impacting the interior surfaces,

Ž .and ii the reaction of air pockets and air bubbles to
applied pressure.

Ž .Muller 1997 has instigated an experimental study¨
into pressure propagation into cracks in sea walls. He
measured the impact pressures on a vertical wall and
then in a vertical crack in the wall. The top of the
crack was at still water level so that it remained
saturated with fluid throughout the experiments.
Muller found that impact pressures on the wall prop-¨
agated into the crack and were higher at the back of

Žthe crack. If the crack was open to the atmosphere
at the back, then the pressures were reduced on the
rear transducer and were less than those on the front

.transducer. The recorded pressures were, in general,

only slightly less than those on the wall. He suggests
that these are due to compression waves in the crack
fluid, and that the impact pressures in these thin
cracks cause large lateral pressures, which can exert
high splitting stresses on the surrounding walls.

In this work the crack again remains saturated
with water in order to simplify the analysis as much
as possible. For the moment, any fluid compressibil-
ity will be due primarily to the presence of, perhaps
microscopic, bubbles. It is possible to show that
compressibility has a relatively minor effect on the
pressure impulse. Relative to an incompressible fluid
model the presence of compressibility reduces the
predictions of peak pressure, as found by Peregrine

Ž .and Thais 1996 .
Another way to quantify compressibility is to take

a relationship between density r and pressure p in
the form

p
r p sr q 4Ž . Ž .0 2c

where r is the equilibrium density of the fluid and0

c is the constant speed of sound in the medium.
Ž .Muller 1997 has measured c to be as low as 50¨

mrs for pulses travelling in a laboratory crack under
fluid-saturated conditions. Now consider Euler’s
equations:

Eu 1
q uP= usy =pygk 5Ž .Ž .

Et r

where u is the velocity, g is the acceleration due to
gravity, k is a unit vector pointing vertically up and

Ž .= is the gradient operator ErEx, ErE y, ErEz . Sub-
Ž .stitution of 4 and expansion in a power series gives

Eu =p p
q uP= usy 1y q . . . ygk.Ž . 2ž /Et r r c0 0

6Ž .
Even if a high value of ps6=105 Nrm2 is taken,
and a rather low value of cs50 mrs, the dimen-

Ž . 2sionless factor in Eq. 6 is prr c f0.24, which is0
Ž .small compared with one. So Eq. 6 is well-ap-

proximated by its limiting form c™` for incom-
pressible fluid:

Eu 1
q uP= usy =pygk 7Ž .Ž .

Et r0

with which the analysis begins in Section 2.
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Ž .The definition of P in Eq. 1 remains valid for a
compressible fluid because one can adjust the time
limits t and t to be the instants just before and justb a

after the arrival of a wave-impact pressure pulse. The
further away one is from the point of impact, the
later the times t and t must be chosen. Theb a

computation of P can be performed in the same way
as for an incompressible fluid, as explained in this
paper, but due care must be taken in estimating the
associated peak pressure and the time of its occur-
rence.

By treating an incompressible fluid the model is
incapable of accounting for the energy losses from
compression waves propagating into cracks, reported

Ž .by Muller et al. 2000 . However, the most recent¨
Žmeasurements Muller and Makarov, personal com-¨

.munication indicate that the pressure impulse varies
by only "10% among measurements made at four
positions along the length of a 60-cm-long closed
crack. For the same data, the peak pressure halves
during the propagation of the pressure pulse over the
same distance.

Future theoretical work with a compressible fluid
may be able to account for dissipative effects, finite
sound speed and the complex response of bubbles to
violent impacts. The model of incompressible flows
presented here gives the engineer useful information
as to the most extreme conditions likely to occur.
The model requires as input data the pressure im-
pulse at the seaward edge; this information can be
obtained from the theoretical wave impact work of

Ž . Ž .Cooker and Peregrine 1990, 1995 and Chan 1994 ,
who show that P is directly proportional to the
speed of impact, wave height and fluid density. The

Ž .model allows us to calculate P x, y inside a crack
whose median surface is described by Cartesian co-

Ž .ordinates x, y . From P one can calculate the sud-
den change in the fluid velocity inside the crack
which is brought about by the impact. The model
also quantifies the total impulse I on the internal
faces of the crack. This impulse is directed normal to
the plane of the crack and it is suggested that the
impulse is responsible for moving blockwork. De-
pending on the orientation of the crack, the impulse
can either lift a block or push it parallel to the line of
the sea wall or even impel the block seawards.
Expressions for I turn out to be quite simple for a

Žplane crack which is open only on its seaward

.edge : I is directly proportional to the area of the
interior surface of the crack.

The rest of the paper is arranged as follows: the
equations of pressure impulse theory are derived in
Section 2 and the discussion in Section 3 motivates
the application of the general theory to pressure
impulses in a crack. In Section 4 the partial differen-

Ž .tial equation for P x, y is derived for a crack whose
Ž . Ž .height i.e. smallest dimension h x, y varies with

position. This is solved for the simple case where
both P and h depend on x alone in Section 5.1.
Solutions for P which depend upon both x and y
are summarised in Section 5.2 and are derived in
Appendix A. The effect on a solid block due to an
uplifting or a laterally directed impulse are discussed
in Section 6. Under the restoring forces of weight
and friction the displacement of a block can be
estimated.

2. Pressure impulse theory

Over the duration of the impact, the velocity field
before impact, u , is regarded as quite distinct fromb

the velocity field after impact, u . While before anda

after impact the velocity may vary in time, suppose
w xthat there is a short time interval t ,t during whichb a

the acceleration of the fluid, EurEt, greatly exceeds
its value at all other times. This causes a rapid rise
and fall in the pressure throughout the fluid and has
striking consequences for the equations of motion.

Ž Ž ..Integrating Euler’s equation Eq. 5 with respect
to time over the short duration of the impact, D ts ta

y t , givesb

1t ta a
u yu q uP= ud tsy = pd tygD tkŽ .H Ha b

rt tb b

8Ž .

Žwhere the subscript from the constant fluid density
.has been dropped . Introduction of a length scale L

Žand a velocity scale u shows that away from the0

free surface where a jet of high velocity may be
. 2formed the second term is of order D tu rL and the0

last term is of order gD t. These are both small
< <compared with u yu , which is of order u . The0a b
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Ž .only remaining term to balance Eq. 8 is the pres-
sure integral. This gives, approximately, that

1
u yu sy =P 9Ž .a b

r

Ž .where P is the pressure impulse defined in Eq. 1 .
If the fluid is incompressible before impact and

after impact, =Pu s0 and =Pu s0, then the di-b a
Ž .vergence of Eq. 9 shows that

=
2PsP qP qP s0 10Ž .x x y y z z

where subscripts denote partial derivatives. There-
fore, P satisfies Laplace’s equation throughout the

Ž .fluid. Eq. 10 is independent of time, and can be
solved in the domain occupied by the fluid at the
start of the impact. Appropriate Neumann or Dirich-
let boundary conditions can be supplied to solve for
P, which as well as giving information on peak
pressures, will determine the velocity field after im-

Ž .pact through Eq. 9 , in which u is prescribed andb

needed in order to fix the boundary conditions for P.
It is assumed that the walls of the crack are imper-
meable so that equating the normal derivative of P
to zero will be the relevant boundary condition,

Ž .corresponding to u su s0 in Eq. 9 . Notice alsoa b
Ž .that the curl of Eq. 9 shows that the vorticity is the

same before and after impact, so the flow need not
be irrotational.

Ž .Cooker and Peregrine 1995 calculate the pres-
sure impulse in a fluid domain, D, whose shape
models a sea wave at its moment of impact against a
vertical wall of height H. D is the region xG0,
yHFyF0, with the wall at xs0 and the horizon-
tal sea bed at ysyH. Boundary conditions of
Ps0 are prescribed on the free surface ys0, P™0
as x™` and EPrE ys0 on the sea floor. The
boundary condition on the wall is EPrExsyru0

where the wave impacts and EPrExs0 below this
impact zone. The resulting distribution of P is shown
in Fig. 1, for an example where the wave breaks over
the top half of the wall. The wavefront hits the wall

Žin the negative x direction i.e. it moves from right
.to left before impact with constant horizontal veloc-

ity component, yu . The crack is assumed to be0
Žbeneath the impact zone i.e. in the lower half of the

.wall so that before impact the fluid in the crack is at
Ž .rest u s0 .b

Fig. 1. Lines of constant pressure impulse for a wave impacting
wwith velocity u on the top half of the wall, xs0, yg y0.5H,0

x0 , with a vertical front face. Contour separation is 0.01 ru H0

and P s0 on the free surface ys0.

The contours in Fig. 1 reveal a large gradient of
pressure impulse acting down the lower part of the
wall. This gradient is directly proportional to the
finite change in flow velocity which occurs through-
out the fluid domain during the impact, so that where
the contours are close together there is a high-speed
flow after impact, directed normal to the contours.
Thus, at the origin a high-speed vertical jet is ex-
pected.

3. Crack geometry and boundary conditions

In a sea wall there are cracks through which water
can flow, and the interconnection of individual cracks
permits hydrodynamic pressures to be transmitted
deep into the wall. The purpose of this section is to
describe, with the aid of Fig. 2, the geometry of a

Ž .crack or crack network in a sea wall, how the small
width of the crack simplifies the fluid flow equation
and what boundary flow conditions can be applied.

A typical crack contains a stratum of fluid that is
thin. That is, the distance h between the crack walls
is much less than the depth or width of the crack. To
a good approximation, the fluid flows parallel to the

Žwalls, and more quickly where h is smaller see
.Lamb, 1932, Art. 80 . In the present problem, the

fluid in the crack is driven by gradients in the
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Ž .Fig. 2. The crack geometry. a Waves approach, in the direction shown by the arrows, towards the face of the sea wall in which there is a
Ž .crack AB. b This view of the back of the wall shows how the same crack extends backwards from AB, to become the crack with area

ABCD. Since the crack is thin and the pressures exerted are much greater than hydrostatic, the fluid flow in this curved stratum can be
Ž . Ž . Ž .approximated by flow in c a horizontal crack or d a vertical crack, where the side walls are now plane or nearly plane .

pressure impulse, which varies with position accord-
ing to changes in h. Since the crack is thin, much

Žcan be inferred about results in curved cracks as in
.Fig. 2b from results for cracks which have one wall

Ž .plane and the other nearly plane Fig. 2c and d .
The pressure exerted in the crack is many times

greater than any hydrostatic pressure due to the
weight of the fluid alone. Therefore the orientation
of the crack has little direct effect on the pressure
impulse distribution, and the governing equation
treats the horizontal and vertical cracks in Fig. 2c
and d as the same.

Inside the wall the edges of a single crack are
treated as impermeable, but where two cracks join
along a common edge the pressure impulse, P, and
the quantity EPrEx are continuous across the junc-

Žtion. Here x is a coordinate that crosses the join
.perpendicular to the common edge. It is assumed

that the crack walls are rigid; this is reasonable in the
early stages of damage when cracks are still thin and
the surrounding blocks are as yet unmoved. On the
seaward edge, P is given from a previous calcula-

tion. Different data would be used in the cases
Ž .illustrated in Fig. 2c and d: in c a uniform value of

Ž .P may be appropriate, but d requires that P vary
with height up the wall. In this case Fig. 1 suggests
the validity of a linear approximation in a small
interval below the impact zone, yfy0.65H, of

Ž .Ž .Pf0.5 1qyrH ru H . It is assumed that P in0

the exterior calculation is changed little by the pres-
ence of the cracks in the wall, which is reasonable if
there is no appreciable net flux from the wave into
the crack, such as might occur in a fluid saturated

Žcrack. For a closed crack in which h shrinks to zero
.and hence the walls meet EPrExs0 must be pre-

scribed at the closed end. However, if the back of the
Ž .crack is open to the air with ps0 then Ps0

must be prescribed as the free surface boundary
condition. This condition is also appropriate for the
back of an open crack which lies submerged a
distance d, in still water. In this case psr gd and

ŽPsr gdD t which is negligible for the short times
.of impact which we treat compared with the pres-

sure impulse values we expect at the entrance of the
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crack. Therefore, Ps0 is again an appropriate free-
surface boundary condition.

The main purpose for calculating P is to find the
net impulse I on the crack walls, which is deter-
mined by integrating Pn over one wall, where n isˆ ˆ
the unit normal to the wall’s surface. The impulse
can be interpreted as the product of a force F of
large modulus and a short time D t, so Fs IrD t.
This impulsive force, F, on the roof of the crack can
be compared with, for example, the forces of block
restraint and weight. Further, once P has been calcu-
lated, the velocity field in the crack can be found via

Ž .Eq. 9 , so that information will be available on how
loose material in the crack will be moved around.

The analysis of the crack interior begins by as-
suming that the crack is thin, so that the pressure
impulse changes little over the height of the crack.
Then a two-dimensional equation for the pressure
impulse in a three-dimensional crack can be derived.
This is solved for several different geometries: the
sides of blocks are often plane surfaces placed face-
to-face and joined by cement. If the cement has
eroded away then a crack with plane walls remains.
A network of such cracks between many blocks thus
might consist of thin plane strata, each connected to
its neighbours along edges. Therefore, a crack is
modelled which is composed of plane surfaces, which
give the crack a height that varies with position. This
distance between the crack walls is necessarily ev-
erywhere much less than the length or width of the
plane surfaces which compose each of the crack’s
sidewalls. If the pressure impulse at the seaward end

of a simple crack, where h depends only upon the
distance x away from the seaward end, is constant
Ž .PsP , then because the walls are impermeable,0

the pressure impulse is the same constant, P ,0

throughout the crack. If this crack is plane-sided,
with unit normal n to the plane, and if the crack areaˆ

Ž .is A ABCD in Fig. 2b , then IsP An. Thus, theˆ0

broader and deeper the crack the greater the impulse.
However, if the crack is uniform in height and open

Ž .to the atmosphere at the back Ps0 , then the
solution for P decreases linearly from the front of

Ž .the crack to the back, PsP 1yxrL , where L is0
w xthe length of the crack and xg 0, L is a coordinate

along the base of the crack. Note that x could also
be the arc length along the base of some more
complicated crack, in which case P would be the
same, provided that the crack was still uniform in
height. P is found in some more complicated cracks
in Section 5. The discussion in Section 6 is con-
cerned with the effect of the wave impact on a crack
beneath a large concrete block, such as might be
found in a sea wall. The conclusions are summarised
in Section 7.

4. An equation for the pressure impulse in a crack

Consider two almost parallel, impermeable, sur-
faces, S and S , the gap between which is filled1 2

with fluid, as in Fig. 3. In the fluid domain, P
satisfies the three-dimensional Laplace’s equation

Fig. 3. Notation for calculating the pressure impulse in a crack. S and S are impermeable surfaces confining incompressible fluid and n1 2 1
Ž . Ž .and n are the respective normals. S is given by zs f x, y and S by zs f x, y . The pressure impulse, P, satisfies the1 1 2 22

three-dimensional Laplace’s equation with zero normal derivative on the bounding surfaces.
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Ž Ž .. 2Eq. 10 , = Ps0. The boundary conditions are
that the walls are impermeable:

<=PPn s0, is1, 2 11Ž .Sii

where n is the normal to the surface S . If S isi ii
Ž .defined by the equation zs f x, y then n si i

Ž . Ž .yE f rEx, yE f rE y, 1 and Eq. 11 becomesi i

EP EP E f EP E fi i
s q , is1, 2. 12Ž .

Ez Ex Ex E y E yS S Si i i

Integrating Laplace’s equation across the height of
the crack, from zs f to zs f , for fixed x and y1 2

Žgives where x, y and z subscripts denote deriva-
.tives

f2
P qP qP d zH x x y y z z

f1

f f2 2 < <s P d zq P d zqP yP s0.H H S Sz z y y z z2 1
f f1 1

13Ž .

Ž .If S deviates little from the x, y -plane then both ofi

the derivatives of each of the f are small: f , f ,i 1 x 1 y
Ž .f , f <1. Thus, Eq. 12 implies that EPrEz is2 x 2 y

small compared with EPrEx and EPrE y on each of
the bounding surfaces. Therefore, P varies little
across the gap, and consequently the x and y deriva-
tives of P vary little across the gap, and can be

Ž .treated as independent of z. Thus, Eq. 13 becomes,
approximately,

E f E f2 2
P f y f qP f y f qP qPŽ . Ž .x x 2 1 y y 2 1 x y

Ex E y

E f E f1 1
yP yP s0. 14Ž .x y

Ex E y

Ž . ŽDefining h x, y s f y f and neglecting terms of2 1
3.order h gives

hP qhP qh P qh P s=P h=P s0 15Ž . Ž .x x y y x x y y

where = is now the two-dimensional gradient opera-
Ž .tor. Eq. 15 reduces to a two-dimensional Laplace’s

equation when h is constant, and in general, when
either P or EPrEn is specified on the boundary, the

Ž .solution of Eq. 15 enables the pressure impulse in
the crack to be found, so it can be used to find the
impulse on the roof of the crack.

In Section 5 the special type of problem where P
depends on x alone is solved; two-dimensional solu-

Ž .tions of Eq. 15 are discussed in Section 5.2.

5. Results

5.1. One-dimensional solutions in open cracks

Ž .Consider initially a crack where hsh x and
Ž .PsP x , such as might arise when the seaward

boundary data for P is uniform along the crack
opening. If the crack were closed at the back end
then, since EPrEns0 on each of the bounding
surfaces, the pressure impulse is constant and equal
to the pressure impulse specified at the open bound-
ary. Now consider a crack of length L, which is

Ž .open at the back xsL . As shown in Fig. 4, the
boundary conditions are that P is specified at each

Ž . Ž .end of the crack: P xs0 sP )0 and P xsL0

s0. If it is assumed that the base of the crack is flat
Ž . Ž . Ž . Ž .f '0 , then h x s f x . Eq. 15 becomes1 2

d d P
h s0, 16Ž .ž /d x d x

since P is a function of x only, with solution

x
X Xd x d xL

P x sP 1y . 17Ž . Ž .H HX X0 ž /h x h xŽ . Ž .0 0

Therefore, P decreases monotonically from the en-
trance to the back of the crack, and the gradient of
pressure impulse, and hence the change in fluid
speed, is highest where h is smallest. The impulse on
the roof of the crack is

x
X Xd x d xL L

IsP Ly d x 18Ž .H H HX X0 ž /h x h xŽ . Ž .0 0 0

so that I-P L.0

Fig. 4. A one-dimensional crack is defined to have length L with
Ž .a flat base and a roof given by zs h x . The y-axis is normal to

the plane of the figure and the boundary conditions are that
Ž . Ž .P xs0 s P and P xs L s0.0
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Ž .Now h x can be any function for which 1rh is
integrable and dhrd x is small. For example, if
Ž .h x sayb x, where a)0 and aybL)0, then

log 1yb xraŽ .
P x sP 1y . 19Ž . Ž .0 ž /log 1ybLraŽ .
If b)0 the greatest change in fluid speed occurs at
the back of the crack, but if b-0 then this occurs at
the seaward end, where the crack is thinner. From

Ž .Eq. 18 , the impulse on the roof of this crack is

L a
IsP q 20Ž .0 ž /log 1ybLra bŽ .
per unit length of crack normal to Fig. 4. Notice that

Ž .as b™0, Eq. 19 gives the solution for a crack of
Ž . Ž .constant height, P x sP 1yxrL . In this case,0

the pressure impulse varies linearly between the two
ends of the crack and the impulse on the roof of the

Ž .crack is Is 1r2 P L.0

If the back of the crack is closed then asbL
Ž Ž . .i.e. h L s0 and the appropriate boundary condi-
tion is that d Prd xs0 at xsL. Then in place of

Ž . Ž .Eq. 19 the pressure impulse is given by P x sP0

for all x, which is independent of the shape or height
of the crack and is thus of especial interest for the
study of realistic sea wall cracks. The impulse on the
roof of the crack is IsP L, which is greater than if0

the crack were open at the back end. Further, this
impulse acts in the direction which widens the dis-
tance between the crack walls, if the walls are mo-
bile.

It is also possible to find the pressure impulse in a
crack with a roof which is defined as a continuous
collection of segments for which P can be found

Ž .from Eq. 17 . To construct a solution, the general
solution for P is found for each part of the roof and
then P and d Prd x are matched across the joins, to
find the pressure impulses at the ends of each seg-
ment. This is demonstrated for the analysis of Sec-
tion 5.2, where it is shown how to find P in a crack
which is closed at one end, whose roof is made up of
a continuous collection of piecewise linear segments
and where P also varies in the y direction.

5.2. Two-dimensional solutions in piecewise linear
closed cracks

The theory of Section 4 can also be applied to
Ž .cracks in which hsh x but the boundary condition

at xs0 varies with y, the axis normal to the plane
of Fig. 4. The formulae satisfied by the pressure
impulse in these cracks are derived in Appendix A,
and two examples are given showing in detail how
the field equation is solved, and how the pressure
impulse distribution in the crack is affected by dif-
ferences in the height of the crack, even though the
fluid impulse on the roof of each crack is identical.
The main conclusion is that, as for closed one-di-
mensional cracks, the impulse on the roof of the
crack is proportional to both the area of the base of
the crack and the mean pressure impulse at the
seaward end of the crack. The calculation also gives
information about how any loose material will be
moved around the crack.

6. Discussion

When a wave breaks against a sea wall which
contains a plane saturated crack, there is a distribu-

Ž .tion of pressure impulse across the plane of the
crack. If the mean pressure impulse at the seaward
end of the crack is P , if the crack is closed at the0

back, and if the area of one internal face of the crack
is A then each face of the crack receives an impulse
IsP An, where n is a unit normal to the plane ofˆ ˆ0

the crack, directed into the solid. This corresponds to
an impulsive force of FsP AnrD t.ˆ0

A breaking wave in water of total depth H may
be expected to hit a vertical sea wall with speed

'u s gH . The associated peak pressure impulse is0
Ž .P s0.175ru H from Fig. 1 and so0 0

31

22r g H A
< <F s0.175 . 21Ž .

D t

Now, suppose that A is the area of the base of a
cubic block of side L which is part of the wall. Then

< <the force F due to the pressurised water in the crack
should be compared with the weight of the cube,
< < 3W sr gL , where r is the density of the wallB B

< <material. It can exceed W if one of Dt, L or r isB

small enough, or H large enough. Fixing Hs10 m,
< < < <r s3r and D ts0.04 s shows that F ) W if L isB

less than about 15 m.
For larger pressure impulses, or smaller D t and

Žr , it is likely that the wave will be able to momen-B
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.tarily lift blocks even larger than those of side 15 m.
Given the uncertainty in D t, the corresponding mini-
mum size of block which will not be moved by
impact remains equally uncertain. These large up-
ward forces may be decreased by reducing the area
of the crack, for instance by avoiding the use of
materials that allow broad horizontal fissures to de-
velop.

A similar calculation can be applied to a crack
with any orientation. For a crack in a vertical plane
the resultant forces are horizontal and such lateral
forces are likely to be resisted by the whole length of
wall, but not at a site adjacent to damage or at the
end of a wall under construction. Consider a block of
mass msr AB, where B is its breadth perpendicu-B

lar to the crack. The block lies on a horizontal
surface and the coefficient of friction between them
is m. The impulse due to the fluid in the crack
moves the block a distance d before it is brought to
rest by friction, where

I 2 P 2
0

ds s . 22Ž .2 2 22m gm 2m g r BB

Note the dependence of the displacement on the
Žsquare of the impulse or mean pressure impulse at

.the seaward end of the crack , and also the fact that
it does not depend on the area of the crack. If the
movement is resisted by a greater length of wall then
B increases and d is reduced. The values posited
above, together with ms1r2, give ds3.4rB2,
which, for sea walls, is likely to be a few centime-
tres. However, during a storm, the cumulative effect
of many wave impacts could cause considerable
displacement. In the absence of experimental data
with which to compare the work of this paper, it is

Ž .suggested that Eq. 22 may be one route by which
the theory can be checked, without recourse to mea-
suring detailed pressures within a crack.

If a crack extends up behind a block then these
calculations predict a seaward force, as well as the
lift force, which may or may not exceed the wave
impact force. When a wave impacts against a wall,
the pressure impulse field has a significant gradient
along the sea floor, away from the wall. An object
on the sea floor will therefore experience a seaward
force, which can be calculated given knowledge of

Ž .the pressure impulse. Then Eq. 15 can be applied
Žto find P in the small gap beneath the object see

.Cox, 1998 .

7. Summary

This paper has demonstrated how to find the
pressure impulse in a thin crack by deriving an

Ž .equation for the pressure impulse, Eq. 15 :

E EP E EP
=P h=P s h q h s0Ž . ž / ž /Ex Ex E y E y

with the boundary conditions that P is given at the
crack openings and that the normal derivative of P
is zero where the crack is closed. In particular, with
a view to discovering what happens when a wave
impacts against the face of a water-saturated crack in
a sea wall, the pressure–impulse distribution can be
found in a crack of constant width, W, and length, L,
whose roof is piecewise linear. The total impulse on
the roof of the crack is then IsP LW, where P is0 0

the mean pressure impulse at the open end of the
crack, so the impulse does not depend on the distri-
bution of pressure impulse. This applies to a crack,
which is closed at the back, but, conversely, if the
crack is open to the air at the back then the impulse
is reduced, for which a general formula is given.

If the block, which forms the roof, is a cube
whose side length is less than a certain size then the
force of a wave breaking against the wall in which
the crack is situated could be large enough to over-
come the gravitational force acting downwards, and
lift the block. Also, the wave forces in cracks could
cause considerable lateral stresses on the constituents
of a sea wall. Further, these forces apply no matter
how thin the crack, and do not change with varying
crack height.

Calculation of the pressure impulse allows the
fluid velocity gradients to be found, showing how
debris may be swept into and out of the crack.

Notation
A area of the base of the crack
B breadth of the sea wall perpendicular to

crack
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d distance moved by block in sea wall
D fluid domain in which P is calculated
f , f1 2 functions defining crack height
F impulsive force in crack
g acceleration due to gravity
h, hm crack height
H water depth
I impulse
i, j, k unit vectors in x, y, z directions
L crack length
m mass of block in sea wall
n, n , n1 2 normals to crack walls
p fluid pressure
ppk peak fluid pressure
P, Pm pressure impulse
P0 pressure impulse at seaward end of crack
S , S1 2 crack sides
t time
ta time of end of impact
tb time of beginning of impact
u fluid velocity
ua fluid velocity after impact
ub fluid velocity before impact
u0 impact velocity
W weight of block in sea wall
x, y, z Cartesian coordinates
a , a , b , bm m parameters defining linear crack

heights
D t t y ta b

m coefficient of friction
r fluid density
rB density of sea wall material
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Appendix A. Piecewise linear closed cracks

The work of Section 5.1 is extended here by
considering a crack with a cross-section as in Fig. 5
but where the boundary data at xs0 depends on y.
This also shows how the matching process works for
crack networks. The crack is closed at the back, the
floor is flat, and the roof is made up of piecewise
linear segments as demonstrated in Fig. 5. To sim-
plify the analysis, the crack is assumed to be uniform
in the y direction and to lie between impermeable
walls at ys0 and ysy )0. So the boundary data1

at xs0 can be given as a Fourier cosine series in y,
Ž . Ž .implying that although hsh x only, PsP x, y .

A.1. The pressure impulse field

Ž .The starting point is Eq. 15 :

=P h=P s0 A.1Ž . Ž .
Ž . Ž .where hsh x s f x is the height of the crack,2

Ž .f '0 and PsP x, y is the pressure impulse in the1

crack. Recall that this is only valid for small dhrd x.

Ž .Fig. 5. A piecewise linear crack is divided into M sections, each of which is such that h x is linear. The crack is uniform in the ym
Ž . Ž .direction into the page , of length Lsx , width Wsy and in the mth section PsP x, y .M 1 m
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w xThe base of the crack is the plane xg 0, x ,M
w xyg 0, y and so the crack has a front-to-back length1

of Lsx and width Wsy . The height, h, is aM 1
Ž .continuous collection of segments of the form h xm

s a y b x, each defined on the intervalm m
w xx , x , where a G0, x s0 and ms1, . . . , M,my 1 m m 0

as in Fig. 5. Then P is a differentiable function on
each of the M segments and on the mth segment,

Ž . Ž .PsP x, y , where each P satisfies Eq. 15 .m m

The crack is closed at xsx so thatM

EPM
x , y s0. A.2Ž . Ž .M

Ex

The flat sides ys0 and ysy are impermeable, so1

EP EPm m
x ,0 s x , y s0 for ms1, . . . , M .Ž . Ž .1

E y E y

A.3Ž .
Ž .The open seaward end at xs0 has specified data

for P , given as a Fourier cosine series,1

`

P 0, y sP q S cos jy A.4Ž . Ž . Ž .Ý1 0 j
js1

for some constant P . Notice that if the seaward0
Ž .condition is constant, P 0, y sP , then the pres-1 0

sure impulse solution in the crack is P everywhere.0
Ž .To satisfy Eq. A.3 , solutions for P must be of them

form
` np y

P sP q f x cosŽ .Ým 0 m n ž /y1ns1

for ms1, . . . , M . A.5Ž .
So for each h the following equation must bem

solved:
X 22d f h d f npm n m m n

q y f s0. A.6Ž .m n2 ž /h d x yd x m 1

A.1.1. An arbitrary segment
Ž .For an arbitrary segment m/M , there are two

Ž .possibilities given below .
v Ž . Ži h is a decreasing function of x if h ism m

.increasing then the procedure is analogous ,

x yxm
h x sz q z yz A.7Ž . Ž . Ž .m m my1 mž /x yxm my1

and consequently it is convenient to define
h x z yx zm m my1 my1 m

j x sy s yx A.8Ž . Ž .Xm h z yzm my1 m

w xfor xg x , x . With this change of variable, Eq.my 1 m
Ž .A.6 becomes

22d f 1 d f npm n m n
q y f s0 A.9Ž .m n2 ž /j dj ydj m m 1m

with solutions

I npj x ryŽ .Ž .0 m 1
f x sAŽ .m n m n I npj x ryŽ .Ž .0 m m 1

K npj x ryŽ .Ž .0 m 1
qB A.10Ž .m n K npj x ryŽ .Ž .0 m m 1

where I and K are modified Bessel functions of0 0

order zero. Then
` np y

P x , y sP q cosŽ . Ým 0 ž /y1ns1

=
I npj x ryŽ .Ž .0 m 1

Am n I npj x ryŽ .Ž .0 m m 1

K npj x ryŽ .Ž .0 m 1
qB . A.11Ž .m n K npj x ryŽ .Ž .0 m m 1

v Ž .ii h is constant,m

h x sz , A.12Ž . Ž .m my1

Ž .and Eq. A.6 becomes
22d f npm n

y f s0 A.13Ž .m n2 ž /yd x 1

with solutions

cosh np xryŽ .1
f x sAŽ .m n m n cosh np x ryŽ .m 1

sinh np xryŽ .1
qB . A.14Ž .m n sinh np x ryŽ .m 1

Then
` np y

P x , y sP q cosŽ . Ým 0 ž /y1ns1

=
cosh np xryŽ .1

Am n cosh np x ryŽ .m 1

sinh np xryŽ .1
qB . A.15Ž .m n sinh np x ryŽ .m 1
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A.1.2. The closed segment
Ž Ž ..For the closed segment, hsh , Eq. A.2 , theM

zero-flux condition at xsx , is applied on a verti-M
Žcal wall. There are again two possibilities given

.below .
v Ž .i h is a decreasing function of x, when Eq.M

Ž . Ž .A.2 is applied to Eq. A.11 at xsx givesM

B s0 andM n

P x , yŽ .M

` np y I npj x ryŽ .Ž .0 M 1
sP q cos AÝ0 M nž /y I npj x ryŽ .Ž .1 0 M M 1ns1

A.16Ž .

A special case of this solution is when h decreasesM

to zero at xsx . ThenM

x yxM
h x sz A.17Ž . Ž .M My1 x yxM My1

Ž . Xand j x syh rh sx yx so that instead ofM M M M
Ž .the more general Eq. A.16 one obtains

` np y
P x , y sP q cosŽ . ÝM 0 ž /y1ns1

=A I np x yx ry A.18Ž . Ž .Ž .M n 0 M 1

v Ž .ii h is constant. Then the solution for P isM M
Ž . Ž .given by Eq. A.15 , and applying Eq. A.2 gives

` np y
P x , y sP q A cosŽ . ÝM 0 M n ž /y1ns1

=
cosh np x yx ryŽ .Ž .M 1

A.19Ž .2cosh np x ryŽ .M 1

A.1.3. The complete solution
The solution for P is completed by applying Eq.

Ž .A.4 to P at xsx s0 and by matching P and1 0 m

EP rEx at each x , ms1, . . . , My1; that ism m

P x sP x ,Ž . Ž .m m mq1 m

EP EPm mq1
x s xŽ . Ž .m m

Ex Ex

for ms1, . . . , My1. A.20Ž .

This gives a system of 2 My1 equations for each
nG1,

A p 0 qB s 0 sSŽ . Ž .1n 1n n

A qB sA p m qB s m for mŽ . Ž .m n m n Žmq1. Žmq1.n n

s1, . . . , My1

A p m qB s m sA p mŽ . Ž . Ž .m n m n Žmq1.n

qB s m for ms1, . . . , My1. A.21Ž . Ž .Žmq1.n

In this system the unknowns A and B arem n m n
Ž . Ž .sought, with the expressions for p m , s m , . . . and

B chosen according to the choice of h and h ,M n m M

respectively, as given in Table 1. When MG2 the
Ž .system A.21 can be solved using, for example, the

Ž .computer algebra package Maple Vr3 . Then, once
all the A , B have been expressed in terms ofm n m n

the S , the pressure impulse values, P , can bem m
Ž . Ž . Ž . Ž .found from Eqs. A.11 , A.15 , A.18 and A.19

as required.

A.2. The impulses on a piecewise linear closed crack

In attempting to find the net fluid impulse, I, on
each segment of the roof and the back of the crack,

Table 1
Ž .Values of the constants for the system A.21 in each of the two

Ž .cases, where h x either decreases with x or is constantm

Ž . Ž .Case i h decreasing Case ii h constantm m

I npj x r y cosh np x r yŽ . Ž .Ž .0 mq1 m 1 m 1Ž .p m
I npj x r y cosh np x r yŽ . Ž .Ž .0 mq1 mq1 1 mq1 1

K npj x r y sinh np x r yŽ . Ž .Ž .0 mq1 m 1 m 1Ž .s m
K npj x r y sinh np x r yŽ . Ž .Ž .0 mq1 mq1 1 mq1 1

I npj x r yŽ .Ž .1 m m 1Ž . Ž .p m tanh np xmr y1I npj x r yŽ .Ž .0 m m 1

K npj x r yŽ .Ž .1 m m 1Ž . Ž .s m y coth np x r ym 1K npj x r yŽ .Ž .0 m m 1

I npj x r y sinh np x r yŽ . Ž .Ž .1 mq1 m 1 m 1Ž .p m
I npj x r y cosh np x r yŽ . Ž .Ž .0 mq1 mq1 1 mq1 1

K npj x r y cosh np x r yŽ . Ž .Ž .1 mq1 m 1 m 1Ž .s m y
K npj x r y sinh np x r yŽ . Ž .Ž .0 mq1 mq1 1 mq1 1

2Ž .B 0 ytanh np x r yM n M 1
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note that, due to the presence of the cosine terms in
the solutions for P, the only contribution to I comes
from the constant term, P . Unit vectors i, j and k0

are defined in the x, y and z directions, respec-
tively, then the horizontal component of impulse

Žfrom the seaward face of the crack is P y z i. z is0 1 0 0
.the height of the crack at the wall face. The impulse

on the mth segment of the horizontal floor is
Ž .yP y x yx k. Resolving components hori-0 1 m my1

zontally and vertically gives the impulse on the roof
of each of the m segments:

I sP y z yz iq x yx k .Ž . Ž .Ž .0 1 my1 m m my1m

A.22Ž .

If the crack has the roof of its M th segment horizon-
tal then the i component of I is P y z and it0 1 my1M

acts on the back wall rather than the roof. Notice
then that any other segment with a horizontal roof
has no horizontal component of impulse acting on it.

The total impulse on the roof and back of the
crack is

M

Is I sP y z iqLk . A.23Ž .Ž .Ý 0 1 0m
ms1

The following conclusions, which are independent of
the distribution of height within the crack, can now
be drawn. The horizontal impulse on the roof of a

Žcrack of length L, width W and height H at the
.seaward end is P WH and the vertical impulse is0

P LW. The horizontal impulse will be small, since it0

is directly proportional to the height of the crack.
The vertical impulse is P multiplied by the area of0

the crack roof, and is independent of the crack
height. So the important physical conclusion is that
the principle component of fluid impulse is directed
normal to the plane of the roof, and will act so as to
open up the crack, no matter how narrow it is. Also,
this component of impulse does not depend upon the
distribution of pressure impulse at the seaward end
of the crack, only it’s mean value.

A.3. Example: plane-sided slot

Consider a crack with a flat horizontal roof from
the back to where it meets the seaward face of the

wall in which it is situated. The height of the crack is
arbitrary, though small, and there is just a single
segment, msMs1. So, the crack is a thin rectan-

Ž .gular box. Then Eq. A.19 is applicable:

`

P x , y sP q A cos np yryŽ . Ž .Ý0 n 1
ns1

=
cosh np x yx ryŽ .Ž .1 1

. A.24Ž .2cosh np x ryŽ .1 1

Consider the crack to be in a vertical plane, similar
Ž .to the crack in which Muller 1997 measured the¨

pressures due to a breaking wave. A dimensional
Ž . Žseaward boundary condition of P 0, y s 1q

.Ž .y 0.5ru H is taken from the earlier calculation0

shown in Fig. 1, as discussed in Section 3. This
applies to a wave which impacts upon the top half of
the wall, above the crack, with a uniform velocity

Ž .profile. As a Fourier cosine series, P 0, y can be
written

P 0, y r 0.5ru H s1qyŽ . Ž .0

`y 4 y cos 2 jq1 p yryŽ .1 1 1
s1q y .Ý2 22 p 2 jq1Ž .js0

A.25Ž .

Ž .Comparing coefficients gives A rcosh np x ry sn 1 1

S , wheren

4 y 11
S s0 and S sy , A.26Ž .2 n 2 nq1 2p 2 2nq1Ž .

Ž Ž . .Ž .and P s 1q 1r2 y 0.5ru H . Then0 1 0

P x , yŽ .
0.5ru H0

`y 4 y cos 2nq1 p yryŽ .1 1 1
s1q y Ý2 22 p 2nq1Ž .ns0

=
cosh 2nq1 p x yx ryŽ . Ž .Ž .1 1

. A.27Ž .
cosh 2nq1 p x ryŽ .Ž .1 1

This pressure impulse solution is shown in Fig. 6.
Ž .The impulsive change in velocity is given by Eq. 9 ,
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u yu sy=Prr. If the fluid is stationary beforea b
Ž .impact u s0 then the contours in Fig. 6 areb

interpreted as lines normal to u . Where the contoursa
< <are close together the speed, u , is larger, such asa

Ž . Ž Ž . .near 0,0 where Ps1 0.5ru H , its lowest value0
Ž . Ž Ž . .and 0,3 where Ps4 0.5ru H , its highest value .0

At the back of the crack the contours are spaced
further apart which implies a slower induced flow.
So the boundary condition applied at the seaward
end of the crack will, in this case, induce a flow into

Ž . Ž .the crack near 0,3 and out of the crack near 0,0 .
Any small particles of debris are also impelled by
the pressure impulse field, and they will therefore be
swept around the inside of the crack. This might be
one mechanism by which solid particles become
lodged in, or extracted from, crevices.

Fig. 6. The contours of constant pressure impulse for a rectangular
crack with a flat horizontal roof, whose cross-section is shown in
the upper part of the figure. The lower part of the figure is a plan

Ž .view of the crack with contour separation 0.05 0.5ru H and0
Ž .x s3.0, y s3.0. The seaward boundary condition is P 0, y s1 1

Ž .Ž .1q y 0.5ru H and the contours are symmetric about the0
Žcentreline of the crack, ys1.5, which follows from the cosine

.dependence and show the variation of P away from P , the0

pressure impulse at the centre of the open end.

Fig. 7. The contours of constant pressure impulse, from Eqs.
Ž . Ž .A.31 and A.32 , for a chisel-shaped crack whose cross-section
is shown in the upper part of the figure. These should be com-
pared with those in Fig. 6. The seaward boundary condition is the

Ž .same and the contour separation is again 0.05 0.5ru H .0

A.4. Example: Chisel-shaped slot

Now consider a crack with two sections: the
Ž .seaward section ms1 has a horizontal roof and
Ž .the other section ms2 has a sloping roof that

joins the back edge to the seaward section. Thus

w xh sa on xg 0, x and1 1 1

x yx2 w xh sa on xg x , x , A.28Ž .2 1 1 2x yx2 1

which is illustrated at the top of Fig. 7. At the open
Ž .end of the crack, Eq. A.15 implies

` np y
P x , y sP q cosŽ . Ý1 0 ž /y1ns1

=
cosh np xryŽ .1

A1n cosh np x ryŽ .1 1

sinh np xryŽ .1
qB A.29Ž .1n sinh np x ryŽ .1 1
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Ž .and at the sloping, back, end, Eq. A.18 implies

P x , yŽ .2

` np y np x yxŽ .2
sP q cos A IÝ0 2 n 0ž / ž /y y1 1ns1

A.30Ž .

As in the previous example, the dimensional seaward
Ž . Ž .Ž .boundary condition is P 0, y s 1qy 0.5ru H0

Ž Ž . .Ž .so P s 1 q 1r2 y 0.5ru H . Applying the0 1 0

Ž .matching system from Eq. A.21 requires the solu-
tion of

A sS cosh np x ryŽ .1n n 1 1

A qB sA I np x yx ryŽ .Ž .1n 1n 2 n 0 2 1 1

A tanh np x ry qB coth np x ryŽ . Ž .1n 1 1 1n 1 1

sA I np x yx ryŽ .Ž .2 n 1 2 1 1

Ž .where the S are given by Eq. A.26 . Thenn

Sn
A s2 n I np x yx ry cosh np x ry y I np x yx ry sinh np x ryŽ . Ž . Ž . Ž .Ž . Ž .0 2 1 1 1 1 1 2 1 1 1 1

I np x yx ry y I np x yx ry tanh np x ryŽ . Ž . Ž .Ž . Ž .1 2 1 1 0 2 1 1 1 1
B sS cosh np x ryŽ .1n n 1 1 I np x yx ry coth np x ry y I np x yx ryŽ . Ž . Ž .Ž . Ž .0 2 1 1 1 1 1 2 1 1

and

`P x , y y 4 y cosh 2nq1 p yryŽ . Ž .1 1 1 1 1s1q y cosh 2nq1 p xry 1qII A.31Ž . Ž .Ý 1 n2 20.5ru H 2 p 2nq1Ž .0 ns0

`P x , y y 4 y cosh 2nq1 p yryŽ . Ž .2 1 1 1 2s1q y II A.32Ž .Ý n2 20.5ru H 2 p 2nq1Ž .0 ns0

where

I np x yx ry coth np x ry y I np x yx ryŽ . Ž . Ž .Ž . Ž .1 2 1 1 1 1 0 2 1 11II s tanh 2nq1 p xry A.33Ž . Ž .n 1 I np x yx ry coth np x ry y I np x yx ryŽ . Ž . Ž .Ž . Ž .0 2 1 1 1 1 1 2 1 1

and

I 2nq1 p x yx ryŽ . Ž .Ž .0 2 12II s . A.34Ž .n I np x yx ry cosh np x ry y I np x yx ry sinh np x ryŽ . Ž . Ž . Ž .Ž . Ž .0 2 1 1 1 1 1 2 1 1 1 1
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Fig. 8. The arrows show the direction and magnitude of the
induced change in velocity of the fluid in the crack, u yu , asa b

Ž .given by Eq. 9 . The largest arrow corresponds to a speed of
2.1u . It is evident that most of the motion occurs close to the0

seaward end of the crack.

The contours of constant P and P are plotted, in1 2

their consecutive domains, in Fig. 7. Comparing the
contours with those in Fig. 6 shows that the effect of
the sloping part of the roof is to increase the pressure
impulse gradient along the back wall. Similar com-
ments apply to those at the end of the previous
example, except that the change in velocity will be
higher along the back wall of this crack. Fig. 8 is a
sketch of the velocity field for the flow induced by
the seaward boundary condition given here, which is
applicable to both examples.
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