
1. Introduction

Foams are familiar materials, with widely known uses. The pro-
perties of aqueous foams are particularly well understood, at
least in the limit of low liquid fraction [1]. Much of this under-
standing is due to the development of drainage equations,

which describe the motion of liquid through a foam under
various conditions [2, 3]. One of these conditions is the gravita-
tional drainage which causes most of the liquid to leave the
foam. In many applications, this drainage is undesirable.
Consider for instance the fabrication of metallic foams [4, 5], in
which a molten metal containing gas bubbles must be frozen
before the metal drains out [6]. Eliminating gravity-driven drai-
nage, by reducing the effect of gravity, would allow the produc-
tion of metallic foams that have uniform density and therefore
well-defined properties such as their buckling behaviour. With
the advent of the International Space Station, an opportunity

exists to study the behaviour of foams which are no longer sub-
ject to gravity. Foam experiments will soon be performed in
space, and indeed some are already being performed in drop-
towers and parabolic flights [7, 8, 9, 10, 11, 12]. To understand
the results will require a new body of theory, and as a first step
we propose to adapt the existing theory for aqueous foams
under terrestrial gravity to fulfill this need. Note that this is
actually a simplification of the theory, as described below.
Another way of testing the theory experimentally may be possi-
ble under terrestrial gravity. The idea is to analyze in isolation
the motion of liquid perpendicular to the direction of gravity, in
two or three dimensions [13, 14], or to perform "horizontal"
experiments in one or two dimensions. The flow of liquid
through the foam in mutually perpendicular directions is uncou-
pled, so that the solutions to the zero-gravity drainage equa-
tions, which we shall derive here, are applicable to the horizon-
tal liquid motion under terrestrial gravity. The first drainage
equations were derived for a network of liquid channels, known
as Plateau borders, in a foam [15]. The contribution of the soap
films and of the junctions at which these borders meet was initi-
ally neglected. Within each border there must be a balance bet-
ween the gravitational force on the liquid, the viscous dissipa-
tion on the walls, and the pressure difference caused by the cur-
vature of the walls. With a condition of no-slip on the walls, i.e.
assuming that these interfaces are rigid and the flow is of
Poiseuille type, a relationship between the cross-sectional area
of the channel and its position in the foam at some time is obtai-
ned [2, 16, 17]. The cross-sectional area of the Plateau borders
is taken as a measure of the liquid fraction, the constant of pro-
portionality being dependent upon the structure of the foam.
Thus in what follows we try to extract scaling laws (for instan-
ce the motion of a wetting front with time), rather than exact
quantities which will always be necessarily vague in the absen-
ce of a regular, known, bubble structure. Upon non-dimensio-
nalization we are left with an equation of the form 
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where α is the Plateau border cross-sectional area, ∇ is the deri-
vative operator with respect to position, τ is time and g is the
acceleration due to gravity in the direction ξ . The term in paren-
theses is the liquid flow-rate Q Several extensions and modifi-
cations to this model have been proposed. One approach is to
include the effect of the Plateau border junctions as a correction
to the length of the Plateau borders [18]. Koehler et al. [19] sug-
gested that the no-slip condition on the walls of the Plateau bor-
ders is a poor approximation. They derived an alternative
model, in which the interfaces in the foam are mobile, so that
viscous dissipation occurs only in the junctions. This leads to a
drainage equation of the form 

Note that this differs from (1) only by a factor of √α in the flow-
rate. It shares qualitatively the solutions of the equation for rigid
interfaces, but shows a different scaling of the velocity of the
liquid flow through a foam in relation to the input flow-rate Q0

It is now widely accepted that these two models represent extre-
mes of behaviour [20]. Their domains of applicability are still
not fully understood, although they are known to depend upon
bubble size and the chemical properties of the surfactant [21,
22]. Following the work of Leonard and Lemlich [15] and
Kraynik [23], who recognized the importance of surface visco-
sity, Durand and Langevin [24] developed a drainage model that
includes several contributions to the surface mobility in a single
parameter. While this is undoubtedly the way forward, albeit

given some doubts over the precise formulation and determina-
tion of the necessary coefficients, for ease of analysis we shall
examine in the present work only the two limiting cases. This
theory is based upon the liquid motion through the Plateau bor-
ders and their junctions, rather than the soap films, so that the
continuum approximations inherent in the derivation mean that
the equations should be applied to foams in which the bubble
size is small compared to the dimensions of the container. For
example, a one-dimensional (1D) analysis is often sufficient for
a foam in a long narrow cylinder, and a two-dimensional (2D)
analysis for small bubbles in a Hele- Shaw cell [13] - see figu-
re 1. However, in 2D the equations should still give good pre-
dictions when the sample is only one bubble thick. This is
because the liquid flows through the network of 2D Plateau bor-
ders on the surface of the foam sample, so that the only correc-
tions to the theory are geometrical constants. Our goal then, is
to extend the analysis [13, 25] of both the original foam draina-
ge equation (1) and the more recent mobile-interfaces equation
(2) in the case where the parameter g is zero. We neglect the
case of varying gravity or of values of g between the two limits
of micro- and terrestrial gravity (excluding, for example, any
analysis pertinent to g-jitter). We also assume that g = 1 x 10-6,
often given as the "actual" value of microgravity, is small
enough compared to any gradient in liquid fraction that it can be
neglected. Setting g = 0  in the drainage equations (1) and (2)
gives

and

respectively. These are both diffusion equations; in the former
case, the equation is nonlinear and will require considerably
more effort to solve than the zero-gravity version of the equa-
tion for mobile interfaces, which is linear. In fact, the latter has
several well-known solutions which we shall state without deri-
vation. We shall in both cases exploit the self-similar scalings
[26, 27] of these equations to assist in finding solutions. In fact
the two equations are further related. If we were to linearize the
zero-gravity drainage equation for rigid interfaces, for instance
if we wished to follow the dynamics of a small disturbance in
the liquid fraction α0 of a wet foam, then we would find that the
solutions found for the case of mobile interfaces apply, up to a
constant factor of √α0. Of course, drainage is no longer an
appropriate word in relation to the movement of liquid under
zero-gravity. Instead we shall refer to it as diffusion or sprea-
ding, since it is exactly this process of liquid movement from
wet to dry regions of the foam, caused by capillary forces, that
the equations describe. It is evident then, that rather than the tra-
velling wave fronts with constant profiles found under terrestri-
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Figure 1: Sketches of the one- and two-dimensional geometries

considered for pulsed and constant input. In each case dry foam

fills the container and liquid is introduced over a small region.

Wetting fronts, whose positions we wish to know, propagate in the

directions indicated. a) A one-dimensional solution is applicable

to liquid flow along the axis of a foam-filled tube. b) Two-dimen-

sional solutions correspond to an axisymmetric situation in which

foam between two parallel plates is invaded by liquid introduced

at a point.
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al gravity [28], we expect a slow smoothing of the profiles, with
the purpose of spreading liquid evenly throughout the foam. All
liquid motion therefore ceases when the liquid fraction is the
same everywhere. In certain cases it will prove worthwhile to
relate our dimensionless solutions to their dimensional counter-
parts. The relevant scalings differ considerably from those given
elsewhere for the standard drainage equations [2, 3], so we give
here the scalings for equations (3) and (4), and provide an esti-
mate of the magnitude of the length- and time-scales. We deno-
te the liquid surface tension by γ and its viscosity by η, assu-
ming values for water containing surfactant: γ = 2.5 x 10-2 N/m
and η = 1 x 10-3 Ns / m². Given the bubble volume Vb , we take
a length-scale x0 = 27/1212-1/2Vb

1/3 ≈ 0.43Vb
1/3 that is approxima-

tely the length of a single Plateau border. This ensures that the
liquid fraction Φι is numerically equal to α, with the reasonable
but idealized assumption of a bubble structure consisting of
Kelvin's regular tetrakaidecahedra. The time-scale is given by 

The geometrical constant 

is related to the cross-sectional shape of a Plateau border, while
the constant K depends upon the model. For rigid interfaces,
analysis shows that K = 6.6x10-3, but for mobile interfaces a
value of K must be inferred from experiment: we use K ≈
2.3x10-3 [3], although larger values were found in [29]. If we
assume bubbles of volume Vb = 1mm3 then x0 = 0.43mm  and t0

= 6.48 x 10-3 s (rigid interfaces) and 1.86 x 10-2 s (mobile inter-
faces). We shall derive the necessary scaling solutions of the
diffusion equations in § 2 before treating four cases: (i) the spre-
ading of a small quantity of liquid (§ 3) introduced into the foam
at time τ = 0; (ii) the constant flow-rate input of liquid into the
foam at a point (§ 4); the evolution of an initial step in liquid
fraction (§ 5) and the movement of liquid into a dry foam which
sits on a liquid pool (§ 6). We shall show that the significant dif-
ference between the solutions of the two equations, apart from
the precise details of the scaling with time, is the nature of the
wetting fronts that move through the foam. For the nonlinear
case of rigid interfaces, the fronts between wet and dry foam are
sharp. More precisely, the second derivative of liquid fraction
with respect to position is non-zero at this point. On the other
hand, the solutions for the liquid fraction in the case of mobile
interfaces are exponential in form, so that they do not have a
well-defined front. Thus a better way to characterize the sprea-
ding behaviour of the liquid in this case is to measure the width
of the wet region, which grows with time. It may therefore
prove easier to perform experiments with foams showing rigid
interfaces, that is, with chemical properties that give non-slip
interfaces.

2. Scaling solutions 

We consider each of the zero-gravity diffusion equations in turn,
and seek radially symmetric similarity solutions for α (ρ, τ)
where ρ is the radial distance from the origin. We are interested
in analyzing experiments in one, two and three dimensions, so
will consider the general case of d dimensions.

2.1 Case of rigid interfaces 

The relevant nonlinear diffusion equation is (3) which we write 

This admits solutions of the form

where the integer m is found from the relevant boundary condi-
tions for each experiment of interest. In each case the wetting
front moves as ρ 0~τ 1/m and the motion of the point of maxi-
mum liquid fraction varies according to α∼τ (4-2m)/m. The simi-
larity function y(s) satisfies

where primes denote derivatives with respect to s. To complete
the specification of the problem we require a second boundary
condition. In all cases considered here, we shall assume the
presence of a sharp wetting front at ρ = ρ 0 ( t ) , so we choose
α (ρ,τ) = 0∀ ρ ≥ ρ0.

2.2 Case of mobile interfaces 

In this case we write the diffusion equation  (4) as

which admits solutions of the form 
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showing that the wet regions of the foam expand with ρ ~ τ1/2.

The maximum liquid fraction decreases as τn/2, where the inte-
ger n will be found for each of the boundary conditions consi-
dered. For the second boundary condition we no longer expect
a sharp wetting front, so since the liquid fraction is initially zero
we assume that α → 0 as ρ→∞ . The similarity function y(s)

satisfies

-nsd-1 y + sd y’ + (sd-1 y’)’ = 0                                      (12)

We shall describe solutions to this equation in the following sec-
tions.

3. A spreading pulse 

The diffusion of an initially localized volume of liquid throug-
hout a foam under zero gravity has already been studied [13, 16,
25, 30]. We shall provide a brief review of the main results, and
have used it to verify the numerical code used below to provide
visualizations of the liquid movement. A small volume λ0 of
liquid is introduced into a dry foam (with α=0) and left to spre-
ad. This volume of liquid must be conserved, so that we have
the condition:

where cd = 2, 2π, 4π for d = 1, 2, 3 respectively. 

3.1 Case of rigid interfaces

The conservation of liquid condition (13) gives m=1/2(d+4)
so that [25] 

Equation (8) for y(s) becomes

6dsd-1 y + 6sd y’+ (d +4) (sd-1(y3/2)’)’= 0                     (15)

with solution

for a constant c which is given by conservation of liquid (13).
Then

where

The liquid fraction at the origin is therefore given by
α=τ-2d/(d+4)c2, increasing with the liquid volume as λ0

4/(d+4).
Similarly, the front is found at position

which increases with the liquid volume as λ0
1/(d+4).

3.2 Case of mobile interfaces

With the linear diffusion equation (10), we find that for a quan-
tity λ0 of liquid, the constant n is equal to -d so that the liquid
fraction α scales according to

That is, the pulse widens with the square root of time and the
point of maximum liquid fraction at ρ = 0 decreases with τ−-d/2.
We must then solve the following ODE for y(s), from (12):

dsd-1 y + sd y’+ (sd-1 y’)’= 0                                         (21)

The solution takes the form of a Gaussian [13]:

In this case the liquid fraction at the origin increases in linear
proportion to the volume of liquid added, whereas this volume
doesn't affect the position of the front. 

3.3 Dimensional comparison of pulse profiles 

In figure 2 we show 2D solutions for a spreading pulse in each
case. We consider a foam between two parallel plates, sketched
in figure 1b), a distance H = 10mm apart and at time t = 0 intro-
duce a uniform cylinder of liquid of volume V0 = 10mm3 which
spans the gap at r = 0. The figures show profiles of liquid frac-
tion for various times in the evolution of a pulse. To obtain these
profiles in dimensional variables, we scale the radial position to
get r = ρx0 and put time t = t0 τ using the quantities defined in
the introduction. The volume of liquid is V0=x2

0Hλ0. The posi-
tion of the front in the case of rigid interfaces is given by r0 =
0.0055 t1/3 while the width (standard deviation) of the Gaussian
increases as r0 = 0.0032 t1/2 , showing that the latter will grow
more quickly after some time. Similarly, the height of the pulse
decreases less quickly (0.0031/t2/3 compared to 0.016/t) for
rigid interfaces. 
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4. Constant input of liquid 

In this experiment we start with a foam which has vanishing
liquid fraction everywhere, α = 0. Liquid is then added with
constant flow-rate at ρ = 0, so that the foam becomes progressi-
vely wetter. In 1D this corresponds to a long tube filled with
foam, into which liquid is continuously injected at the centre
through a small hole in the wall of the tube, shown in figure 1a. 

4.1 Case of rigid interfaces 

The flow-rate is the term in parentheses in (3):

The scaling parameter m is found by considering the flow-rate
Q0=cdρd-1Q⏐ρ=0 to be constant in time. Then m = 1/3 (d+4) so
that

Notice the behaviour of the liquid fraction at the point of input:
in 1D it increases with time, while in 3D it decreases - thus
liquid diffuses away faster than it is introduced in a 3D foam.
The interesting case, and probably the easiest to verify experi-
mentally, is in 2D, where the liquid fraction at the point of input
is constant. The wetting front moves away from the origin at a
rate proportional to τ-3/(d+4). Substitution in (8) shows that y(s)
satisfies

6(d-s)sd-1 y + 9sd y’+ (d +4) (sd-1(y3/2)’)’= 0                     (25)

We have been unable to find an analytic solution to (25) for any
d; numerical solutions for the one- and two-dimensional cases
are shown in figures 3a) and 4a). The latter figure, derived from

Figure 2: The zero-gravity spreading of a pulse of liquid introdu-

ced into a dry 2D foam between two parallel plates. Profiles of

liquid fraction are shown at various times t, from an initial volume

of liquid V0=10mm3 . a) The case of rigid interfaces, with solution

given by (17). b) The case of mobile interfaces, from (22). Notice

the more rapid decrease in the height of the pulse in the second

case, and its consequent rapid spreading. With rigid interfaces,

however, there is a sharp front.
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Figure 4: The zero-gravity spreading of a fixed input of liquid

introduced into a dry foam between parallel plates. Profiles of

liquid fraction in the radial direction are shown at various times

with input flow-rate q = 30 mm³/s. a) For rigid interfaces, numeri-

cally obtained profiles are shown. b) In the case of mobile interfa-

ces the profiles are taken from (30). Notice how they spread more

quickly, so that the liquid fraction at the point of input increases

less rapidly.

Figure 3: The zero-gravity spreading of a fixed input of liquid

introduced into a dry foam in a long, thin, circular tube. Profiles

of liquid fraction are shown at various times with input flow-rate q

= 30 mm³/s. a) For rigid interfaces, numerically obtained profiles

are shown. b) In the case of mobile interfaces the profiles are

taken from (29). Notice how they spread more quickly, so that the

liquid fraction at the point of input increases less rapidly.



a numerical simulation, suggests that in 2D (and also in 3D) the
solution is singular at the origin. In practice the singularity is
eliminated by the introduced liquid being spread over a small
region. The numerical solutions allow us to ascertain the depen-
dence of liquid fraction and spreading rate on the input flow-
rate Q0. In 1D we find that the radial position scales with Q0

1/5

and that the liquid fraction scales with Q0
4/5. Similarly, in 2D we

find that position scales as Q0
1/3 and liquid fraction scales as

Q0
4/5 and in 3D position scales as Q0

2/7 and liquid fraction sca-
les as Q0

8/7.

4.2 Case of mobile interfaces 

The flow-rate in this case is taken from (4)

The invariance of Q0 , as defined above, with time gives n = 2-

d. Therefore the liquid fraction α scales as

and we have the same behaviour at the point of input as before
- two is the critical dimension in which the liquid fraction
remains constant here. The equation for the similarity function
(12) becomes

(d-s)sd-1 y + sd y’+ (sd-1(y)’)’= 0                                (28)

Most straightforward is the solution when d = 1, for which 

where erfc is the complementary error function. In 2D, the solu-
tion to (28) takes the form of an exponential integral [31]:

while in 3D it is a complementary error function [31]:

Note the singularity at the origin ρ = 0 in both 2D and 3D, as for
the rigid interface case. 

4.3 Dimensional comparison of fixed-input profiles

To illustrate the movement of liquid away from the point of
input, we consider a long, thin, circular tube of radius R = 10

mm, as in figure 1a). We introduce liquid uniformly across the
plane at position x = 0 with dimensional flow-rate q = 30 mm³/s
= Q0πx0R2/ t 0. In dimensional variables the position is x = x0

Q0
1/5ρ and time is t = t0τ . The profiles of liquid fraction along

the centre-line of the tube are shown in figure 3. Note how, in
1D, the foam gets progressively wetter at the origin - in 2D and
3D experiments this is not the case. For example, in 2D we con-
sider two plates a distance H = 2 mm apart, shown in figure 1b).
Liquid is introduced at the origin with dimensional flow-rate q
= Q0x2

0H/t0 = 30 mm³/s. The dimensional position is now x =

x0 Q0
1/3ρ . Profiles of liquid fraction are shown in figure 4. Close

to the origin the liquid fraction doesn't vary, as predicted, alt-
hough mathematically there is a singularity at x = 0. 

5. A step in liquid fraction 

We consider next the evolution of an abrupt change in liquid
fraction. For instance, what happens when a dry 3D foam is
brought into contact with a wet foam? Under the influence of
capillary forces the liquid fraction changes so as to wet the dry
part of the foam. We analyze this problem in only 1D with posi-
tion ξ: a higher-dimensional analysis is very similar, but in 1D
we obtain the critical information pertaining to the rate at which
liquid spreads into the dry foam. The initial condition is 

for some fixed liquid fractions α r
0 < α l

0. An initially dry foam
for ξ ≥ 0 corresponds to α r

0=0

5.1 Case of rigid interfaces 

In 1D the diffusion equation (6) is 

The liquid fraction is fixed as ξ → ± ∞ so the scaling parameter
is m = 2 . Thus α scales according to 

showing that the wetting front moves in the positive ξ-direction
with a rate proportional to the square root of time. The solution
for the liquid fraction is to be found from (8) with m = 2  so that
y satisfies

Profiles of liquid fraction calculated numerically from (35) are
shown in figure 5a), in dimensional variables. Note the fixed
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point at ξ = 0. We can express this spreading using a diffusion
coefficient, which scales as 

As α r
0 increases from zero, the speed at which the wetting front

moves increases; this is analogous to the way a solitary wave
moves more rapidly through a wet foam under terrestrial condi-
tions.

5.2 Case of mobile interfaces

For an initial step function in liquid fraction in this case, we
have a well-known problem whose solution is an error function:

This solution is shown in figure 5b) to allow comparison with
the case of rigid interfaces. Unlike the sharp front (which shows
a discontinuity in the second derivative of liquid fraction with
respect to position) in the previous case, the dry foam is rapid-
ly wetted everywhere, although in both cases the volume of
liquid in moving into the dry region increases in proportion to
the square root of time. In this case the diffusion coefficient is 

which is slightly lower than the value for rigid interfaces. 

6. A dry foam in contact with a liquid reservoir

Consider now a dry foam which is wetted at one end, for exam-
ple a dry foam placed in contact with a pool of liquid. The capil-
lary forces will cause liquid to move into the foam, as shown by
Caps et al. [12] in parabolic flight experiments. So we put
α (ξ = 0,τ) = α0 and again consider only 1D analysis, although
other cases are similar. The parameter α0 ≈ 35% represents the
critical liquid fraction at which the foam becomes a bubbly
liquid.

6.1 Case of rigid interfaces

Since α0 is fixed, we have the same scaling as for the step func-
tion initial condition (34), so the wetting front moves away from
the pool with the square root of time. The similarity function
again satisfies (35), but note that there are slightly different
boundary conditions. The amount of liquid in the foam also
increases with√τ, with a similar diffusion coefficient to the step-
function problem. A numerical solution for the liquid fraction is
shown in figure 6. 

6.2 Case of mobile interfaces

For the case of liquid moving into a dry foam, the solution is
almost identical to the step function problem

where the base of the foam is at ξ = 0. This is shown in figure
6; comparison with the case of rigid interfaces suggests that the
bulk of the liquid moves more slowly into the dry foam.
However, the volume of liquid in the foam also increases in pro-
portion to the square root of time. 

S.J. Cox and G. Verbist: Liquid flow in foams under microgravity

Microgravity sci. technol. XIV/4 (2003) 51

2
5 2 10

0

2.85 10− −= =       
x

D m s
t

0 0 0

1
( , ) ( )

2 2

⎛ ⎞= + − ⎜ ⎟
⎝ ⎠

r l r erfc
ξα ξ τ α α α

τ

2
6 2 10

0

9.94 10− −= =    
x

D m s
t

(36)

x

x

Figure 6: The zero-gravity wetting, with Φι= 35% of a 1D dry
foam. a) Numerically obtained profiles in the case of rigid interfa-
ces are shown at various times t . b) For the case of mobile inter-
faces, profiles are obtained from (37). The volume of liquid in the
foam increases with the square root of time in both cases, but the
constant of proportionality (i.e. the diffusion coefficient) is slightly
lower for mobile interfaces.

Figure 5: The 1D zero-gravity spreading of a step in liquid frac-
tion into a dry foam. The right-hand side is initially dry (Φι=0)
and the left-hand side has initial liquid fraction Φι=30%. a) In the
case of rigid interfaces, numerically obtained profiles are shown
for various times. b) Equation (36) gives the profiles for mobile
interfaces, which wets the dry foam more rapidly. The insets show
the detailed structure of the wetting fronts. Notice the asymmetry
of both plots, the fixed point at the origin and the wetting front
moving to the right. The volume of liquid in the dry region of time
in both cases.
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7. Conclusions 

We have solved, using a combination of analysis and numerics,
the d-dimensional diffusion equation describing the motion of
liquid in an aqueous foam under zero-gravity conditions:

in the two limiting cases of χ = 1 (rigid interfaces) and χ = 1/2
(mobile interfaces) [13]. The solutions pertain to four experi-
ments of interest, allowing the rate of spread of the wet regions
of the foam to be found in each case. In the case of rigid inter-
faces these are 

• A spreading pulse: the front spreads with  ro~ t2/(d+4);

• Constant input: the front moves with ro~ t3/(d+4);

• A step in liquid fraction / capillary wetting: in both experi 
ments the front moves into the dry foam with ro~ t1/2.

The latter solutions show the same behaviour as for mobile
interfaces, which always show spreading with the square-root
of time. However the fronts are sharper in the case of rigid
interfaces and may be easier to measure in practice. This theo-
ry now requires comparison with actual experiments. We have
described only the limiting cases of high and low interfacial
mobility, so are entitled to expect behaviour intermediate bet-
ween these two extremes. Therefore a careful choice of surfac-
tant may help in performing a meaningful comparison, for
example by using a detergent that gives rigid interfaces. Such
a programme of experimental work is currently being underta-
ken under the auspices of the European Space Agency [32].
While intended to use the facilities aboard the International
Space Station, the work first aims to pin-point effective foa-
ming devices and suitable test geometries through extensive
testing in parabolic flights. The final choice of foam cell is
expected to be almost two-dimensional, not least because of
ease of visualization and comparison with theory.   
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