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Abstract

A wave breaking against a sea wall causes high pressure gradients to act along the sea bed, pushing objects away from the wall. This
situation is modelled using pressure impulse theory to show that, for a large object near a sea wall, the impulsive force due to the wave will
move the object. This force can be found, given knowledge of the added mass and volume of an object. In particular, if the wall is thought of
as a plane, gently sloping beach, then this theory may explain how shingle beaches are graded according to the size of the shingle, with larger
boulders being moved farthest by the impact of a wave. In order to obtain estimates for the distances moved up, or down, the beach, a single
boulder is treated as a spherical body which is free to move.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper we consider the consequences of a water
wave breaking violently on a beach or against a sea wall.
The key characteristic of this kind of flow is that the fluid
velocity everywhere undergoes a finite change during a
short time interval. This velocity change causes an impul-
sive fluid force on a rigid body in the fluid, which depends
on the body’s volume and shape and the degree to which it is
free to move. We predict that this wave impact force may be
great enough to overcome the natural forces which normally
anchor a body in place. It could help to explain how break-
waters are damaged by wave impact and how boulders are
moved around during storms.

The high pressures which are generated when a large sea
wave enters shoaling water and breaks can cause break-
waters to fail. This often happens because the wave forces
on the breakwater caissons cause them to slide out of posi-
tion. The largest caisson movements occur during storms,
when the waves are higher, steeper and more frequent. At
Sakata Port in Japan, during the winter of 1973/74, the
breakwater failed due to sliding of the caissons. Tanimoto
and Takahashi [1] record the sliding distances of 8 m high
caissons due to the impact of large waves, showing
movements of almost 4 m away from their initial position.

Similar damage occurred at Mutsu–Ogawara Port in Japan
[2].

Laboratory data suggests that the highest wave impact
pressures are associated with waves that trap only a small
amount of air as they break against a wall [3]. The pressure
rises to its peak,ppeak, and falls back to near hydrostatic
pressure over a short timeDt. The value ofDt may be
estimated in any of a number of ways, though its precise
value is relatively unimportant in the following analysis. A
range or statistical distribution of values might be appropri-
ate, but here we takeDt to be about 1× 1022 s. If the depth
of water at the wall isH � 10 m then the speed of the wave
is u0 �

����
gH
p

< 10 m s21. Corresponding peak pressures are
ppeak� 5 × 104 N m22 [3,4]. However, for apparently iden-
tical incident wave conditions these values can vary mark-
edly [5], but Bagnold [6] found that, whilst the peak
pressure varied, the product�1=2�ppeakDt remained fairly
constant.

Consider a cubic caisson of sideh� 8 m and densityrB�
3 × 103 kg m23. Its wet weight isFW < 1 × 107 N. We take a
coefficient of friction ofm � 1/2 between the caisson and
the bed, and then the frictional force holding the caisson in
place isFF � 5 × 106 N. There are three ‘pressure’ forces
acting on the side of the caisson, trying to move it:

• The hydrostatic pressure force, due to the depth of water
at the wall:FH , �1=2�rgh3 < 2:5 × 106 N, wherer is
the density of the water.

• The fluid drag,FD, exerted by the liquid flowing over the
caisson, due to the passage of the waves. We takeFD �
1=2rCDu2

0h2 where CD is a drag coefficient at
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approximately constant flow speed (appropriate to the
Reynolds number). PuttingCD � 1/2 implies thatFD <
1 × 106 N.

• The impulsive pressure force,FI, due to the rapid change
in fluid velocity. We will find that
FI , ru0h3

=Dt < 5 × 108 N.

Then the impulsive pressure force exceeds all the others by
at least an order of magnitude and is the only one able to
overcome the frictional force and move the caisson. So in
the region where waves are breaking, and during the brief
time of impact, we expect this impulsive pressure force to be
the dominant mechanism for moving objects around. In
particular, it is likely to move armour units from their posi-
tion at the base of a breakwater. These can cause damage to
the wall in one of two ways: either directly, by solid body
impact, or inadvertently, since by their absence waves are
able to break with more force against the wall. This is illu-
strated by the damage to the Sines breakwater in Portugal
[7], which occurred in 1978. The breakwater failed due to
the movement and loss of the ‘dolos’ armour units—those
units that broke free then proceeded to batter the wall
further. Further observations of impulsive forces include
blocks of stone of a hundred tons in weight having been
disturbed by heavy seas [8]. Gaillard [9, Section 8] gives
many instances of the destructive forces exerted by waves,
including that of a 20 ton block being lifted vertically to
land atop a pier of 12 feet in height, almost 5 feet above
the level of high water.

Our work also applies to the movement of large boulders
by wave impact. Stevenson [10] observed the “remarkable
destructive effects at Whalsey Skerries” in Scotland, where
“blocks of 6 tons weight have been quarried or broken out of
their beds in situ… [by]aqueous action”. He also records the
passage of a rock, weighing seven and a half tons, across
73 feet of rugged ledges, at a height of 20 feet above the sea.
This feat is remarkable, even if we assume that it occurred in
many small successive motions over a long period of time.
These events also occur in smaller expanses of water, for
instance in the great lakes of America, where Stevenson [11]

quotes observations of stones “weighing upwards of half-a-
ton [being] completely turned over”.

At the instant of impact, there is a distribution of peak
pressure throughout the fluid. Grilli et al. [12] inserted eight
pressure sensors on the bed of a laboratory tank, close to the
base of a vertical wall against which waves were made to
break. They found that large impact pressures were recorded
at a considerable distance from the wall and that these pres-
sures propagated very rapidly. Moreover, there were pres-
sure gradients along the bed, away from the wall with
magnitudes of up to about 2rg, whereg is the acceleration
due to gravity. Mu¨ller [13] performed small-scale experi-
ments on waves breaking against a vertical wall and found
pressure gradients away from the wall of up to almost 8rg.
The impulsive pressure gradient causes an impulsive force
to act on a body on the sea bed, pushing it away from the
wall.

However, rather than using the peak pressure, we will
describe the problem in terms of the productP�
�1=2�ppeakDt which is found to remain constant for identical
wave impacts even though the peak pressure and duration of
impact may vary [6]. If the pressure,p, just rises to its peak
value and then falls back, so that a plot of pressure versus
time looks like a delta-function, we can write

P�x; y; z� �
Zta

tb
p�x; y; z; t� dt �1�

wheretb andta are the times before and after impact andP is
the pressure impulse. IfDt � ta 2 tb is small enough then
we will show that72P� 0 in the fluid domain, with mixed
boundary conditions.

Cooker and Peregrine [14] calculate the pressure impulse
in a fluid domain,D, whose shape resembles a sea wave at
its moment of impact against a vertical wall of heightH. D is
the regionx $ 0;2H # y # 0; with the wall atx � 0 and
the horizontal sea bed aty� 2H. The distribution ofP is
shown in Fig. 1, in the case where the wave breaks against
the top half of the wall. The wave moves in the negativex
direction before impact, with constant uniform speed,u0.
The gradient of pressure impulse is normal to the contours
drawn in Fig. 1. We see that there are gradients acting along
the sea bed, trying to move objects away from the wall, and
down the wall. These gradients are directly proportional to
the finite change in flow velocity which occurs throughout
the fluid domain during the impact.

We estimate a pressure impulse gradient,G, along the bed
from Fig. 1: atx=H � 0:5 the pressure impulse gradient is
G� 0:1ru0. This is about twice as large as the pressure
impulse gradients which were found experimentally by
Müller [13] (a pressure gradient of 8rg translates into pres-
sure impulse gradients of approximately 0.04ru0) and could
therefore be a reasonable estimate for storm waves.

Cooker and Peregrine use their analysis [14] to supply a
far-field boundary condition for the problem of finding the
impulse on a body which is free to move and initially at
rest on the sea bed [15]. They consider bodies such as

S.J. Cox, M.J. Cooker / Applied Ocean Research 21 (1999) 113–125114

Fig. 1. Lines of constant pressure impulse for a wave impacting against the
top half of the wall,x� 0, y [ �20:5H; 0�, with a uniform impact velocity.
Contour separation is 0:01ru0H.



hemispherical boulders and circular cylinders, this latter
being appropriate to parts of armour units near breakwaters.
We extend their work, by giving general formulae for the
impulse on, and velocity of, the body, allowing more shapes
to be treated.

We shall describe pressure impulse theory and then pose
a boundary-value-problem forP in the neighbourhood of a
general two-dimensional body on the bed of the domain,D.
IntegratingPn over the surface of the body (wheren is the
normal to the surface of the body) allows the impulse on it to
be found. In Section 3.1 the impulse on a fixed body is
expressed in terms of the conformal map used to generate
it. Using a Laurent expansion for the conformal map allows
an alternative formulation to be made in Section 3.2, and in
Section 3.3 we modify the theory for a body which is free to
move. Section 3.4 shows that the impulse and velocity of a
body on any solid surface, not necessarily horizontal, can be
found. In Section 4 we explore in detail the impulse on
several rigid body shapes on the sea bed, including a rectan-
gular cylinder and an inclined plate. In Section 5 we treat the
case of a three-dimensional boulder moving across the
surface of a beach, which is subjected to gravity, buoyancy,
friction and fluid drag, as well as the impulsive fluid force
due to a nearby wave impact. The boulder’s shape is not
specific to the substance of the model equations, but for
simplicity we choose a spherical boulder. The model
shows that a larger boulder is pushed further up the beach
than a small boulder. A succession of wave impacts might
push the body along in a succession of short steps which
could sum to a considerable distance over the duration of a
storm.

2. Pressure impulse theory

Over the duration of the impact, we distinguish a velocity
field before impact,ub, from a quite distinct velocity field
after impact,ua. Whilst ub and ua may vary in time, we
suppose that during the short period of time of impact, the
acceleration of the fluid,2u=2t, greatly exceeds its value at
all other times. This acceleration is associated with a large
pressure gradient and has striking consequences for the
equations of motion. We neglect viscosity and then Euler’s
equations are

2u
2t

1 �u·7�u � 2
1
r
7p 2 gk �2�

whereu is the velocity,p the pressure andr the density of
the fluid,g is the acceleration due to gravity andk is a unit
vector pointing vertically up. We non-dimensionalise the
variables with a time scaleDt, a length scaleL, a velocity
scaleu0 and a pressure scalep0. The length scaleL is asso-
ciated with the depth of water prior to the impact andu0 is
pertinent to the speed of waves approaching the wall.
Then, after some manipulation, with primes denoting

dimensionless variables,

2u 0

2t 0
1 S�u 0·7 0 �u 0 � 2

Dtp0

ru0L
7 0p0 2

Dt
u0

gk �3�

whereS� Dtu0=L. Typically, if L , 10 m, u0 , 10 m s21

and Dt , 0.01 s thenS � 0.01 and the quantity scaling
gravity is 0.001. So we seek a balance between the first
term and the pressure term in Eq. (3) by scaling pressure
according to p0 � ru0L=Dt, which is very large (1×
107 N m22). Since they are small compared to unity, we
neglect the non-linear convective terms and the last term
in Eq. (3). Now Eq. (2) becomes (in dimensional variables)

2u
2t
� 2

1
r
7p: �4�

Integrating Eq. (2) with respect to time over the short dura-
tion of the impact,Dt � ta 2 tb gives

ua 2 ub � 2
1
r
7P �5�

where

P�x; y� �
Zta

tb
p�x; y; t� dt �6�

is the pressure impulse. If the pressure rises toppeakand then
falls we have

P <
1
2

ppeakDt or; alternatively; ppeak <
2P
Dt

�7�

so that we can use the knowledge gained aboutP to estimate
corresponding peak pressures. We assume that the fluid is
incompressible before impact and after impact,7·ub � 0
and7·ua � 0, and suggest that fluid compressibility may
be accommodated through modifying Eq. (7), by altering
Dt for instance.

Then the divergence of Eq. (5) shows thatP satisfies
Laplace’s equation,

72P� 0: �8�
Eq. (8) is independent of time, and we solve it in the fluid
domain at the start of the impact. We can provide appro-
priate Neumann or Dirichlet boundary conditions to solve
for P in one of four forms:

• 7P·n � 0 on a fixed impermeable surface (with normal
vector n) which is in contact with the fluid before and
after impact. That is, fluid cannot pass through the
boundary.

• 2P=2n� rub·n where fluid impacts on a solid surface
with velocity ub and remains in contact with the surface
after impact (whenceua·n� 0). This is a consequence of
Eq. (5).

• P or 7P specified in the far field.
• P� 0 on a free surface. Since pressure,p, is constant on a

free surface, we can defineP up to an arbitrary constant,
and without loss of generality this constant is zero. A
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consequence of this is that we can take any contour of
constant pressure impulse to be a free surface for the
flow.

As well as giving information on peak pressures, knowledge
of P will determine the velocity field after impact through
Eq. (5). Notice also that the curl of Eq. (5) shows that the
vorticity is the same before and after impact.

We proceed by taking a field of pressure impulse,P1,
which has already been calculated, and finding the change
in P1 brought about by the presence of a rigid body,B, at rest
on the bed of the fluid domain,D. By consideringB much
smaller than the significant length scale inD, it is reasonable
to suppose that the effect ofB on P1 is confined to a region
nearB. For example, a semicircle,B, of radiusa, can be
placed on the bed of the rectangular domain described above
provideda p H. The centre ofB is atx� X; y� 2H, and
then2P1=2xux�X;y�2H � 2G is evaluated. From now on,G
is treated as a constant for the purposes of the flow in the
neighbourhood ofB. Also constant isP1ux�X;y�2H � P0:

These two conditions can be combined to give a condition
on the distorted pressure impulse field

P�x; y� , P0 2 Gx �9�
which is to be satisfied in the far field of the model for flow
aroundB. Usually, Eq. (9) is achieved within a few radii of
B (notice how nearly parallel the contours in Fig. 1 are in a
region close to the sea bed aroundx=H � 0:5), and so the
whole of the model nearB lies in a region whose dimensions
are small compared withH. The pressure impulse nearB
satisfies the boundary-value-problem shown in Fig. 2. New
coordinatesx0 � x 2 X; y0 � y 2 �2H� are introduced and
the bed boundary condition changes to2P=2n� 0 on both
the boundary ofB and the remainder of the bed.P continues
to satisfy Laplace’s equation and the far field boundary

condition Eq. (9). More generally,x0 could be a coordinate
indicating arc length along a solid surface andy0 normal to
the surface. (The far field condition might also be directly
proportional toy0 if B lay inside an impact zone. Approx-
imations of order higher than those in Eq. (9) can be calcu-
lated, but the term proportional to the square ofx0 has no net
effect on the impulse for a left–right symmetric body.) The
boundary condition onB significantly changes the pressure
impulse contours near the bed, usually attracting them
towardsB and thereby increasing the impulse on the body.

3. Mathematical formulation

GivenP0 andG, we will find that the presence of a body,
B, causes a distortion to the pressure impulse,P. The real
axis of aw plane will be conformally mapped to a physical
sea bed in az plane. The map will generate a body in the
form of a simple geometric shape on a horizontal base with
an explicit transformation in the formz� z�w�, from either
the upper half-plane or the exterior of the unit circle. Exam-
ples of such maps are given by Kober [16].

Consider an arbitrary body�B with boundary2 �B in an
infinite fluid. We define a ‘complex pressure impulse’
(CPI), F: C ! C by F�z� � P�x; y�1 iQ�x; y�; where i�����

21
p

; z� x 1 iy, P is pressure impulse andQ is defined,
up to an arbitrary constant, by the Cauchy–Riemann
equations:

2P
2x
� 2Q

2y
;

2P
2y
� 2

2Q
2x

:

Since the lines of constantQ are perpendicular to the lines of
constant pressure impulse,Q is constant on2 �B (without loss
of generalityQ � 0).

The conformal transformation,z� z�w�, maps the
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Fig. 2. The boundary-value-problem for the pressure impulseP. The free surface lies far off in they0 direction and the base of the wall is far off in the negative
x0 direction.P satisfies Laplace’s equation and the far field condition (dotted line) is thatP , P0 2 Gx0. For a body at rest, the normal velocity is zero on bothB
and the sea bed,y� 2H.



complexw� u 1 iv plane to the complexz plane contain-
ing the body �B: The real axis in thew plane,v � 0, is
mapped to the union of the sea bed on either side of�B,
y � 0, and2 �B: The pre-image of2 �B is denoted2 �B0, lying
along the realw-axis betweenu � u1 andu � u2. Pressure
impulse contours in thew plane (lines of constantu) are
mapped to pressure impulse contours around�B: If the map
is such thatz , sw as uzu ! ∞, for some constants . 0,
then in the w plane the CPI isF�w� � P0 2 Gsw and
F�z� � P0 2 Gsw�z� , P0 2 Gzas uzu ! ∞.

3.1. The impulse on B

Let a small segment of2 �B be denoted ds and the angle
between the tangent to�B and the positive real axis bef . The
impulse on�B has horizontal and vertical components given
by �I � ��ıx; �ıy� where

�ıx 1 i�ıy �
Z
2 �B

P�z� sinf ds2 i
Z
2 �B

P�z� cosf ds �10�

� 2i
Z
2 �B
�P 1 iQ��cosf 1 isinf� ds �11�

� 2i
Z
2 �B
F�z�dz �12�

since dz� eifds. These formulae hold when2 �B is a closed
curve. If �B; and therefore2 �B; has the real axis as its line of
symmetry then the bodyB in which we are interested is the
top half of �B, projecting above the real axis.2P=2y� 0 on
the real axis, so the horizontal impulse,Ix, on the bodyB
projecting into the upper half-plane is half that on�B. We
write this impulse onB asI � �Ix; Iy�: In which case we can
perform the integration along a path in thew plane so that
Eq. (12) becomes

Ix 1 iIy � 2i
Z
2 �B0

F�w� dz
dw

dw �13�

� 2i
Zu2

u1

�P0 2 Gsu� dz
dw

uw�u du �14�

� 2iP0�z�u2�2 z�u1��1 iGs�u2z�u2�2 u1z�u1��

2 iGs
Zu2

u1

z�u� du: �15�

The first term of Eq. (15) is a vertical (downward) impulse
equal toP0, the local pressure impulse, multiplied by the
length of the body along thex-axis. We assume that a body
which has a flat base and is free to move will have a thin
layer of fluid, of constant width, beneath it [15] (otherwise
we are led into a consideration of frictional forces which we
make no attempt to model, such as the stickiness of mud
etc., and a requirement that we modify the normal reaction
force of the bed onB, and hence the frictional force). Then
the impulse generated by this fluid is alsoP0 multiplied (at
least in two-dimensional analysis) by the length of the base,

but in an upward direction. So we conclude that this vertical
impulse has no effect on the subsequent sliding motion of
the object.

The second term of Eq. (15) is zero for left–right
symmetric bodies. By integrating the third term in Eq.
(15) we can find the total impulse onB. Now u1, u2, z(u1)
and z(u2) are real, so this term is the only one that could
possibly give a real component in Eq. (15), contributing to a
horizontal component of impulse. If the body is symmetric
then u1 � 2u2 and we expect the integral to be purely
imaginary. Thus for left–right symmetric bodies, Eq. (15)
becomes

Ix � 2iGs
Zu2

2 u2

z�u� du and Iy � 22z�u2�P0:

�16�
If the conformal map is given in the form dz=dw� f �w� we
perform the integration in Eq. (14) and take real and imagin-
ary parts to find the horizontal and vertical components of
impulse respectively.

If the body is free to move then we can also find its initial
velocity. We next derive some methods to allow straightfor-
ward calculation of the impulse and velocity.

3.2. Laurent expansion

An easier way of calculating the horizontal impulse is to
use a Laurent series to represent the conformal map, as
follows. If 2 �B is a simple closed curve surrounded by
fluid, with the pointz� 0 inside2 �B and

R
2 �B zdz� 0; and

if F can be expressed as a Laurent series, i.e.

F � G
X∞

k�2 1

ak

zk ; ak [ C �17�

then by Cauchy’s residue theorem, with the contour
traversed in a clockwise manner, Eq. (12) gives

�ıx � 2i·2pi R�2Ga1� � 22pG R�a1� �18�
whereR denotes real part. The expansion of the conformal
map,z(w), as a Laurent series for largew, givesa1. Thus, if

z�w� � sw 1 b0 1
b1

w
1

b2

w2 1 … �19�

we substitutew� z=s, and thena1 � sb1 and Eq. (18)
becomes

�ıx � 22pG R�sb1�: �20�
For a conformal map from the exterior of the unit circle
(uSu � 1 in a complexS plane) to the exterior of the body
�B (in the z plane), we can write

z�S� � s1S1 c0 1
c1

S
1

c2

S2 1 … �21�

with s1 . 0. The composition of a map from the unit circle
to a flat plane with a map from the flat plane to�B; from Eq.
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(19), is

z�w�S�� � z S1
1
S

� �
� sS1 b0 1

s 1 b1

S
1 …

which we compare with Eq. (21) to show thats � s1, b0 �
c0 andb1 � c1 2 s. Then the horizontal impulse, given by
Eq. (20), is

�ıx � 2pGs2
1 1 2 R

c1

s1

� �� �
: �22�

Pólya [17], in his calculations of the two-dimensional
motion of a solid through a fluid which is at rest at infinity,
constructs the cross-section of a cylindrical body�B using a
conformal map, as in Eq. (21). The body, of mass per unit
lengthm, moves as if its mass per unit length werem1 �Mx;

where �Mx is the added mass per unit length of the body for
motion parallel to thex-axis. Then he derives the following
formula for �Mx:

�Mx

r
1 V � 2ps2

1 1 2 R
c1

s1

� �� �
whereV is the volume per unit length of the body (i.e.
cross-sectional area for a two-dimensional body) andr is
the density of the fluid. This is analogous to the result in
Newman [18, Section 4.14] connecting added mass and
dipole moment. Thus

�ıx � G
�Mx

r
1 V

� �
: �23�

For the bodyB in which we are interested, which is the
upper half of a body�B which has its line of symmetry along
the real axis, the impulse is half that on�B and the results
Eqs. (20), (22) and (23) becomeIx � Gk where

k � 2p R�sb1� �24�

k � ps2
1 1 2 R

c1

s1

� �� �
�25�

k � Mx

r
1 V: �26�

HereMx is the added mass ofB for motion in thex-direction.
If the area ofB is non-zero (i.e.B is not a line segment) then
the added mass is proportional to the displaced mass of
water. We define an added mass coefficient,l x, which is
dependent upon the shape of�B by Mx � lxrV and so

k �V�lx 1 1�: �27�
Values ofl x are tabulated for many shapes, but in those
cases where they are not, we can calculatel x by finding k
andV. So those shapes which receive the greatest impulse
per unit area are those with the largest added mass coeffi-
cients.

3.3. A moving body

If B is free to move, then we assume that the pressure
impulse gradient,G, will accelerate it from rest to a hori-
zontal velocity,V. The boundary condition on the moving
body is now2P=2n� 2rVî·n, with the same far field condi-
tion as before,P , P0 2 Gx; and the same impermeability
condition on the sea floor,2P=2yuy�0 � 0. The pressure
impulse which satisfies these conditions isP1 � P̂ 2 rVx
where P̂ is the same asP for a fixed body but with the
effective pressure impulse gradient modified fromG to
G 2 rV. Then, since the horizontal impulse on a fixed
body is Ix � Gk, the horizontal impulse on the same body,
but which is free to move, is the integral ofP1 over its
surface:

IVx � �G 2 rV�k 1 rVV: �28�
We can then use any of Eqs. (24)–(27) to expressk in
whichever way is most natural.

Equating the impulse on the moving bodyB, of density
rB, with the change in momentum,rBVV, gives

V � Gk
rBV1 r�k 2 V� : �29�

With Eq. (27), this shows thatV is independent of the size of
B. Note that a more dense body moves less quickly. If the
body moves, then the impulse on it is

IVx � GrBVk
rBV1 r�k 2 V� �30�

which is less than the impulse on a fixed body, sincek . V
by Eq. (27). (Ifl x � 0 then the impulse is zero.)

The horizontal force pushing a body,B, which is free to
move, away from the wall when the wave breaks is the
impulsive force,FI � IVx=Dt. In the opposite direction, fric-
tion, FF, and the fluid drag force,FD, resist the motion. We
write FF � m�rB 2 r�Vg, wherem is the coefficient of fric-
tion betweenB and the bed, andFD � �1=2�rCDu2

0A, where
A is the cross-sectional area of the body in the direction of
motion. CD is a drag coefficient at approximately constant
flow speed (appropriate to the body and Reynolds number)
which Batchelor [19, Section 5.11] discusses for a circular
cylinder and a sphere. For flows with Reynolds number 106,
he givesCD < 0.5 for a circular cylinder andCD < 0.2 for a
sphere. Then, comparing these forces acting onB shows that
for B to move we must have

IVx

Dt
. m�rB 2 r�Vg 1

1
2
rCDAu2

0: �31�

Using Eqs. (27) and (30) gives the condition

V

A
.

�1=2�rCDu2
0Dt�rB 1 rlx�

GrB�lx 1 1�2 m�rB 2 r�gDt�rB 1 rlx� �32�

for B to move. SinceV/A is proportional to the length scale
of the body, this gives a lower bound for the critical length
scale,ac, at which a body will move. So if a body of given
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shape is large enough, it will move due to a nearby wave
impact.

3.4. A body protruding from the wall

Since the normal derivative of the pressure impulse is
zero on the wall, below the impact zone, this theory can
also be used to find the effect of a wave impact on an object
protruding from the wall. Considering again the contours of
pressure impulse in Fig. 1 we see that a small body attached
to the wall at a position (0;2y0), where y0 . 0.5 H, is
subjected to a pressure impulse gradient down the wall.
For a body whose size is much less than the height of the
wall, we can approximate the gradient to be almost uniform,
so that we are able to write the far field condition asP ,
P0 2 Gx0; wherex0 is now a coordinate pointing down the
wall. Now G� 22P1=2x0ux�0;y�2y0

and P0 � P1ux�0;y�2y0
:

The gradient,G, is evidently large, since the contours are
so close together, and will act in such a way as to attempt to
push the body towards the sea bed. We can again use a
conformal map to represent the body,B, and, since the
boundary conditions are the same as for the problem consid-
ered above, all the results transfer to this situation. Then the
impulse on this body protruding from the wall has compo-
nents Ix downwards (in thex0 direction) andIy pointing
perpendicularly away from the wall.

We are also able to model the effect of the wave impact
on a body that pierces the free surface at the instant of
impact. In this region the pressure impulse gradient is
perpendicular to the free surface, and will give an impulsive
lift to the body. With the condition thatP � 0 on the free
surface we can adapt the results for some of the bodies on
the sea bed using arguments based on symmetry. Note
however, that the relevant value ofG will change (as calcu-
lated from Fig. 1) and that we shall haveP0 � 0.

4. Results

We now give some examples of shapes for which the
impulse is calculable, even if the distorted pressure impulse
field is not. This allows Eq. (32) to be applied in order to
decide how large a body on the sea floor must be for the
impulsive forces to dominate and move the body. (We shall
also correct some errors of Cooker and Peregrine [15]).

4.1. Semicircular cylinder

We find the impulse on a semicircular cylinder aligned
with its axis parallel to the wall. A semicircle of radiusa on
the sea bed has added mass coefficientl x� 1 and areaV�
(1/2)pa2 so that Eq. (27) predicts

Ix � pGa2
: �33�

This corrects the fallacious solution of Cooker and Pere-
grine [15, Eq. (4.13)]. Sincek � pa2, if the cylinder is
free to move then its initial speed will be given by Eq. (29):

V � 2G
rB 1 r

: �34�

Note that this velocity is independent of the radius,a, of the
cylinder.

The cross-sectional area (per unit length) in the direction
of motion isA� a. We takeDt� 0.04 s,m � 0.5,rB� 3r ,
CD � 0.5 and, for a water depth at the wall ofH � 10 m,
u0 �

����
gH
p � 9:91 m s21. Then our estimate of the pressure

impulse gradient isG� 991 N s m23. If its density isrB �
3r � 3 × 103 kg m23 then a semicircular cylinder will have
an initial speed ofV� 0.496 m s21. For the impulsive force
on the semicircle to overcome the frictional and drag forces
and move it, Eq. (32) implies that the critical value ofa for
the body to move isac � 0.575 m. Thus, a semicircular
cylinder of radiusa . ac is likely to be moved by the impact
of this storm wave.

4.2. Circular cylinder

For a circular cylinder (or log) on the bed, lying parallel
to the wall, the added mass coefficient islx � �1=3�p2 2 1
[20]. Then the horizontal impulse is

Ix � 1
3
p3Ga2

: �35�

The vertical impulse on the cylinder is zero, by Eq. (16), not
the incorrect value reported by Cooker and Peregrine [15].

In order to find out if the impulsive force on the circle is
likely to overcome the frictional and drag forces and move
it, we apply Eq. (32). The area of the circle isV � pa2 and
the cross-sectional area (per unit length) in the direction of
motion isA � 2a. Then, with the same parameters as in
Section 4.1, we find that for the body to moveac � 0.5 m.
Thus, a circular cylinder of radiusa . ac is likely to be
moved by the impact of a storm wave.
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4.3. Rectangular cylinder

Most structures near sea walls are made of rectangular
blocks. To construct a rectangle on the sea floor, we apply
the Schwarz–Christoffel mapping theorem to give the
expression

dz
dw
�

������������
w2 2 l2

w2 2 L2

s
�36�

wherel [ �0; L� is a parameter governing the aspect ratio of
the rectangle, which is at rest on the real axis with a vertical
line of symmetry through the origin, as in Fig. 3. The map
transforms the real line betweenw� 2L andL to the sides
and top of a rectangle of width 2a and heightb and trans-
forms the remainder of the realw-axis to the realz-axis
outside the rectangle. Note that 0# a;b # L, so that Eq.
(36) can be used for any rectangle from a long flat plate,
through a square, to a tall thin spike.

We let l 0 � l=L then the half-width of this rectangle is

given by

a�
Zl

0

dz
dw

dw� L
Zl 0

0

������������
l 02 2 w2

1 2 w2

s
dw

� L E
p

2
;l 0

� �
2 �1 2 l 02�F p

2
;l 0

� �� �
(using Gradshteyn and Ryzhik [21, Eq. (3.169.10)]) where
F�f; k� and E�f; k� are Incomplete Legendre Elliptic inte-
grals of the first and second kinds respectively. The height is

b�
Z1

l

dz
dw

dw� L
Z1

l 0

������������
w2 2 l 02

1 2 w2

s
dw

� L E
p

2
;
���������
1 2 l 02

p� �
2 l 02F

p

2
;
���������
1 2 l 02

p� �� �
(using Gradshteyn and Ryzhik [21, Eq. (3.169.12)]). Writ-
ing these in terms of Complete Elliptic integrals of the first
and second kinds (K,E) and their associated Complete Ellip-
tic integrals (K0,E0) (see Byrd and Friedman [22]) gives

a�l 0� � L�E�l 0�2 �1 2 l 02�K�l 0�� and

b�l 0� � L�E0�l 0�2 l 02K 0�l 0��:
�37�

It is not possible to relatel explicitly to the dimensions of
the rectangle. In practice one chooses an aspect ratio for the
rectangle,b/a, from which a value ofl 0 can be found from
Fig. 4. Then Fig. 5 enablesa/L and b/L to be estimated,
giving the size of the rectangle.

It is not possible to use Eq. (24) to find the horizontal
impulse on this rectangle since we do not have an explicit
conformal map, but the derivative of the conformal map.
Neither do we know the added mass of the rectangle, so Eq.
(26) cannot be applied. So, rather than integrating directly
according to Eq. (14), we differentiate Eq. (19):

dz
dw
� s 2

b1

w2 2
2b2

w3 2 …

then Eq. (24) implies

Ix � 2pG R�sb1� �38�
whereb1 is now the coefficient of2 1/w2 in the expansion
of dz/dw for largew. For the rectangle, asw! ∞ Eq. (36)
becomes

dz
dw
�

������������
w2 2 l2

w2 2 L2

s
� 1 2

l

w

� �2
 !1=2

1 2
L
w

� �2
 !21=2

, 1 1
1

2w2 �L2 2 l2�1 O
1

w4

� �
:

Then Ix � � 1
2 �pG�L2 2 l2� and Eq. (26) predicts that the

added mass of the rectangle for horizontal motion is

Mx � r
1
2
p�L2 2 l2�2 2ab

� �
�39�
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Fig. 4. A graph of the aspect ratio of the rectangle,b/a, againstl 0. Note that
asl 0 ! 0; b=a! ∞; corresponding to the vertical plate. Maple was used to
evaluate Eq. (37) to provide the data for these curves.

Fig. 5. A graph of the lengths of the sides of the rectangle,a/L andb/L,
againstl 0. Maple was used to evaluate Eq. (37) to provide the data for these
curves.



in agreement with the result of Barringer [23]. This predicts
the special cases of the vertical plate of heightL(l � 0) with
horizontal impulse (1/2)pGL2 and the identity transforma-
tion from the flat sea bed (l � L) which receives zero
horizontal impulse.

For a rectangle which is twice as wide as it is high, we
have b/a � 1 and then l 0 � 1=

��
2
p

. Fig. 5 gives
a� b� 0:423L, so we putL � 1/0.423� 2.361 to give a
rectangle of width 2 and unit height. For this rectangle the
horizontal impulse isIx � 4.378G. Thus for a rectangle of
height c, width 2c and area 2c2 we have
Ix � 4:378Gc2 � 2:189G�2c2�. This is much larger than
the horizontal impulse ofIx � 1:57Gc2 on a vertical plate
of the same height, showing the effect of increasing width
and area.

A square, withb/a� 2, hasl � 0.588L by Fig. 4 and then
b � 2a � 0.570L. If L � 3.509 then the square has side
length 2 andIx � 12.653G. So for a square of side lengthc
the impulse isIx � 3:163Gc2. So the first rectangle, which is
wide and low, receives a smaller horizontal impulse per unit
cross-sectional area. Thus for a given cross-sectional area,
the tallest rectangles receive the highest horizontal
impulses, and rectangles with larger areas receive higher
horizontal impulses.

4.4. Inclined plate

If a body is not left–right symmetric, then Eq. (15) gives a
vertical component of impulse which is proportional to the
pressure impulse gradient,G. For instance, the impulse can
be computed on an inclined plate (whose cross-section is a
straight line segment) of lengtha, projecting at an anglea [
�0;p� from the sea bed. The conformal map (adapted from
Jeffrey [24]) is

z�w� � �w 2 a�b a 1
bw

1 2 b

� �12b

with b � a=p. The plate lies betweenz� 0 andz� �21�ba
(taking the principle value) to which it is mapped from the
real interval�a�b 2 1�=b;a� in thew plane. We havez , sw
as uzu ! ∞, where s � �b=�1 2 b��12b

: Rearranging the
conformal map for largew gives

z�w� � sw 1 2
a
w

� �b
1 1

a�1 2 b�
bw

� �12b

, sw 1
as�1 2 2b�

b
2

a2s�1 2 b�
2bw

1 O�w22�:

Applying Eq. (24) gives the horizontal impulse

Ix � pGa2s2

2
1 2 b

b

� �
� pGa2

2
1 2 b

b

� �2b21

: �40�

So the horizontal impulse is the same whether the plate
leans to the right or to the left at a particular angle to the bed.

The total impulse, given by Eq. (15), is

Ix 1 iIy � 2iGs
Za

a�b2 1�=b
z�u� du

� 2iGa2s
Z1

�b2 1�=b
�u 2 1�b 1 1

b

1 2 b
u

� �12b

du

� 2iGa2s�21�b

� b

1 2 b

� �12b Z1=b

0
xb

1
b

2 x
� �12b

dx

� 2
iGa2s

2
�21�b
b2

b

1 2 b

� �12b

G�2 2 b�G�1 1 b�

� 2
ipGa2s

2
1 2 b

b

� �b �21�b
sin�pb�

� pGa2s

2
1 2 b

b

� �b
�1 2 i cot�pb��

� pGa2

2
1 2 b

b

� �2b21

�1 2 i cot�pb��

using Abramowitz and Stegun [25, Eq. (6.1.31)] and
Gradshteyn and Ryzhik [21, Eq. (3.191)]. ThenIy �
2Ix cot�pb� and for this asymmetric body the vertical
component of impulse is non-zero. The impulse acts to
push the plate either away from or towards the bed, depend-
ing on whether it leans to the left or the right respectively.
Further calculation suggests that all asymmetric bodies on
the sea bed will experience a component of impulsive lift
perpendicular to the direction of the pressure impulse gradi-
ent,Gî.

5. Sphere—a boulder on a beach

The case of a hemisphere on the sea bed is treated by
Cooker and Peregrine [15]. If it has radiusa and is fixed then
the impulse on it isIx � pGa3. Sincelx � 1=2 for a sphere,
Eq. (27) correctly predicts this value. So the added mass
method of finding the horizontal impulse is valid for truly
three-dimensional shapes too [26]. So now, for a sphere of
radiusa on the sea bed, the added mass coefficient isl x �
0.621 [27]. ThenIx � 2:161pGa3. If the sphere is free to
move then its initial speed will be given by Eq. (29):

V � 1:621G
0:621r 1 rB

: �41�

If we think of the sphere as a boulder on a plane, gently
sloping, beach, then this work may help to explain the
sudden movement of bodies away from a wave impact on
a shingle beach.

Shingle beaches may not constitute a large part of the
coastal zone on a world-wide scale, but in Britain they are
particularly prevalent. During storms, shingle is often
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washed onshore so that beaches are steeper in winter. In the
summer the generally smaller waves draw shingle away
from the beach to offshore bars. Wave action on beaches
also tends to grade beach material, pushing larger particles
farther up the beach (landward). Further, coarser beach
material gives steeper slopes of beach. When the beach
material is a mixture of pebbles of different sizes, large
particles move over the fine material and are thrown up on
the shore [28]. Steers [29, p.14] gives data for pebble move-
ment in moderate weather conditions on the north Norfolk
coast. This shows daily pebble displacements of up to
72 yards, although the size of the pebbles is not specified.

The pressure impulse field after a wave impacts on a
shingle beach is only slightly modified, by the presence of
the shingle, from that for a flat sloping wall, in the same way
thatP is distorted only in a small localised region around a
body on the sea bed. Typical values of beach slope are 6–
108 [30,31]. Okamura [32] shows that the largest impulses
occur when a wall is nearly vertical, but even for a wall at a
very shallow angle we suggest that a breaking wave will still
generate a large enough impulse to move a boulder on a
beach. This is illustrated schematically in Fig. 6. The pres-
sure impulse gradient points up the beach above the wave
impact and points down the beach below. Each boulder
responds to the local applied pressure gradient-if it is free
to move it acquires some initial speed from the fluid impulse
and is eventually brought to rest by friction with neighbour-
ing bodies, gravity and fluid resistance. In this way a body is
displaced a short distance by each wave impact. A succes-
sion of impacts in one place can lead to the movement by
many small steps of beach material both up and down the
beach away from the site of impact.

To avoid the problem of the wave impact being changed
by the presence of the sphere on the shore, we assume that it

is some distance away from where the impact occurs. Our
aim is to follow the motion of one boulder, of densityrB,
which is free to move. We assume that the boulder is sphe-
rical so its cross-sectional area isA� pa2 and its volume is
V � (4/3)pa3. The beach is at an anglea to the horizontal
and we assume thatrB . r , so that the sphere rests initially
on the beach surface, immersed in fluid. (We do not take
into account the possibility of the sphere leaving the beach
surface throughout its motion, although this is possible for
smaller bodies and larger impact pressures—compare with
mechanisms for shingle beach formation and sorting in
Cornish [33, Sections 4 and 5]). This surrounding fluid
moves up the beach at speedu0, due to the wave approach-
ing the shore before impact, but will experience a change in
velocity due to the impact of the wave. We expectu0 to be
about 10 m s21.

The complicated forces due to neighbouring boulders are
modelled by a coefficient of friction,m , between the sphere
and the beach. If all the boulders on a beach were the same
size, they would all be moved at similar velocities, so we
assume that one boulder is larger than the average shingle
size and that it projects above the level of the beach. There-
forem is not prohibitively large. These forces on the sphere
act at its centre of mass; we ignore any overturning
moments and any rolling of the sphere down the beach.
Thus our attention is restricted to the translational motion,
as in the discussion in Section 3.1. The wet weight of the
boulder isW � �rB 2 r�Vg and the frictional force isFF �
m�rB 2 r�Vgcosa; whereg is the acceleration due to grav-
ity. The drag force from the fluid flowing at speedvw over a
sphere which moves at speedV is FD � �1=2�rACD�vw 2
V�2 whereCD is a drag coefficient. The directions of these
forces are shown in Fig. 7. As before, we takeCD� 0.2 for a
sphere in water moving at high Reynolds number.

After the impact the sphere moves with velocityV paral-
lel to the beach, given by Eq. (41). The velocity component
of the water parallel to the beach after impact isvw, which
differs from u0 by an amount equal toG/r . This change in
fluid velocity during impact is only about twice the initial
speed of the sphere but we would expect the sphere to be
rapidly brought to rest by the frictional forces.

Two cases are treated, which are illustrated in Fig. 7.

• Case A: The wave breaks below the sphere, which is
initially pushed up the slope by the impact. The fluid
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Fig. 6. The wave breaks close to the beach, causing a pressure impulse
gradient to act up/down the beach above/below the impact, affecting the
sphere in Case A/B respectively.

Fig. 7. The geometry for Cases A and B. In Case A the fluid flows up the beach, which is at an anglea to the horizontal, assisting the progress of the sphere, of
weightW � g�rB 2 r�V, which moves at initial velocityV. In Case B the initial direction of motion of the sphere is down the beach. Friction opposes the
motion in both cases, and the fluid drag acts up the beach.



which moved past the sphere at speedu0 is accelerated to
move up the beach at speedvw � u0 1 G=r, helping to
continue the upslope motion of the sphere by fluid drag.
Friction and the weight of the sphere oppose the motion.

• Case B: The wave impacts farther up the beach than the
sphere and the sphere is initially pushed down the slope
by the wave impact. The water flows up the slope at
speedvw � u0 2 G=r, retarding the motion of the sphere
by drag. In this case the weight of the boulder assists its
motion down the slope.

Other combinations of the direction of the initial velocity
and the water velocity can be modelled, but are almost
equivalent, mathematically, to these two cases. The sphere’s
speed at timet is denoted byVi�t�, wherei � 1,2 denotes
case A or B. Similarly, the distance that it moves before first
coming to rest at timeti . 0 (i.e. Vi�ti� � 0) is Li.

5.1. Case A

The breaking wave impacts to seaward of the sphere so
that the impulse pushes it up the slope, with initial speed
V1 � V, and water flows over it, up the beach, with speed,
vw � u0 1 G=r. Thus the water’s motion aids the sphere’s
motion up the beach. This is modelled by the ODE

K2�vw 2 V1�2 2 c2
1 � dV1

dt
�42�

where

K2 � 1
2
rACD

rBV
� 3

8
rCD

rBa
and

c2
1 � g 1 2

r

rB

� �
mcosa 1 sina
ÿ �

. 0:

The first term on the left-hand side of Eq. (42) represents the

drag forces and the second the frictional forces. Defining

g^ � c1 ^ K�vw 2 V� and b^ � c1 ^ Kvw

gives the solution to Eq. (42):

V1�t� � vw 1
c1

K
g2e22c1Kt 2 g1

g2e22c1Kt 1 g1

" #
: �43�

The sphere comes to rest after a time

t1 � 1
2Kc1

log
g1b2

g2b1

���� ���� �44�

having travelled a distance up the beach of

L1 � vw

2Kc1

log
g1b2

g2b1

���� ���� 1 1
2K2 log

b1b2

g1g2

���� ����: �45�

5.2. Case B

In this case the movement of the water retards the motion
of the sphere. The wave has broken after passing landward
of the sphere, so that the impulse acts in the seaward direc-
tion, whilst water is still passing over it up the beach with
velocity vw � u0 2 G=r. We solve

2K2�vw 1 V2�2 2 c2
2 � dV2

dt
�46�

subject toV2�t � 0� � V and where

c2
2 � g 1 2

r

rB

� �
�mcosa 2 sina� . 0

i.e.m . tan(a) so that the sphere is held at rest by friction
when there are no impulsive forces (vw � u0). K is as for
Case A. We redefine

g^ � ic2 ^ K�vw 1 V� and b^ � ic2 ^ Kvw;

and then the sphere’s velocity down the beach is given by

V2�t� � 2vw 1
c2

K
tan 2c2Kt 1 tan21 K�vw 1 V�

c2

� �� �

� 2vw 2
c2

K
g2e22ic2Kt 2 g1

g2e22ic1Kt 1 g1

" #
�47�

and it comes to rest after a time

t2 � 1
Kc2

tan21 K�vw 1 V�
c2

� �
2 tan21 Kvw

c2

� �� �

� i
2Kc2

log
g1b2

g2b1

� �
�48�
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Fig. 8. The distances, in metres, moved up the beach,L1, and down the
beach,L2, by the sphere before it first comes to rest as functions of the
change in fluid velocity due to the wave impact,G=r. The parameters used
arem � 0.5,a� 0.2 m,g� 9.8 m s22, rB /r � 3.0,a � 10.08 andCD� 0.2.
This givesK � 0.353,c1 � 2.11 andc2 � 1.44. The sphere is given an
initial impulsive velocity ofV � 0:45G=r. The spherical boulder can move
about 5 m up the beach or 3 m down the beach.



having moved a distance down the beach of

L2 � 1
K2 log

cos tan21 Kvw=c2

ÿ �� �
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�49�
Note that, despite the presence of the complex number i, the
quantitiesV2, t2 andL2 are all real.

5.3. Results

The form of the solutions forVi, ti andLi are similar fori �
1,2. Fig. 8 shows the distance that the sphere moves for each
of the two cases,L1 andL2, as a function ofG/r , the change
in velocity of the water flowing over the sphere due to the
wave impact. The sphere of radiusa � 0.2 m is set into
motion by the wave impact. It has densityrB � 3r so that
its initial velocity is V � 0:45G=r. In Case A the sphere
moves a large distance even for small changes in water
velocity, showing how the fluid drag assists its progress.
As G/r increases the initial velocity of the sphere is a higher
fraction of the fluid velocity, so that this drag effect
decreases and the gradient of the graph decreases. For a
change in fluid speed ofG/r � 10 m s21, the boulder
moves almost 5 m up the beach. This is associated with a
value of the impulsive pressure gradient ofG �
104 N s m23, which is over ten times larger than the gradi-
ents along the sea floor hypothesised earlier. In Case B the
boulder moves only short distances for changes in water
velocity of up to 5 m s21, due to the high fluid drag up the
beach. However, atG/r � 10 m s21 the fluid is brought to
rest around the sphere and it travels about 3 m down the

beach. For Case A, increasingrB or m both act to decrease
L1. In contrast, increasingrB or decreasingm will increase
L2.

Fig. 9 shows that as the radius of the sphere,a, increases,
the distance moved either up or down the beach increases.
Again, a boulder will move farther up than down the beach.
This may explain the observation that larger boulders
collect at the top of the beach or offshore on bars. Also,
boulders will move farther up the beach than down, so
that a boulder is more likely to be thrown up on the shore.
Note that the water only flows up the beach for a short time,
then recedes before the next wave breaks, so that in practice
the sphere is likely to come to rest before being moved by
the next impact event. During a storm there may be
hundreds of wave impacts generating impulsive pressures
and, collectively, pushing bodies considerable distances.

TheLi, i � 1,2 represent the distance travelled by a sphere
on an inclined plane beach. We define an angleb that the
incoming wave makes with the line of steepest ascent up the
beach, and a coordinate systemi,j ,k where i points land-
ward, j along the shoreline andk vertically upward. Then
the direction in which the sphere moves on the plane of the
beach (assuming that it moves in short straight jumps) is

L i � Li�cosb cosai 1 sinbj 1 cosb sinak�; i � 1;2:

Thus, given the angle of incidence of waves on a beach, it is
possible to follow the process of what Palmer [31] calls
progression, where a boulder is moved up and along the
beach. A boulder will be pushed in the direction ofL i

until coming to rest after a distanceLi and will then be
dragged seaward, down the line of steepest descent by the
backwash, this latter motion generally being shorter, parti-
cularly for larger bodies.

6. Conclusions

It has been shown that when a wave breaks against a
plane impermeable surface, there are large pressure gradi-
ents acting within the fluid. The gradient,G, of the pressure
impulse,P� Rta

tb pdt; causes an impulsive force to act on a
body. If, for a wave of height 10 m, the body has radius
greater than about half a metre, this impulsive force will
overcome the frictional forces that normally hold such a
body in place. We find that for a given volume, tall thin
cylindrical objects on the sea bed receive large impulses
compared to low, wide ones and are therefore the shapes
of body that we expect to be moved the farthest. These
impulses, and the related velocity of a body that is free to
move, can be calculated using the added mass and the
volume of the body. The velocity of the body depends
only on its shape, and not its size.

This analysis extends also to truly three-dimensional
objects on the sea bed, and in particular we approximate a
blunt, amorphous boulder on a shingle beach by a sphere.
The impulsive force acting on a sphere on an inclined beach
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Fig. 9. The distances, in metres, moved up the beach,L1, and down the
beach,L2, by the sphere before it first comes to rest, as functions of its radius
a. The parameters used arem � 0.5,g� 9.8 m s22, rB=r � 3:0,a � 10.08,
G/r � 5 m s21 and CD � 0.2. The sphere is given an initial impulsive
velocity V � 2.25 m s21.



is compared with the frictional and drag forces which
normally act on a body to anchor it to the sea bed. The
fluid drag force assists a boulder in moving up the slope
of the beach, so that large boulders can be moved consider-
able distances. Moreover, larger boulders are moved farther
by the effects of wave impact, so that they will collect
towards the top or bottom of a beach, rather than in the
surf zone. This accords with observations of the motion of
large objects on shingle beaches.
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