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Abstract

When foams flow through porous media, the interaction of the lamellae with the
walls of the channels leads to changes in the bubble size distribution. We pre-
dict these changes using Surface Evolver simulations of simple foam structures
subject to bubble creation via lamella division. We use a model porous medium
consisting of a disc in a straight channel. The position of the disc within the
channel is shown to significantly affect the final polydispersity of the foam, with
a slightly off-centre disc giving the highest polydispersity. We also find that
after repeated passes of the foam through the channel, the process of bubble
division eventually ceases, leaving a foam with an average bubble area slightly
larger than the disc size.
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1. Introduction

Aqueous foams have many applications. The examples of improved oil re-
covery and soil remediation are typified by the flow of foam through a porous
medium, in which it is unlikely that the distribution of bubble sizes remains
constant in time because of the interaction of the foam lamellae with the tor-
tuous channels found in, for example, oil-bearing rock. In particular, bubbles
much larger than the pore size are unlikely to survive intact as a foam passes
through a medium of given porosity, raising the following question: given an ini-
tial bubble size distribution and some details about the porosity of the medium,
is it possible to predict how foam flow within the medium changes the bubble
size distribution?

We attempt to answer this question here by considering a particularly simple
two-dimensional (2D) porous medium, consisting of a narrow channel defined
by very few geometrical parameters, two simple initial bubble size distributions,
and very slow motion. We choose a simple channel shape to try and extract
something fundamental about flows such as these, rather than trying to explain
any particular situation. We choose to work in 2D because it is possible to see
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Figure 1: Two instants in time during the motion (from left to right) of a train of bubbles
through a parallel-sided channel in which there is a circular obstacle. This is the initial
configuration of the monodisperse foam considered here. (a) Before the division event, all
bubbles have equal volume and all lamellae span the width of the channel. (b) When a lamella
touches the obstacle, it divides a bubble into two pieces, and increases the total number of
bubbles by one. (Note that another lamella has appeared at the left of the image.)

clearly what shapes the lamellae take and because the simulations are relatively
quick; moreover, it has been shown in the past [1] that 2D theory, simulations
and experiments can say something useful about real, three-dimensional foams.
Finally, by simulating motion at the scale of individual lamellae, we can take
advantage of the well-defined local geometry found in equilibrium dry foams to
generate highly accurate, if idealized, results. This local geometry is given by
what are known as Plateau’s laws [1]: lamellae meet three-fold at angles of 120◦

and a lamella meets a solid wall at 90◦. In addition, the Laplace-Young law
implies that each lamella is an arc of a circle.

We also try to determine whether, for fixed channel geometry, the process
of lamella generation through bubble division [2], due to interaction with the
channel walls, continues indefinitely, or, for a given channel, does the bubble size
distribution saturate even though the foam continues to flow, and topological
changes [3] continue to occur? Even at low flow-rates, we find that bubble
division occurs due to purely geometrical effects.

2. Method

We ignore diffusion-driven coarsening and rupture due to e.g. lamella thin-
ning under gravity. Instead, we assume that changes in bubble size occur only
when a lamella hits something part-way along its length (figure 1), and the gas
contained in the bubble is split into two parts (above and below the obstacle).

We use quasi-static simulations in Surface Evolver [4], assuming that changes
in topology and bubble-size (caused by division) occur more quickly than the
time-scale set by the gas (foam) flow-rate.

The foam is confined within a straight channel of length L = 1 and width
H in which is placed a circular disc of radius R with its centre a distance y0

from the lower wall. This is reminiscent of the geometry illustrated in [5] as a
paradigm for bubble division. The initial foam structure is a bamboo foam of
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ten bubbles in which each bubble touches both walls (see figure 1(a)). Except
for those adjacent to the obstacle, all bubbles are initially rectangular. The
channel is periodic in the direction of motion, so that bubbles moving out of
the channel to the right re-enter on the left.

Unless stated otherwise, we take H = 0.3 and R = 0.05. We concentrate on
two different initial conditions with respect to the bubble areas A, characterized
by the normalized second moment of the area distribution:

µ2(A) =
A2

Ā2
− 1, (1)

where the bar denotes an average over the foam. Either all bubbles have the
same area (monodisperse, µ2(A) = 0) or we impose a range of areas (polydis-
perse). In the latter case, bubbles areas are varied at random by up to 50%
of the monodisperse value, using the same seed each time to give a value of
µ2(A) = 0.0463.

At each iteration, a region is defined from the upstream end of the channel
to one of the lamellae (or, later, a line of lamellae, chosen far upstream of the
disc) and the area of this region is increased by dA = 1×10−3 to move the foam
downstream [6]. We perform this movement in ten small steps, interspersed
with a few energy minimization steps, to avoid numerical problems. Then we
define one cycle of the foam through the channel to consist of (LH−πR2)/dA ≈

300 iterations. Each iteration includes convergence (to 16 decimal places) to a
minimum of surface energy (total bubble perimeter). At each minimization step
we check for lamellae overlapping the obstacle, in which case we split the lamella
into two parts and the adjacent bubble into two regions, assigning target areas
equal to the different values resulting from the overlap. Different configurations
during which division occurs are shown in figure 2. Further, within the iteration
we periodically check for short edges, performing T1 topological changes when
these shrink below a length of lc = 8×10−3, corresponding to a liquid fraction of
about 10−5 [7]. We therefore neglect any possible dependence on liquid fraction,
which of course may be important.

Each simulation is run until either the line-length (energy) of the structure
appears periodic or, failing that (even at a steady-state of area distribution the
energy does not always settle down to a repeated cycle, since T1 topological
changes continue to occur), the second moment of the area distribution has not
changed for more than eight cycles of the foam through the channel [8].

3. Results

If the disc is placed in the centre of the channel (i.e. y0/H = 0.5, figure
3(a)) each bubble of the bamboo foam is split into two as it passes the disc,
generating a foam of 20 bubbles. No further divisions occur and the simulation
can then terminate. In the monodisperse case this gives a two-layer, or staircase,
foam. Due to symmetry-breaking of the foam structure downstream of the disc,
later divisions do not lead to equal area bubbles and the staircase structure is
therefore non-uniform.
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t = 32848t = 11244

Figure 2: Different arrangements of lamellae just before division occurs, labelled by the number
of iterations. In general, either large bubbles that span the width of the channel or severely
curved lamellae lead to division. The images are taken from a simulation with y0/H = 0.33
and an initially polydisperse foam structure.
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Figure 3: Examples of foams generated by the division process from an initially monodisperse
foam. (a) y0/H = 0.50: with the disc in the centre of the channel, a non-uniform staircase
structure is formed. (b) y0/H = 0.39: with the disc slightly off-centre, small bubbles are
formed around the obstacle; they are not trapped between the obstacle and the wall, but
move downstream and return to the obstacle from upstream, leading to many cycles of flow
before the area distribution becomes stationary. (c) y0/H = 0.20: when the disc is close to
the wall, small bubbles are formed and then trapped.
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For the division process to continue for longer, we therefore need to introduce
asymmetry by placing the disc off-centre. By symmetry we need only consider
y0/H ≤ 0.5. Then the division process introduces a greater disparity in size
between the bubbles passing over the disc and those passing beneath it. The
small bubbles that are formed are necessarily beneath the disc. For small y0/H,
it is possible that these small bubbles become trapped between the edge of
the disc and the wall of the channel (figure 3(c)). This is the bubble-scale
manifestation of the foam’s yield stress, i.e. it is what makes it difficult to push
foam through tortuous channels.

If these small bubbles poke out upstream of the leading edge of the disc,
they cause the following bubbles to move up and over the obstacle (as in figure
3(c)) through a succession of T1 events. For example, at the smallest value
used, y0/H = 0.2, two bubbles are sufficient to fill the gap beneath the disc,
and then bubble division stops with twelve bubbles and low area dispersity.

However, when these small bubbles do not poke out upstream, further divi-
sion is likely to occur (figure 3(b)), leading to higher area dispersity. Sometimes
the small bubbles are swept out from beneath the obstacle, which allows more
cycles of bubble division to occur (as in figure 3(b)), and this leads to the longest
simulations, and most polydisperse foams.

Figure 4 shows data from two simulations, one monodisperse and one poly-
disperse, with y0/H = 0.4 (cf. figure 3(b)). In the monodisperse case one bubble
never divides even though the process continues for about 16 cycles. The poly-
disperse simulation finishes more rapidly, after only four cycles. In both cases
the area of the smallest bubble is a small fraction of its initial area, the average
area decreases monotonically, and the second moment of area is non-monotonic:
it mostly increases, with occasional decreases.

In figure 5(a) we show the number of cycles (equivalent to time) beyond
which no further divisions occur, that is, the time at which the foam first reaches
its final value of µ2(A), as the gap between the disc and the wall changes. As
described above, this time is longest when the disc is off-centre but not too close
to the wall. For y0/H = 0.5 the stopping time is exactly one cycle, and this
is stable over a small range of y0, irrespective of the initial polydispersity. For
small y0, bubbles get trapped easily, and the process of bubble division can stop
quickly. At intermediate y0/H the effect of initial polydispersity is greatest, and
the time for the division process to cease can vary significantly between foams
of different polydispersity.

Figure 5(a) also shows that the final value of µ2(A) behaves similarly: that
is, it is dependent on the number of divisions, which increases with the time for
which the simulation runs. Only for y0/H = 0.5, with the disc in the centre of
the channel, does the final value of polydispersity reflect the initial value, since
so few divisions occur. Figure 5(b) suggests that the process of bubble division
ends when the average bubble area is close to the area of the obstacle, at least
for this obstacle size.

Figure 6(a) shows more clearly the effect of initial polydispersity in the case
where there is the largest disparity in saturation time in figure 5(a), that is,
y0/H = 0.33. The results of simulations at six intermediate values of the initial
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Figure 4: (a) An example of the evolution of the area distribution starting from a monodis-
perse foam in the case y0/H = 0.40. We plot the maximum and minimum bubble areas, the
average bubble area, and (on the right-hand axis) the second moment of the area distribu-
tion (area dispersity). (b) Same data for an initially polydisperse foam with y0/H = 0.39.
This polydisperse simulation is unusual in that the number of divisions saturates before the
monodisperse simulation with the same value of y0.
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Figure 5: (a) The time taken for the area distribution to saturate depends strongly, and non-
linearly, on the position of the disc. Note the log scale for the number of cycles, indicating
that when the disc is off-centre, the polydisperse foam often takes much longer to saturate.
The inset shows the final value of the area polydispersity (µ2(A)), which is closely related. (b)
The average bubble area (thick lines) after saturation is almost constant, and slightly greater
than the disc area (horizontal line). Note that the values for the initially polydisperse foam
with y0/H = 0.5 lie off the graph; the minimum and maximum bubble areas, shown as thin
lines, are broadly similar in all other cases.
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polydispersity show that, for this value of y0/H, the number of cycles required
for the lamella generation process to saturate increases (roughly exponentially)
with the initial polydispersity. In particular, this indicates that the differences
evident in figure 5 are systematic rather than random.

A disc radius of R = 0.05 is optimal in terms of generating foam for fixed
centre position y0/H = 0.4: figure 6(b) shows that all other values of R lead
to rapid saturation, within one to two cycles. (Note now that a cycle takes a
different number of iterations for different R, and that the bubble size changes
slightly.) At smaller R, the disc is insufficient to make much difference to the
flow after the first cycle, while for larger R small bubbles are trapped between
the disc and the channel wall and the remaining bubbles pass over the disc
without dividing.

4. Conclusions

The distribution of bubble sizes that is generated when a foam flows through
a porous medium is extremely difficult to predict. Even in the simple channel
geometry studied here, varying the position of the obstacle or the initial dis-
tribution of bubble sizes can lead to order-of-magnitude differences in the time
taken for the bubble size distribution to saturate. However, we do find that this
distribution does always saturate.

We have been able to characterise the effect of changing the size and position
of the obstacle in the channel: if it is large or small compared to the channel
width, or close to the wall or close to the centre of the channel, it suppresses
bubble division and leads to only minor changes in the bubble size distribution.
On the other hand, with a disc with diameter one-third of the channel width,
situated part way between the channel centre and the wall, a significant number
of division events occur and the resulting foams are highly polydisperse.

Changing the initial number of bubbles or, broadly equivalently, changing
the bubble size A relative to the channel width H, is something that should
be pursued in the future. It may also be of interest to vary the liquid fraction
(through the parameter lc in the first instance). Increasing the number of discs
in the channel and the number of bubbles (figure 7) should lead to a more
realistic approximation to actual porous media, allowing questions such as how
a foam chooses which channels to follow when presented with many choices [9].
It should also be possible to measure the pressure drop required to keep the
foam flowing in such geometries.

As stated above we have neglected foam coarsening, yet if the flow rate of the
foam was sufficiently slow, then the process of gas diffusion between the bubbles
caused by differences in their pressure might play a role. The relevant dimen-
sionless parameter is the ratio µ = κH/dA, where κ is the diffusion coefficient
and dA is the advection parameter given above; the simulations above corre-
spond to the limit µ = 0. Adding gas diffusion to the simulations is achieved by,
at the beginning of each iteration, calculating the product of pressure difference
and length across each lamella and changing the bubble areas in proportion to
the sum of this quantity around each bubble. We find that µ = 3 corresponds
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Figure 6: (a) The disc size and position are fixed at R = 0.050 and y0/H = 0.33, corresponding
to the greatest difference in stopping time in figure 5(a), and the initial polydispersity (µ2(A))
of the foam is varied. The number of cycles required for the foam generation process to saturate
increases almost monotonically with the polydispersity. (b) The centre of the disc is fixed at
y0/H = 0.4 and its radius varied. In every case the average bubble area decreases; the smallest
bubbles are generated for R = 0.050, which takes the longest time to saturate.
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Figure 7: Surface Evolver simulation of monodisperse foam flowing through a porous medium
consisting of eight discs in a straight channel. Is it possible to predict which channels between
the discs permit flow?

to rapid coarsening: the lamella curvatures (or, equivalently, the pressure dif-
ferences between bubbles) generated by the presence of the disc (cf. figure 1(b))
lead in this case to each bubble disappearing when it passes above or below
the disc. The neighbouring bubbles grow, until only one or two bubbles remain
in the channel, therefore making the foam ineffective as a displacement fluid
[10]. Even µ = 0.3 is sufficiently large that after two or three cycles only a few
bubbles remain. In the future, it would be interesting to determine the value
of µ at which bubbles are generated by division at the same rate that they are
lost through diffusion-driven coarsening.
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