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Abstract

A wave breaking against a sea wall causes high pressure gradients to act along the sea bed, pushing objects away from the wall. This
situation is modelled using pressure impulse theory to show that, for a large object near a sea wall, the impulsive force due to the wave will
move the object. This force can be found, given knowledge of the added mass and volume of an object. In particular, if the wall is thought of
as a plane, gently sloping beach, then this theory may explain how shingle beaches are graded according to the size of the shingle, with larger
boulders being moved farthest by the impact of a wave. In order to obtain estimates for the distances moved up, or down, the beach, a single

boulder is treated as a spherical body which is free to m@v&999 Elsevier Science Ltd. All rights reserved.
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1. Introduction Similar damage occurred at Mutsu—Ogawara Port in Japan
[2].

In this paper we consider the consequences of a water Laboratory data suggests that the highest wave impact
wave breaking violently on a beach or against a sea wall. pressures are associated with waves that trap only a small
The key characteristic of this kind of flow is that the fluid amount of air as they break against a wall [3]. The pressure
velocity everywhere undergoes a finite change during arises to its peakpy.as and falls back to near hydrostatic
short time interval. This velocity change causes an impul- pressure over a short timat. The value ofAt may be
sive fluid force on a rigid body in the fluid, which depends estimated in any of a number of ways, though its precise
on the body’s volume and shape and the degree to which itisvalue is relatively unimportant in the following analysis. A
free to move. We predict that this wave impact force may be range or statistical distribution of values might be appropri-
great enough to overcome the natural forces which normally ate, but here we takét to be about X 10 ?s. If the depth
anchor a body in place. It could help to explain how break- of water at the wall i3 = 10 m then the speed of the wave
waters are damaged by wave impact and how boulders ards u, = ./gH =~ 10 m s *. Corresponding peak pressures are
moved around during storms. Ppeak= 5 X 10* N m~2[3,4]. However, for apparently iden-

The high pressures which are generated when a large sedical incident wave conditions these values can vary mark-
wave enters shoaling water and breaks can cause breakedly [5], but Bagnold [6] found that, whilst the peak
waters to fail. This often happens because the wave forcespressure varied, the produt/2)p,eaAt remained fairly
on the breakwater caissons cause them to slide out of posi-constant.
tion. The largest caisson movements occur during storms, Consider a cubic caisson of side= 8 m and densitpg =
when the waves are higher, steeper and more frequent. At3x 10° kg m™3. Its wet weight i, = 1 x 10’ N. We take a
Sakata Port in Japan, during the winter of 1973/74, the coefficient of friction ofu = 1/2 between the caisson and
breakwater failed due to sliding of the caissons. Tanimoto the bed, and then the frictional force holding the caisson in
and Takahashi [1] record the sliding distances of 8 m high place isFr = 5 x 10° N. There are three ‘pressure’ forces
caissons due to the impact of large waves, showing acting on the side of the caisson, trying to move it:

movements of almost 4 m away from their initial position. « The hydrostatic pressure force, due to the depth of water

at the wall: Fyy ~ (1/2)pgh® = 25x 10° N, wherep is
E— the density of the water.
* Corresponding author. Present address: Department of Physics, Trinity o The fluid dragF exerted by the quuid flowing over the
College, Dublin 2, Ireland. . D
caisson, due to the passage of the waves. WeRgke
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x/H quotes observations of stones “weighing upwards of half-a-
0.0 0.5 1.0 ton [being] completely turned over”.
0.0 — L At the instant of impact, there is a distribution of peak

pressure throughout the fluid. Grilli et al. [12] inserted eight
pressure sensors on the bed of a laboratory tank, close to the
base of a vertical wall against which waves were made to
y/H-05 break. They found that large impact pressures were recorded
at a considerable distance from the wall and that these pres-
sures propagated very rapidly. Moreover, there were pres-
sure gradients along the bed, away from the wall with
magnitudes of up to aboup8, whereg is the acceleration
due to gravity. Mller [13] performed small-scale experi-
Fig. 1. Lines of constant pressure impulse for a wave impacting against the ments on waves breaking against a vertical wall and found
top half of the walx_: 0,y € [—0.5H, 0], with a uniform impact velocity. pressure gradients away from the wall of up to almgsy.8
Contour separation is.@lptoH. The impulsive pressure gradient causes an impulsive force
to act on a body on the sea bed, pushing it away from the
wall.

However, rather than using the peak pressure, we will
describe the problem in terms of the produBt=
(V2)ppeadt Which is found to remain constant for identical
wave impacts even though the peak pressure and duration of
impact may vary [6]. If the pressurp, just rises to its peak
value and then falls back, so that a plot of pressure versus
Then the impulsive pressure force exceeds all the others bytime looks like a delta-function, we can write
at least an order of magnitude and is the only one able to t,
overcome the frictional force and move the caisson. So in P(X,y,2) = J p(x Y, zt) dt (@h)
the region where waves are breaking, and during the brief b
time of impact, we expect this impulsive pressure force to be wheret, andt, are the times before and after impact ahid
the dominant mechanism for moving objects around. In the pressure impulse. Kt = t, — t, is small enough then
particular, it is likely to move armour units from their posi- we will show thatV?P = 0 in the fluid domain, with mixed
tion at the base of a breakwater. These can cause damage tboundary conditions.
the wall in one of two ways: either directly, by solid body Cooker and Peregrine [14] calculate the pressure impulse
impact, or inadvertently, since by their absence waves arein a fluid domain,D, whose shape resembles a sea wave at
able to break with more force against the wall. This is illu- its moment of impact against a vertical wall of heighD is
strated by the damage to the Sines breakwater in Portugalthe regionx = 0, —H =< y = 0, with the wall atx = 0 and
[7], which occurred in 1978. The breakwater failed due to the horizontal sea bed st= —H. The distribution ofP is
the movement and loss of the ‘dolos’ armour units—those shown in Fig. 1, in the case where the wave breaks against
units that broke free then proceeded to batter the wall the top half of the wall. The wave moves in the negative
further. Further observations of impulsive forces include direction before impact, with constant uniform speag,
blocks of stone of a hundred tons in weight having been The gradient of pressure impulse is normal to the contours
disturbed by heavy seas [8]. Gaillard [9, Section 8] gives drawn in Fig. 1. We see that there are gradients acting along
many instances of the destructive forces exerted by waves,the sea bed, trying to move objects away from the wall, and
including that of a 20 ton block being lifted vertically to  down the wall. These gradients are directly proportional to
land atop a pier of 12 feet in height, almost 5 feet above the finite change in flow velocity which occurs throughout
the level of high water. the fluid domain during the impact.

Our work also applies to the movement of large boulders ~ We estimate a pressure impulse gradiélong the bed
by wave impact. Stevenson [10] observed the “remarkable from Fig. 1: atx’H = 0.5 the pressure impulse gradient is
destructive effects at Whalsey Skerries” in Scotland, where G = 0.1pu,. This is about twice as large as the pressure
“blocks of 6 tons weight have been quarried or broken out of impulse gradients which were found experimentally by
their beds in situ... [bylaqueous action”. He also records the Miiller [13] (a pressure gradient op§ translates into pres-
passage of a rock, weighing seven and a half tons, acrossure impulse gradients of approximately G04) and could
73 feet of rugged ledges, at a height of 20 feet above the seatherefore be a reasonable estimate for storm waves.

This feat is remarkable, even if we assume that it occurred in ~ Cooker and Peregrine use their analysis [14] to supply a
many small successive motions over a long period of time. far-field boundary condition for the problem of finding the
These events also occur in smaller expanses of water, forimpulse on a body which is free to move and initially at
instance in the great lakes of America, where Stevenson [11]rest on the sea bed [15]. They consider bodies such as

S—~

-1.0

approximately constant flow speed (appropriate to the
Reynolds number). PuttinG, = 1/2 implies thatFp =
1x 10°N.

e The impulsive pressure forcE,, due to the rapid change
in  fluid  velocity. We will find that
F, ~ pugh®/At = 5x 10° N.
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hemispherical boulders and circular cylinders, this latter dimensionless variables,
being appropriate to parts of armour units near breakwaters. _ ,

We extend their work, by giving general formulae for the i, + UV W = —ﬂv’p/ — ﬂgk 3
impulse on, and velocity of, the body, allowing more shapes pUoL Uo
to be treated. whereS= Atug/L. Typically, if L ~ 10 m,u; ~ 10ms™*

We shall describe pressure impulse theory and then poseand At ~ 0.01 s thenS = 0.01 and the quantity scaling
a boundary-value-problem fét in the neighbourhood of & gravity is 0.001. So we seek a balance between the first
general two-dimensional body on the bed of the domin,  term and the pressure term in Eq. (3) by scaling pressure
IntegratingPn over the surface of the body (whemds the according topy = pugL/At, which is very large (1x
normal to the surface of the bOdy) allows the impulse onitto 107 N mfz)_ Since they are small Compared to unity, we
be found. In Section 3.1 the impulse on a fixed body is neglect the non-linear convective terms and the last term

expressed in terms of the conformal map used to generatgn Eq. (3). Now Eq. (2) becomes (in dimensional variables)
it. Using a Laurent expansion for the conformal map allows 1

an alternative formulation to be made in Section 3.2, and in o _ ~vp. (4)
Section 3.3 we modify the theory for a body which is free to 9t p

move. Section 3.4 shows that the impulse and velocity of @ |ntegrating Eq. (2) with respect to time over the short dura-
body on any solid surface, not necessarily horizontal, can betjgn of the impactAt = t, — t, gives

found. In Section 4 we explore in detail the impulse on

several rigid body shapes on the sea bed, including a rectany_ — y, = — lvp (5)
gular cylinder and an inclined plate. In Section 5 we treat the
case of a three-dimensional boulder moving across the
surface of a beach, which is subjected to gravity, buoyancy,
friction and fluid drag, as well as the impulsive fluid force P(X,y) = Jta (X, Y, t) dt (6)
due to a nearby wave impact. The boulder's shape is not ty

specific to the substance of the model equations, but foristhe pressure impulse. If the pressure risgsdgand then
simplicity we choose a spherical boulder. The model falls we have ’

shows that a larger boulder is pushed further up the beach

than a small boulder. A succession of wave impacts might
push the body along in a succession of short steps which
could sum to a considerable distance over the duration of a
storm.

where

2P
At
so that we can use the knowledge gained aPdotestimate
corresponding peak pressures. We assume that the fluid is
incompressible before impact and after impa¢ty, =0
and V-u, = 0, and suggest that fluid compressibility may
2. Pressure impulse theory be accommodated through modifying Eq. (7), by altering
At for instance.

Over the duration of the impact, we distinguish a velocity = Then the divergence of Eq. (5) shows tHatsatisfies
field before impactuy,, from a quite distinct velocity field  Laplace’s equation,
after impact,u,. Whilst u, and u, may vary in time, we V2P — 0 ®)
suppose that during the short period of time of impact, the -
acceleration of the fluidju/at, greatly exceeds its value at  Eq. (8) is independent of time, and we solve it in the fluid
all other times. This acceleration is associated with a large domain at the start of the impact. We can provide appro-
pressure gradient and has striking consequences for thepriate Neumann or Dirichlet boundary conditions to solve
equations of motion. We neglect viscosity and then Euler’s for P in one of four forms:
equations are

1 -
P = EppeaIAt or, alternatively Ppeak = )

e VP-n =0 on a fixed impermeable surface (with normal

ou 1 vector n) which is in contact with the fluid before and

o TWwVu=- ;Vp — ok & after impact. That is, fluid cannot pass through the
boundary.

whereu is the velocity,p the pressure ang the density of e 0P/on = puy-n where fluid impacts on a solid surface

the fluid, g is the acceleration due to gravity akds a unit with velocity u, and remains in contact with the surface

vector pointing vertically up. We non-dimensionalise the after impact (whence,-n= 0). This is a consequence of

variables with a time scalat, a length scald., a velocity Eqg. (5).

scaleup and a pressure scabg. The length scalé is asso- e P or VP specified in the far field.

ciated with the depth of water prior to the impact apds e P=0o0n afree surface. Since pressyrgs constant on a

pertinent to the speed of waves approaching the wall. free surface, we can defifeup to an arbitrary constant,

Then, after some manipulation, with primes denoting and without loss of generality this constant is zero. A
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P ~P-Gga
p =0 //
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Fig. 2. The boundary-value-problem for the pressure impRISehe free surface lies far off in the direction and the base of the wall is far off in the negative
x' direction.P satisfies Laplace’s equation and the far field condition (dotted line) i®thaP, — Gx . For a body at rest, the normal velocity is zero on th

and the sea beg,= —H.

consequence of this is that we can take any contour of condition Eq. (9). More generally’ could be a coordinate
constant pressure impulse to be a free surface for theindicating arc length along a solid surface afichormal to

flow.

As well as giving information on peak pressures, knowledge
of P will determine the velocity field after impact through
Eq. (5). Notice also that the curl of Eqg. (5) shows that the
vorticity is the same before and after impact.

We proceed by taking a field of pressure impulBe,

which has already been calculated, and finding the change

in P, brought about by the presence of a rigid ba8yat rest
on the bed of the fluid domaim). By consideringB much
smaller than the significant length scaldnit is reasonable
to suppose that the effect Bfon P, is confined to a region
nearB. For example, a semicircld, of radiusa, can be

the surface. (The far field condition might also be directly
proportional toy’ if B lay inside an impact zone. Approx-
imations of order higher than those in Eq. (9) can be calcu-
lated, but the term proportional to the square/dias no net
effect on the impulse for a left—right symmetric body.) The
boundary condition o significantly changes the pressure
impulse contours near the bed, usually attracting them

towardsB and thereby increasing the impulse on the body.

3. Mathematical formulation

GivenPy andG, we will find that the presence of a body,

placed on the bed of the rectangular domain described aboves ~5uses a distortion to the pressure impuReThe real

provideda < H. The centre oB is atx = X,y = —H, and
then 6P1/8x|xzx,y:,H = —G is evaluated. From now o1

axis of aw plane will be conformally mapped to a physical
sea bed in & plane. The map will generate a body in the

is treated as a constant for the purposes of the flow in thesqm of a simple geometric shape on a horizontal base with

neighbourhood ofB. Also constant isP|y_xy——n = Po.

an explicit transformation in the form= z(w), from either

These two conditions can be combined to give a condition e ypper half-plane or the exterior of the unit circle. Exam-

on the distorted pressure impulse field

P(X.y) ~ Py — Gx ©

which is to be satisfied in the far field of the model for flow
aroundB. Usually, Eq. (9) is achieved within a few radii of
B (notice how nearly parallel the contours in Fig. 1 are in a
region close to the sea bed arouti = 0.5), and so the
whole of the model ned lies in a region whose dimensions
are small compared withl. The pressure impulse neBr

satisfies the boundary-value-problem shown in Fig. 2. New

coordinatesx' = x — X,y = y — (—H) are introduced and
the bed boundary condition changesiton = 0 on both
the boundary oB and the remainder of the befd continues

to satisfy Laplace’s equation and the far field boundary

ples of such maps are given by Kober [16].

Consider an arbitrary bod with boundarydB in an
infinite fluid. We define a ‘complex pressure impulse’
(CPI), ®: C — C by ®(2 = P(x,y) +iQ(X,y), where i=
V=1, z=x+ iy, P is pressure impulse an@ is defined,
up to an arbitrary constant, by the Cauchy—Riemann
equations:

P 9Q P 9Q

ax oy’ ay  ax’

Since the lines of constaftare perpendicular to the lines of

constant pressure impulsg,js constant or@B (without loss

of generalityQ = 0).
The conformal

transformationz = z2(w), maps the
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complexw = u + iv plane to the complex plane contain- but in an upward direction. So we conclude that this vertical
ing the bodyB. The real axis in thew plane,v = 0, is impulse has no effect on the subsequent sliding motion of
mapped to the union of the sea bed on either sid®,0f the object.

y = 0, andoB. The pre-image 0bB is denotedB’, lying The second term of Eq. (15) is zero for left—right

along the realv-axis betweenu = u; andu = u,. Pressure  symmetric bodies. By integrating the third term in Eq.
impulse contours in thev plane (lines of constant) are (15) we can find the total impulse dh Now uy, U,, z(uy)
mapped to pressure impulse contours aroBnf the map and z(u,) are real, so this term is the only one that could

is such thatz ~ ow as|Z — oo, for some constant > 0, possibly give a real component in Eq. (15), contributing to a
then in thew plane the CPI is®(w) = Py — Gow and horizontal component of impulse. If the body is symmetric
®(2) = Py — Gow(2) ~ Py — Gzas|Zg — . then u; = —u, and we expect the integral to be purely

imaginary. Thus for left—right symmetric bodies, Eq. (15)
3.1. The impulse on B becomes

U,

Let a small segment afB be denoted sland the angle I — —iGo J 2
between the tangent ®and the positive real axis k. The X

impulse onB has horizontal and vertical components given (16)
by I = (1}, Ty) where

|‘X+i|‘y=JB P2 singds —i j
d

. Z(u) du and ly = —2z(uy)Py.

If the conformal map is given in the fornefw = f(w) we
P2 cos¢pds (10 perform the integration in Eq. (14) and take real and imagin-
B ary parts to find the horizontal and vertical components of
impulse respectively.
= —i J _ (P +iQ)(cosp + ising) ds (11 If the body is free to move then we can also find its initial
9B velocity. We next derive some methods to allow straightfor-
ward calculation of the impulse and velocity.

d

=-i| ®dz 12

* . 3.2. Laurent expansion
since & = €%ds. These formulae hold wheiB is a closed
curve. IfB, and thereforéB, has the real axis as its line of An easier way of calculating the horizontal impulse is to
symmetry then the bodB in which we are interested is the ~Use a Laurent series to represent the conformal map, as
top half of B, projecting above the real axigP/dy = 0 on follows. If 9B is a simple close_d curve surrounded by
the real axis, so the horizontal impuldg, on the bodyB fluid, with the pointz = 0 insidedB and [ ,5 zdz= 0, and

projecting into the upper half-plane is half that BnWe if @ can be expressed as a Laurent series, i.e.
write this impulse orB asl = (I, l). In which case we can 0
perform the integration along a path in theplane so that =G Z % a eC a7
Eqg. (12) becomes k=—1
Lo dz then by Cauchy's residue theorem, with the contour
Iy +ily = —i LB/ CD(W)M dw 13 traversed in a clockwise manner, Eq. (12) gives

U 4z T, = —i-2m R(—Gay) = —2nG R(ay) (18)
=i | o Gow gy du (14

U whereR denotes real part. The expansion of the conformal

map,z(w), as a Laurent series for large givesa;. Thus, if

Z(wW) = ow + b, by b 19
7w W

we substitutew = Z/o, and thena; = ob; and Eg. (18)

The first term of Eq. (15) is a vertical (downward) impulse becomes

equal toPy, the local pressure impulse, multiplied by the _

length of the body along theaxis. We assume that a body i = —2nG R(oby). (20

which has a flat base and is free to move will have a thin For a conformal map from the exterior of the unit circle

layer of fluid, of constant width, beneath it [15] (otherwise (|9 = 1 in a complexS plane) to the exterior of the body

we are led into a consideration of frictional forces which we B (in the z plane), we can write

make no attempt to model, such as the stickiness of mud c c

etc., and a requirement that we modify the normal reaction zS) = 04,S+ ¢ + §1 + é + .- (21

force of the bed o8, and hence the frictional force). Then

the impulse generated by this fluid is aBgmultiplied (at with o; > 0. The composition of a map from the unit circle

least in two-dimensional analysis) by the length of the base, to a flat plane with a map from the flat planeBofrom Eq.

= —iPg(Z(uy) — Z(uyp)) + iIGo(Uyz(Uy) — Uy Z(Uy))

—iGo sz Z(u) du. (15
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(19), is 3.3. A moving body

o+b If B is free to move, then we assume that the pressure

impulse gradientG, will accelerate it from rest to a hori-
zontal velocity,V. The boundary condition on the moving
body is nowdP/on = —pVi-n, with the same far field condi-
tion as beforeP ~ Py, — Gx, and the same impermeability
condition on the sea rooraP/ay|y:0 =0. The pressure
c, >] impulse which satisfies these conditionsPFg= P — pVx

+ o

Z(W(S) = Z(S+ é) =0S+ by +
which we compare with Eq. (21) to show that= o4, by =

Co andb; = ¢; — o. Then the horizontal impulse, given by
Eq. (20), is

(22 where P is the same a® for a fixed body but with the
effective pressure impulse gradient modified fr@nto

Pdya [17], in his calculations of the two-dimensional G — pV. Then, since the horizontal impulse on a fixed

motion of a solid through a fluid which is at rest at infinity, body isl, = Gk, the horizontal impulse on the same body,

constructs the cross-section of a cylindrical b@&lysing a but which is free to move, is the integral & over its

conformal map, as in Eg. (21). The body, of mass per unit surface:

lengthm, moves as if its mass per unit length wene+ M,, i

whereM, is the added mass per unit length of the body for hvx = (G = pV)k + pV7~. 28

motion parallel to the-axis. Then he derives the following  We can then use any of Egs. (24)—(27) to expresa

T, = 2wGa§[1 — R(
g1

formula for M,: whichever way is most natural.
¥ Equating the impulse on the moving boBy of density
X gy = zqwg[l — R(ﬂ)] pe, With the change in momentumg?'V, gives
p g1
Gk

where 7~ is the volume per unit length of the body (i.e. V= pe? +pk— 1)’ (29)

cross-sectional area for a two-dimensional body) and i ) . .
the density of the fluid. This is analogous to the result in With Eq. (27), this shows thatis independent of the size of

Newman [18, Section 4.14] connecting added mass angB- Note that a more dense body moves less quickly. If the
dipole moment. Thus body moves, then the impulse on it is

T = G(TX + /1/). 23 VX e+ plk— 1)

) ) ) o which is less than the impulse on a fixed body, sikce ¥~
For the bodyB in which we are interested, which is the py Eq. (27). (IfA, = O then the impulse is zero.)

(30

upper half of a bod which has its line of symmetry along The horizontal force pushing a bodg, which is free to
the real axis, the impulse is half that &hand the results ~ moye, away from the wall when the wave breaks is the
Egs. (20), (22) and (23) beconie= Gk where impulsive forceF, = Iy,/At. In the opposite direction, fric-

tion, Fg, and the fluid drag force;p, resist the motion. We

write Fg = u(pg — p)7 0, whereu is the coefficient of fric-

tion betweerB and the bed, anBlp = (1/2)pCpU3.«Z, where

K = "Wi[l - R(&)] (25) </ is the cross-sectional area of the body in the direction of
o1 motion. Cp is a drag coefficient at approximately constant

flow speed (appropriate to the body and Reynolds number)

k= —m R(aby) (24

K= My oy 26) which Batchelor [19, Section 5.11] discusses for a circular
o ) cylinder and a sphere. For flows with Reynolds numbér 10
he givesCp = 0.5 for a circular cylinder an@ = 0.2 for a
HereMx is the added mass &ffor motion in thex-direction. Sphere_ Then, Comparing these forces actinB shows that

If the area oB is non-zero (i.eB is not a line segment) then  for B to move we must have

the added mass is proportional to the displaced mass of 1

water. We define an added mass coefficient, which is X > pg — P)Vg + = pCp/U2. (31
dependent upon the shape®by M, = A,p7” and so At 2

K= 7"\ + 1) @n Using Egs. (27) and (30) gives the condition

(32

_ a (/2)pCoUsAt(ps + py)
Values of A, are tabulated for many shapes, but in those ™ > Gpa(h + 1) — 1(ps — p)GAL(ps + pAY)
cases where they are not, we can calculgtéy finding k § Pelix #pe — PIGAHPB T PAX
and 7. So those shapes which receive the greatest impulsefor B to move. Since/"/.«/ is proportional to the length scale
per unit area are those with the largest added mass coeffi-of the body, this gives a lower bound for the critical length
cients. scale,a., at which a body will move. So if a body of given
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—a+1 a+ib
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R ey

-0 —L A

P R{w} ——— L L. —‘“—oo)%{z}

Fig. 3. lllustrating the construction of the conformal map for a rectangle on the sea bed. The mapsenestco, L +— *taand*=\A+— *a+ib.

shape is large enough, it will move due to a nearby wave 4.1. Semicircular cylinder

impact.
We find the impulse on a semicircular cylinder aligned
with its axis parallel to the wall. A semicircle of radiaon
3.4. A body protruding from the wall the sea bed has added mass coefficignt 1 and area” =
(1/2)ywa® so that Eq. (27) predicts
Since the normal derivative of the pressure impulse is I, = nG&. (33)

zero on the wall, below the impact zone, this theory can
also be used to find the effect of a wave impact on an object This corrects the fallacious solution of Cooker and Pere-
protruding from the wall. Considering again the contours of grine [15, Eq. (4.13)]. Sinck = wa?, if the cylinder is

pressure impulse in Fig. 1 we see that a small body attachedfree to move then its initial speed will be given by Eq. (29):
to the wall at a position (0-yp), wherey, > 0.5H, is

subjected to a pressure impulse gradient down the wall. V = 26 . (39

For a body whose size is much less than the height of the pe TP

wall, we can approximate the gradient to be almost uniform, Note that this velocity is independent of the radiajsof the

so that we are able to write the far field conditionRas- cylinder.

Py — GX, wherex’ is now a coordinate pointing down the  The cross-sectional area (per unit length) in the direction
wall. Now G = —9P1/9X'[y_qy—y, and Py = Pyly—qy—y,. of motion is.«Z = a. We takeAt = 0.04 s,u = 0.5,p5 = 3p,

The gradientG, is evidently large, since the contours are C, = 0.5 and, for a water depth at the wall ldf= 10 m,
so close together, and will act in such a way as to attempt toy, = . /gH = 9.91 m s *. Then our estimate of the pressure
push the body towards the sea bed. We can again use ampulse gradient i$s = 991 N s m 3. If its density ispg =

conformal map to represent the bodg, and, since the 3, = 3x 10° kg m~° then a semicircular cylinder will have
boundary conditions are the same as for the problem consid-an initial speed o¥/ = 0.496 m s*. For the impulsive force

ered above, all the results transfer to this situation. Then theon the semicircle to overcome the frictional and drag forces

impulse on this body protrud}ng from the wall has compo- and move it, Eq. (32) implies that the critical valueaofor
nentsl, downwards (in thex' direction) andl, pointing the body to move is, = 0.575m. Thus, a semicircular

perpendicularly away from the wall. cylinder of radiusa > a. is likely to be moved by the impact
We are also able to model the effect of the wave impact of this storm wave.

on a body that pierces the free surface at the instant of

impact. In this region the pressure impulse gradient is 4.2 Circular cylinder

perpendicular to the free surface, and will give an impulsive

lift to the body. With the condition tha® = 0 on the free For a circular cylinder (or log) on the bed, lying parallel

surface we can adapt the results for some of the bodies onto the wall, the added mass coefficientis= (1/3)w? — 1

the sea bed using arguments based on symmetry. Notg20]. Then the horizontal impulse is

however, that the relevant value @fwill change (as calcu- 1

lated from Fig. 1) and that we shall hafg = 0. l, = §w3Ga2. (35)
The vertical impulse on the cylinder is zero, by Eq. (16), not
the incorrect value reported by Cooker and Peregrine [15].

4. Results In order to find out if the impulsive force on the circle is
likely to overcome the frictional and drag forces and move

We now give some examples of shapes for which the it, we apply Eq. (32). The area of the circle’is = wa? and

impulse is calculable, even if the distorted pressure impulsethe cross-sectional area (per unit length) in the direction of

field is not. This allows Eq. (32) to be applied in order to motion is.«Z = 2a. Then, with the same parameters as in

decide how large a body on the sea floor must be for the Section 4.1, we find that for the body to mogg= 0.5 m.

impulsive forces to dominate and move the body. (We shall Thus, a circular cylinder of radiua > a, is likely to be

also correct some errors of Cooker and Peregrine [15]). moved by the impact of a storm wave.
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Fig. 4. A graph of the aspect ratio of the rectangle, against\’. Note that
as\’ — 0, b/a— oo, corresponding to the vertical plate. Maple was used to
evaluate Eq. (37) to provide the data for these curves.

4.3. Rectangular cylinder

Most structures near sea walls are made of rectangular
blocks. To construct a rectangle on the sea floor, we apply 5\’ = L(E(\) — (1 — AHK (')

the Schwarz—Christoffel mapping theorem to give the
expression

w22
Vw12

wherea € [0, L] is a parameter governing the aspect ratio of
the rectangle, which is at rest on the real axis with a vertical
line of symmetry through the origin, as in Fig. 3. The map
transforms the real line betwean= —L andL to the sides
and top of a rectangle of widtha2and height and trans-
forms the remainder of the real-axis to the realz-axis
outside the rectangle. Note that=0a,b = L, so that Eq.
(36) can be used for any rectangle from a long flat plate,
through a square, to a tall thin spike.
We let A’ = ML then the half-width of this rectangle is

dz

aw (36)

0 .
001020304 0/\[5 060.70.809 1

Fig. 5. A graph of the lengths of the sides of the rectangfle,andb/L,

curves.

. ’ . 1
against\'. Maple was used to evaluate Eq. (37) to provide the data for these M, = p( Eq_l_(l_z _ )\2) _ 2ab)
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given by

' dz v W
a:Jod_WdW:LJo 1—w? dw
_ T oY g2 ™oy
—L{E(z,)\) a-a )F(Z,)\)}

(using Gradshteyn and Ryzhik [21, Eq. (3.169.10)]) where
F(¢,k) and K¢, k) are Incomplete Legendre Elliptic inte-
grals of the first and second kinds respectively. The height is

1 dz 1 w? — A2
b_JAdTVdW_LJA/ 1—w? dw

= L{E(g,\/l - )«2) - /\’ZF(g,\/l - /\’2)}
(using Gradshteyn and Ryzhik [21, Eq. (3.169.12)]). Writ-
ing these in terms of Complete Elliptic integrals of the first
and second kinds (K,E) and their associated Complete Ellip-
tic integrals (K,E’) (see Byrd and Friedman [22]) gives

and
(37
b(A") = L(E'(\) — A?K(\))).

It is not possible to relata explicitly to the dimensions of
the rectangle. In practice one chooses an aspect ratio for the
rectangleb/a, from which a value o’ can be found from
Fig. 4. Then Fig. 5 enablea/L and b/L to be estimated,
giving the size of the rectangle.

It is not possible to use Eq. (24) to find the horizontal
impulse on this rectangle since we do not have an explicit
conformal map, but the derivative of the conformal map.
Neither do we know the added mass of the rectangle, so Eq.
(26) cannot be applied. So, rather than integrating directly
according to Eqg. (14), we differentiate Eq. (19):

9 _ b 2n

w7 W W

then Eq. (24) implies

I, = —wG R(oby) (38)

whereb; is now the coefficient of— 1/w? in the expansion
of dz/dw for largew. For the rectangle, ag — o Eg. (36)

becomes
iz _ W _ (a1
a1 (w)) (- ()

1+ L2, 1

1+ o5 )\)-I—O(W4).

Thenl, = (3)mG(L® — A% and Eg. (26) predicts that the
added mass of the rectangle for horizontal motion is

(39
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in agreement with the result of Barringer [23]. This predicts  The total impulse, given by Eq. (15), is
the special cases of the vertical plate of heigit = 0) with a

horizontal impulse (1/2GL? and the identity transforma- Iy + il, = —iGo J Z(u) du

tion from the flat sea bed\(= L) which receives zero aAB— /B

horizontal impulse. . 8 B 1-8
For a rectangle which is twice as wide as it is high, we = —iGao J PG (1 Tz 5 U) du

have b/a = 1 and then \'=1+2. Fig. 5 gives B-uE

a=b= 0423, so we putL = 1/0.423= 2.361 to give a = —iGaa(—1)?

rectangle of width 2 and unit height. For this rectangle the

horizontal impulse i, = 4.378G. Thus for a rectangle of x( B )lﬁ J'l/B XB(E _ X)lﬁ dx

height ¢, width 2c and area & we have 1-8 0 B

|, = 4.378G¢% = 2.189G(2¢?). This is much larger than

the horizontal impulse of, = 1.57Gc on a vertical plate _ iGao (—1)° ( B )l_ﬁr(z — BT+ B

of the same height, showing the effect of increasing width 2 g \1-8

and area. )
A square, withb/a= 2, hasA = 0.588. by Fig. 4 and then - _ "‘TGaZ‘T( 1-8 )B (G

b = 2a = 0.570. If L = 3.509 then the square has side 2 B sin(mB)

length 2 and, = 12.6535. So for a square of side length 2 8

the impulse i3, = 3.163G¢2. So the first rectangle, which is _ TG "(1__3) (1— i cot(mB))

wide and low, receives a smaller horizontal impulse per unit 2 B

cross-sectional area. Thus for a given cross-sectional area, nG& (1 — B\

the tallest rectangles receive the highest horizontal = T(T> (1 — i cot(wP))

impulses, and rectangles with larger areas receive higher

horizontal impulses. using Abramowitz and Stegun [25, Eqg. (6.1.31)] and

Gradshteyn and Ryzhik [21, Eq. (3.191)]. Thep=
4.4. Inclined plate —I, cot(wB) and for this asymmetric body the vertical
component of impulse is non-zero. The impulse acts to
| : o _ push the plate either away from or towards the bed, depend-
vertical component of impulse which is proportional to the i, 5 \yhether it leans to the left or the right respectively.

gressure imzulse grgditle_rﬁ,dFolr instar;]ce, the impulse can £ iher calculation suggests that all asymmetric bodies on

e c;o;npr_ute on an |ncf|Ine plate ,(W l0se cross—s?ctlon 'S 8the sea bed will experience a component of impulsive lift
straightline segment) of lengt projecting at an angle € perpendicular to the direction of the pressure impulse gradi-
(0, ) from the sea bed. The conformal map (adapted from ent.Gi

Jeffrey [24]) is

If a body is not left—right symmetric, then Eq. (15) gives a

2W) = (W — a)B(a n 1.3WB )1_B 5. Sphere—a boulder on a beach
The case of a hemisphere on the sea bed is treated by
with 8 = o/w. The plate lies between= 0 andz = (- 1)’a Cooker and Peregrine [15]. If it has radmiand is fixed then
(taking the principle value) to which it is mapped from the = the impulse on it i$, = wGa’. SinceA, = 1/2 for a sphere,
real intervalla(8 — 1)/, al in thew plane. We have ~ ow Eq. (27) correctly predicts this value. So the added mass
as |4 — oo, where o = (B/(1 — B))* P. Rearranging the  method of finding the horizontal impulse is valid for truly
conformal map for largev gives three-dimensional shapes too [26]. So now, for a sphere of
a\B al— B\ B radiusa on the sea bed, the added mass coefficient, is
2w) = aw(l - _) (1 T _) 0.621 [27]. Thenl, = 2.161nGa’. If the sphere is free to
w pw move then its initial speed will be given by Eq. (29):
as(l-2B) ao(1— P . _ 1621G
oW = 2pu oW 6620+ o 41

If we think of the sphere as a boulder on a plane, gently
sloping, beach, then this work may help to explain the
aG&d? (1 — B wGa /1 — B\ 1 sudden movement of bodies away from a wave impact on
( B ) -7 ( B ) (40 a shingle beach.

Shingle beaches may not constitute a large part of the
So the horizontal impulse is the same whether the plate coastal zone on a world-wide scale, but in Britain they are
leans to the right or to the left at a particular angle to the bed. particularly prevalent. During storms, shingle is often

Applying Eq. (24) gives the horizontal impulse

|
X 2
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is some distance away from where the impact occurs. Our
aim is to follow the motion of one boulder, of densjby,
which is free to move. We assume that the boulder is sphe-
rical so its cross-sectional areads= wa® and its volume is
¥ = (4/3)wa’. The beach is at an angteto the horizontal
and we assume thag > p, so that the sphere rests initially
on the beach surface, immersed in fluid. (We do not take
Fig. 6. The wave breaks close to the beach, causing a pressure impulsé.nto account the possibility of the sphere leaving the beach
gradient to act up/down the beach above/below the impact, affecting the Surface throughout its motion, although this is possible for
sphere in Case A/B respectively. smaller bodies and larger impact pressures—compare with
mechanisms for shingle beach formation and sorting in

washed onshore so that beaches are steeper in winter. In th€ornish [33, Sections 4 and 5]). This surrounding fluid
summer the generally smaller waves draw shingle away moves up the beach at spegg due to the wave approach-
from the beach to offshore bars. Wave action on beachesing the shore before impact, but will experience a change in
also tends to grade beach material, pushing larger particlesvelocity due to the impact of the wave. We expagto be
farther up the beach (landward). Further, coarser beachabout 10 m s
material gives steeper slopes of beach. When the beach The complicated forces due to neighbouring boulders are
material is a mixture of pebbles of different sizes, large modelled by a coefficient of frictiony, between the sphere
particles move over the fine material and are thrown up on and the beach. If all the boulders on a beach were the same
the shore [28]. Steers [29, p.14] gives data for pebble move- size, they would all be moved at similar velocities, so we
ment in moderate weather conditions on the north Norfolk assume that one boulder is larger than the average shingle
coast. This shows daily pebble displacements of up to size and that it projects above the level of the beach. There-
72 yards, although the size of the pebbles is not specified. fore . is not prohibitively large. These forces on the sphere

The pressure impulse field after a wave impacts on a act at its centre of mass; we ignore any overturning
shingle beach is only slightly modified, by the presence of moments and any rolling of the sphere down the beach.
the shingle, from that for a flat sloping wall, in the same way Thus our attention is restricted to the translational motion,
thatP is distorted only in a small localised region around a as in the discussion in Section 3.1. The wet weight of the
body on the sea bed. Typical values of beach slope are 6—-boulder isW = (pg — p)?"g and the frictional force i =
10° [30,31]. Okamura [32] shows that the largest impulses w(pg — p)? gcosy, whereg is the acceleration due to grav-
occur when a wall is nearly vertical, but even for a wall at a ity. The drag force from the fluid flowing at speeglover a
very shallow angle we suggest that a breaking wave will still sphere which moves at spe¥dis Fp = (1/2)p.7 Cp(Vy, —
generate a large enough impulse to move a boulder on aV)? whereGC; is a drag coefficient. The directions of these
beach. This is illustrated schematically in Fig. 6. The pres- forces are shown in Fig. 7. As before, we téke= 0.2 for a
sure impulse gradient points up the beach above the wavesphere in water moving at high Reynolds number.
impact and points down the beach below. Each boulder After the impact the sphere moves with velocityaral-
responds to the local applied pressure gradient-if it is free lel to the beach, given by Eq. (41). The velocity component
to move it acquires some initial speed from the fluid impulse of the water parallel to the beach after impact,jswhich
and is eventually brought to rest by friction with neighbour- differs from uy by an amount equal t&/p. This change in
ing bodies, gravity and fluid resistance. In this way a body is fluid velocity during impact is only about twice the initial
displaced a short distance by each wave impact. A succes-speed of the sphere but we would expect the sphere to be
sion of impacts in one place can lead to the movement by rapidly brought to rest by the frictional forces.
many small steps of beach material both up and down the Two cases are treated, which are illustrated in Fig. 7.
beach away from the site of impact.

To avoid the problem of the wave impact being changed e Case A: The wave breaks below the sphere, which is
by the presence of the sphere on the shore, we assume that it initially pushed up the slope by the impact. The fluid

Case A Case B

Ve Fy
/ T

Fig. 7. The geometry for Cases A and B. In Case A the fluid flows up the beach, which is at an amghe horizontal, assisting the progress of the sphere, of
weightW = g(pg — p)7”, which moves at initial velocity. In Case B the initial direction of motion of the sphere is down the beach. Friction opposes the
motion in both cases, and the fluid drag acts up the beach.
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Fig. 8. The distances, in metres, moved up the belaghand down the
beach,L,, by the sphere before it first comes to rest as functions of the
change in fluid velocity due to the wave impa@tp. The parameters used
areu =0.5,a=0.2m,g=9.8ms? pg/p =3.0,a = 10.00 andCp = 0.2.
This givesK = 0.353,c; = 2.11 andc_ = 1.44. The sphere is given an
initial impulsive velocity ofV = 0.45G/p. The spherical boulder can move
about 5 m up the beach or 3 m down the beach.

which moved past the sphere at spegis accelerated to
move up the beach at spegg = uy + G/p, helping to
continue the upslope motion of the sphere by fluid drag.
Friction and the weight of the sphere oppose the motion.
Case B: The wave impacts farther up the beach than the
sphere and the sphere is initially pushed down the slope
by the wave impact. The water flows up the slope at
speedv,, = Uy — G/p, retarding the motion of the sphere
by drag. In this case the weight of the boulder assists its
motion down the slope.

Other combinations of the direction of the initial velocity
and the water velocity can be modelled, but are almost

equivalent, mathematically, to these two cases. The sphere’s?> =g

speed at time is denoted byv,(t), wherei = 1,2 denotes
case A or B. Similarly, the distance that it moves before first
coming to rest at tim¢ > 0 (i.e.V,(t) = 0) is L.

5.1. Case A

The breaking wave impacts to seaward of the sphere so
that the impulse pushes it up the slope, with initial speed
Vi =V, and water flows over it, up the beach, with speed,
Vi = Up + G/p. Thus the water's motion aids the sphere’s
motion up the beach. This is modelled by the ODE

av

K2(v, — Vp)? — 2 = —1 (42)
dt

where

Kz_}P&fCD _§PCD and

2 pg?7 8 pga

p

¢t = g(l — )(Mcos;z + sina) > 0.
PB

The first term on the left-hand side of Eq. (42) represents the

123
drag forces and the second the frictional forces. Defining
v+ =Cy T Ky — V) and B =c; £ Ky,
gives the solution to Eq. (42):

_g %t

_ C+| ¥ Y+
Vi(t) = v, + ?[ 7—9_2"*—Kt+?’+ ] 43
The sphere comes to rest after a time
1 Y+B-
t = lo 44
1= 2Ke, g v B, (44
having travelled a distance up the beach of
Vo |veBo|, 1 ‘B+B—
= lo —lo ) (45)
SR T BT G PR
5.2. Case B

In this case the movement of the water retards the motion
of the sphere. The wave has broken after passing landward
of the sphere, so that the impulse acts in the seaward direc-
tion, whilst water is still passing over it up the beach with
velocity v, = Uy — G/p. We solve

dv,

—KA vy + V)2 =% = =2
My +V2) qt

(46)

subject toV,(t = 0) = V and where
i.e. u > tan(a) so that the sphere is held at rest by friction

when there are no impulsive forceg,(= up). K is as for
Case A. We redefine

1- P

)(Mcos:x — sina) >0
P

v+ =1C_ £ K(vy + V) and B+ =ic_ £ Ky,

and then the sphere’s velocity down the beach is given by

r{—c_ Kt + tan‘l<w)]
c_

Cc_
Vo(t) = —v, + —ta
2() w K

—2ic_Kt
C_ = —
K y_€ ic Kt 4 Vi
(47
and it comes to rest after a time
+
t, = 1 [tan‘l(Lv‘” V)) - tan‘l(—KV"")]
Kc_ Cc_ Cc_
i Y+B- )
=——Io 48
2Kc_ g( v-B+ “9
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T T T T T T T beach. For Case A, increasipg or u both act to decrease
= g L,. In contrast, increasingg or decreasing: will increase
_ 4 L,.
B L — i Fig. 9 shows that as the radius of the spharéncreases,
Ly - the distance moved either up or down the beach increases.

Again, a boulder will move farther up than down the beach.
This may explain the observation that larger boulders
B 1 collect at the top of the beach or offshore on bars. Also,
B 1 boulders will move farther up the beach than down, so
= . that a boulder is more likely to be thrown up on the shore.
scliococos pooooo 1 I R I T Note that the water only flows up the beach for a short time,
2y 02 03 035 04 then recedes before the next wave breaks, so that in practice
the sphere is likely to come to rest before being moved by
Fig. 9. The distances, in metres, moved up the beaghand down the the next impact event. During a storm there may be
beachl,, by the sphere before it first comes to rest, as functions of its radius hundreds of wave impacts generating impulsive pressures

a. The parameters used gie= 0.5,g= 9.8 m s 2, pg/p = 3.0, a = 10.0, . . . . .
Glp = 5ms ' andCy — 0.2. The sphere is given an initial impulsive and, collectively, pushing bodies considerable distances.
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velocity V= 2.25 m s, Thel,, i = 1,2 represent the distance travelled by a sphere
on an inclined plane beach. We define an arggjléhat the
having moved a distance down the beach of incoming wave makes with the line of steepest ascent up the
beach, and a coordinate systejnk wherei points land-
1 COS( tan‘l(KvW/c_)) ward,j along the shoreline ankl vertically upward. Then
L, = Flog cog tan (K (v, + V)/c_)) ~ Wl the direction in which the sphere moves on the plane of the
beach (assuming that it moves in short straight jumps) is
_ 1, 2+ KAvy + V)2 iy, o (ym, ) L; = Li(cosB cosai + sinBj + cosBsinak), i=12
- 2K?2 2 + KAZ 2Kc_ v- B+

Thus, given the angle of incidence of waves on a beach, it is
_ o w Iog< Y+B- ) _ ilog( B+.37) possible to follow the process of what Palmer [31] calls
2Kc_ v_ B4+ 2K?2 Yey_ ) progression, where a boulder is moved up and along the
(49) beach. A boulder will be pushed in the direction lof
) ) until coming to rest after a distandg and will then be
Note t_h_at, despite the presence of the complex number i, thedragged seaward, down the line of steepest descent by the
quantitiesV,, t; andL, are all real. backwash, this latter motion generally being shorter, parti-
cularly for larger bodies.

5.3. Results
The form of the solutions fov;, t; andL; are similar for = 6. Conclusions
1,2. Fig. 8 shows the distance that the sphere moves for each
of the two cased,; andL,, as a function ofG/p, the change It has been shown that when a wave breaks against a

in velocity of the water flowing over the sphere due to the plane impermeable surface, there are large pressure gradi-
wave impact. The sphere of radias= 0.2 m is set into ents acting within the fluid. The gradie@®, of the pressure
motion by the wave impact. It has denspiy = 3p so that impulse,P = j{g pdt, causes an impulsive force to act on a
its initial velocity is V = 0.45G/p. In Case A the sphere body. If, for a wave of height 10 m, the body has radius
moves a large distance even for small changes in watergreater than about half a metre, this impulsive force will
velocity, showing how the fluid drag assists its progress. overcome the frictional forces that normally hold such a
As G/p increases the initial velocity of the sphere is a higher body in place. We find that for a given volume, tall thin
fraction of the fluid velocity, so that this drag effect cylindrical objects on the sea bed receive large impulses
decreases and the gradient of the graph decreases. For eompared to low, wide ones and are therefore the shapes
change in fluid speed o6/p = 10ms?, the boulder of body that we expect to be moved the farthest. These
moves almost 5 m up the beach. This is associated with aimpulses, and the related velocity of a body that is free to
value of the impulsive pressure gradient @ = move, can be calculated using the added mass and the
10* N s m 3, which is over ten times larger than the gradi- volume of the body. The velocity of the body depends
ents along the sea floor hypothesised earlier. In Case B theonly on its shape, and not its size.

boulder moves only short distances for changes in water This analysis extends also to truly three-dimensional
velocity of up to 5 m s?, due to the high fluid drag up the  objects on the sea bed, and in particular we approximate a
beach. However, &/p = 10 m s * the fluid is brought to blunt, amorphous boulder on a shingle beach by a sphere.
rest around the sphere and it travels about 3 m down theThe impulsive force acting on a sphere on an inclined beach
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is compared with the frictional and drag forces which [11] Stevenson T. Account of experiments upon the force of the waves of
normally act on a body to anchor it to the sea bed. The the Atlantic and German Oceans. Trans Roy Soc Edinburgh

. . . . 1849;16:23-32.
fluid drag force assists a boulder in moving up the slope [12] Grilli ST, Losada MA, Martin F. Wave impact forces on mixed

of the beach, so that large boulders can be moved consider- ~ yeak-waters. In: Proceedings of the 23rd International Conference
able distances. Moreover, larger boulders are moved farther  on Coastal Engineering, ASCE Venice, Italy, 1992. pp. 1161
by the effects of wave impact, so that they will collect 74.

towards the top or bottom of a beach, rather than in the [13] Midller G. Wave impact pressures on a vertical wall and their effect on
surf zone. This accords with observations of the motion of sea bed pressures. In: Proceedings of the XXVI IAHR Congress, vol.

, , 3, 1995. pp. 275-80.
large objects on shingle beaches. [14] Cooker MJ, Peregrine DH. Pressure-impulse theory for liquid impact

problems. J Fluid Mech 1995;297:193-214.
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