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Abstract

We survey simulations of two-dimensional flowing foam inspired by recent illuminating experiments. We also de-
scribe the viscous froth model, an effective tool for such simulations, which accurately represents the detailed structure
of the foam and includes a linear drag force.
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1. Introduction

Why study the rheology of foams? The motivations are widespread and diverse (Weaire and Hutzler 1999). Foams
are common in oil extraction and industrial cleaning. Closer to home, an understanding of flowing foams helps to
extinguish fires more efficiently and to generate the perfect pint of beer. At low shear-rates a foam behaves as an
elastic solid, while at high shear-rates it yields like a liquid, generating a rich range of behaviours. Foams are non-
Newtonian, but have a specific structure which allows analysis of their non-Newtonian behaviour. Foams can thus
serve as a prototype for other non-Newtonian fluids and even for granular materials.

In addition to rheology, we seek to understand the drainage (usually gravitational) of liquid through the foam
structure. High flow-rate drainage can cause the structure itself to flow; these convective instabilities (Weaire et al
2003) further motivate our interest in rheology.

Is the study of two-dimensional (2D) foams, or froths, useful? As in many fields, the restriction to 2D allows easier
visualization of both experiment and simulation, and often simplifies the theory, allowing us to isolate and study new
phenomena (though we must check for spurious 2D effects).

To develop tools for 2D simulations, we first consider the foam’s liquid fraction Φl , i.e. its fractional liquid content
by volume. The dry limit of low liquid fraction, Φl

� 0, is a natural idealization, in which soap films are infinitesimally
thin arcs of circles. The Laplace equation then determines the curvature κ of a film from the pressure difference ∆p
between neighbouring bubbles:

∆p � γκ � (1)

where γ is the surface tension of the films. At equilibrium, these films meet in three-fold vertices at 120
�
.

Minimization of film or line-length completely determines a 2D foam’s equilibrium structure, since its energy is
proportional to the product of surface tension and film length. A progressively strained foam’s energy increases until
two three-fold vertices approach one another and undergo a T1 neighbour exchange as in figure 1. The T1 reduces the
pattern energy: the films connecting two three-fold vertices are shorter than those for a four-fold vertex, which rapidly
decays. The location and statistics of T1s thus determine the inelastic properties of the foam and how it releases energy
during flow.

Simulations must handle a range of liquid fractions up to the wet limit of Φl � 18% (Weaire and Hutzler 1999). As
the liquid fraction increases, the vertices swell into triangular Plateau borders, named after the Belgian scientist who
pioneered the study of soap film structures (Plateau 1873). At the wet limit, a rigidity loss transition occurs (Bolton
and Weaire 1992), leaving separated circular bubbles.
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Fig. 1. A T1 topological transformation, or neighbour exchange, is the mechanism by which the foam dissipates energy in the
quasi-static regime. The length of a short edge between two vertices shrinks to zero, forming a four-fold vertex which immediately
dissociates into two three-fold vertices. Two of the adjacent bubbles lose an edge and the other two gain an edge.

Glass Plate
Liquid Pool

Glass Plate(i) (ii)

Fig. 2. Possible experimental configurations for a 2D foam consist of (i) trapping the foam between two close, parallel horizontal
plates and (ii) floating a bubble-raft on the surface of a liquid.

The most common experimental realizations of a 2D foam, illustrated in figure 2, consist of either trapping bubbles
between two glass plates, as pioneered by Smith (1952), or allowing bubbles to form a floating raft on a liquid pool.
Bragg and Nye (1947) used the latter as an analogy for crystal structure. A further possibility is to trap bubbles floating
on a liquid beneath a glass plate (Smith 1952, Vaz and Fortes 1997). Such foams are not truly 2D, since the meniscus
or solid surface can change their behaviour (Cox et al 2003). However, they often approximate the ideal 2D froth of
simulations.

The development of computer codes to model foam flow has followed the work of Princen and co-workers in
the 1980s, reviewed in Princen (2000), on the deformation of the ideal hexagonal (honeycomb) network. Early work
concentrated on the coarsening dynamics of foams (Weaire and Kermode 1983, Kermode and Weaire 1990, Herdtle
and Aref 1992), in which diffusion transfers gas between bubbles. The quasi-static PLAT code of Bolton and Weaire
(1992), which relaxes the foam between small increments in strain, allowed Hutzler et al (1995) to model foams of
arbitrary liquid fraction under extensional flow.

Okuzono et al (1993) used a vertex model, which included viscous dissipation at the vertices. This dry model
connects vertices by straight films, causing some inaccuracy in resolving T1s, although Cantat and Delannay (2003)
have used it successfully. Jiang et al (1999) used the Potts model to include viscous dissipation in the dry limit.
Despite certain caveats about the definition of viscosity, the model gives good, computationally inexpensive, results
for T1 statistics. Durian’s wet-limit bubble model (Durian 1995) approximates bubbles as circular discs connected by
springs; the results compare well with experimental data for wet foams.

We next describe some experiments and simulations designed to clarify the physics of foam rheology. Approaches
to 2D foam flows have progressed from continuum approximations (§2) which subsume all structural detail into a
macroscopic yield stress, to quasi-static simulations (§3) which assume that the foam has sufficient time to relax
between each small increment in strain, to our viscous froth model (§4), which combines an improved version of the
viscous dissipation of the continuum approximation with the precise foam structure of the quasi-static approximation
(figure 3) and accounts realistically for the pressures to give greater insight into the dynamics of moving foams.

2. Continuum approximations

Before we analyze how to exploit the structure of a foam to predict its behavior, we consider the continuum limit
in which a foam behaves like a yield-stress or shear-thinning fluid. Kraynik (1988) showed how to infer values for the
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Fig. 3. (i) Quasi-static and (ii) viscous froth dynamics applied to a single film in a 2D froth. In the quasi-static case, after each
increment in strain the pattern relaxes to a new equilibrium in which the pressure difference ∆p � p1 � p2 balances the surface
tension γ according to the Laplace Law (1). In the viscous froth model a viscous drag on the film proportional to the velocity alters
the force balance to the form in (3). In both cases the films meet at 120 	 , but only in the quasi-static case do they form circular arcs.
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Fig. 4. The Bingham approximation for a yield-stress fluid indicates the correlation between macroscopic dissipation and local
topological events. In this experiment of Glazier and co-workers (Jiang et al 2000, Asipauskas et al 2003) a foam flows steadily
through a twenty-to-one contraction. The resulting distribution of T1s in the experiment (i) (showing the density of T1s per unit
time per unit area, from Asipauskas et al (2003)) is comparable to the regions in which a Bingham fluid yields (ii) (obtained using
the CFD package Fluent with slip boundary conditions).

yield stress τy and viscosity µ of a foam, and to model it as a Bingham fluid in which the stress τ varies as:

τ �



τy τ � τy
τy � µγ̇ τ  τy � (2)

In this relationship the strain-rate is γ̇. The variation of stress with strain can be generalised to a Herschel-Bulkley
relationship with an arbitrary exponent n on the strain-rate. The yield-stress depends upon the liquid fraction, and the
value of the exponent n is still debated.

We can solve the Navier-Stokes equations for a Bingham fluid and compare the results to experiments on flowing
foams. In the contraction flow of Jiang et al (2000) (see also Asipauskas et al (2003)) a slow, steady flow of bubbles
between two horizontal glass plates pushes through a 20:1 contraction (see figure 4). Image analysis gives both the
streamlines of the flow and the positions of the T1s which dissipate the foam’s excess energy. Comparing the simulated
and experimental streamlines is not particularly useful, though the positions of the T1s and the areas in which the
Bingham fluid yields correspond as in figure 4 (ii). A more meaningful comparison examines the structure of the foam
itself (even in a quasi-static model which neglects viscosity and relaxes the energy between small step increments of
strain). To motivate this study, we describe two recent experiments which reach conclusions concerning the nature of
Couette shear on a 2D foam.
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Fig. 5. (i) Moving the lower boundary shears a foam of 750 bubbles in a rectangular box periodic in the x̂ direction (quasi-static
Surface Evolver calculation). (ii) After an initial transient, corresponding approximately to a unit shear, the T1s occur close to both
the moving and the stationary plates.

3. Couette shear

The Debregeas et al (2001) experiment traps a reasonably monodisperse (equal-area) foam between horizontal
glass plates in the annular region between two cylinders i.e. in a Couette viscometer. The inner cylinder rotates in
small increments, allowing ample time for full relaxation between each step, satisfying the requirements of the quasi-
static approximation. The roughness of the surfaces pins the bubbles close to each of the cylinder walls. T1s almost all
occur within about five bubble diameters of the inner (moving) cylinder. Such shear-banding or localization, although
usual in granular materials, had not been previously been seen in foams. Lauridsen et al (2002)’s similar experiment
using Bragg and Nye (1947)’s bubble-raft configuration moved the outer cylinder in a quasi-static fashion, and did not
produce shear-banding. In both cases the foam’s liquid fraction was about 8%, well away from either dry or wet limits.
The unexplained discrepancy between these two experiments motivated our Couette simulations.

Perhaps the best tool for simulating equilibrium non-viscous dry foams is Brakke (1992)’s Surface Evolver. Sur-
face Evolver minimizes the line-length of the foam structure subject to constraints, such as fixed bubble areas and
incorporates a circular-arc mode, which models soap films precisely, rather than as a collection of short straight seg-
ments. A quasi-static simulation in Surface Evolver repeatedly applies a small strain increment followed by relaxation
to equilibrium.

Kabla and Debregeas (2003) performed Surface Evolver-like simulations of Debregeas et al (2001)’s experiment
using 768 bubbles with straight edges and slightly disperse areas with a markedly jagged lower boundary to a 2D
rectangular domain periodic in one direction. They also found a shear-band in the inner layer of five bubbles.

To simulate the effect of the non-zero liquid fraction in the experiment, they introduced a cut-off film length below
which they triggered a T1, mimicking the effect of the Plateau borders, which cause vertices to touch at a separation
greater than a dry model would predict.

Our own quasi-static simulations using the Surface Evolver with vertices fixed to a flat boundary in the same
rectangular domain as Kabla and Debregeas (2003) do not show localization. In agreement with naive analysis, the slip
occurs only within one bubble width of both the outer and inner surfaces, as figure 5 shows. Why should symmetry
break and the T1s occur close to only one wall? For monodisperse foams and smooth boundaries, the T1s do not
propagate into the foam bulk, so we must vary the degree of surface roughness, the cut-off length used to trigger T1s,
and the area-dispersity to seek conditions which produce shear-banding.
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Fig. 6. The inner cylinder of a Couette viscometer rotates quasi-statically to strain a foam of 500 bubbles (Surface Evolver cal-
culation). Energy dissipates close to the moving wall, in small avalanches of T1s. (i) and (ii) show consecutive images from the
evolution: the black internal edges are those created by T1s. (iii) After an initial transient, the majority of the T1s lie close to the
inner boundary of the cell.

To break symmetry we employ an annular geometry closely resembling the experimental configuration (figure 6).
After an initial transient, when the foam relaxes towards a more ordered (predominantly hexagonal) state, T1s only
occur within one bubble width of the smooth inner, moving wall.

Exploring so many free parameters (area dispersity, cut-off length, boundary profile etc.) requires many simula-
tions. We have also neglected the effects of viscous dissipation. In slow Couette-shear experiments, viscosity should
not be too important. But, as we show in the next section, explaining some experimental results requires us to include
the viscous drag that soap films experience when they move across a surface.

4. Viscous Froth

Unlike other models of viscous 2D foam flow, we aim to develop a predictive simulation tool that accurately
represents both the curvature of the soap films and the viscous forces. Rather than solving the Laplace equation (1) for
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Fig. 7. Viscous froth simulations of a 2D ordered foam flowing around a sample 180 	 bend. The initial configuration is at the top.
Low velocities (right-hand-side) produce no T1s and the final structure is identical to that for a quasi-static calculation. At higher
velocities (left-hand-side) the bubbles successively swap neighbours due to a T1 (circled) as they pass close to the apex of the bend.
As the bubble size increases, the topological transformation occurs at lower velocities.

each film, we now use it to determine the velocity v of the film according to (Kern et al 2003),

∆p � γκ � λv � (3)

The parameter λ includes the viscous dissipation due to dragging the film along a surface (figure 3). Bretherton (1961)
showed that the velocity v in (3), which is normal to the film, should be raised to the 2 � 3 power. First we consider the
linear case, which is easier to solve, yet agrees qualitatively with experiment (Kern et al 2003).

We have applied the viscous froth model to T1 dynamics. Our experiments on the flow of ordered foam structures
in 2D channels (Weaire et al 2003) include the situation in figure 7 in which a 211 staircase structure moves around a
180

�
bend. At low velocities the structure flows elastically around the bend, while at higher velocities it experiences a

single T1 at the apex of the bend.
Quasi-static calculations failed to predict this T1, so we implemented the viscous froth equation (3) on a discretized

network of films, using Surface Evolver for all necessary book-keeping (such as deleting short edges and keeping track
of the discretization after T1s) and to include adherence to the channel walls. Kern et al (2003) describe an alternative
implementation for a periodic 2D foam. Glazier et al. have also used the Potts model to replicate these results.

Our simulations to ascertain the critical velocity as a function of bubble area Ab at which T1s begin suggest that v
scales as A � 1

b .



The rheology of 2D foams 7

To establish a direct correspondence between the 2D viscous froth model and a particular physical realization we
will have to include nonlinear viscous drag on the top and bottom plates and side-wall drag. Additional viscous effects,
associated with the elongation of films, result in deviations from the 120

�
angles at vertices (Reinelt and Kraynik 1989)

and may be the dominant dissipative mechanism in three dimensions. In 2D the large viscous drag on the confining
surfaces probably dominates. Since any additional effects due to film elongation must depend upon the height of the
foam sample, careful measurement of vertex angles might help to validate our model.

5. Summary

2D experiments and simulations provide an excellent environment in which to explore foam dynamics. Simulation
using the new generation of viscous froth models shows close qualitative agreement with experiment and accurately
predicts dissipation events. We intend to use this simulation technique to predictively design these and other experi-
ments. Industrial applications include micro-fluidics, in particular the transport of small separated volumes of liquid
using bubbles.

What are the difficulties in three dimensions? While visualization is difficult, due to the opacity of liquid foams,
the sophisticated experiments of Rouyer et al (2003) allow comparison with Surface Evolver simulations, such as
those of Reinelt and Kraynik (1993, 1996).
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