
Eur. Phys. J. AP 14, 87–96 (2001) THE EUROPEAN
PHYSICAL JOURNAL
APPLIED PHYSICS

c© EDP Sciences 2001

Metallic foam processing from the liquid state

The competition between solidification and drainage
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Abstract. A model is developed to describe the formation of metallic foams in which liquid drainage acts
to collapse the foam before it can freeze. Numerical solution of the foam drainage equation, combined with
the equations of heat conduction, provides new insight into the competition between these two processes.
It also stimulates and confirms a theoretical analysis which leads to criteria for creating uniform samples
of frozen metal foam. The analysis suggests new experiments to clarify the role of the various processes
leading to foam formation.

PACS. 82.70.Rr Aerosols and foams – 47.55.Mh Flows through porous media – 72.15.Cz Electrical and
thermal conduction in amorphous and liquid metals and alloys

1 Introduction

In recent years, various techniques have been developed
for the fabrication of metallic foams [1,2]. These remark-
able materials have a structure that is broadly similar to
the more familiar polyurethane foams, so that it may be
described and analysed by the standard methods of foam
science [3,4]. The mechanical properties of the constituent
metal make the metallic foam relatively stiff and excel-
lent for energy absorption. Applications in automobile
manufacture are under development. Examples of metallic
foams are shown in Figure 1.

While now well advanced, the technology of metallic
foam formation still poses challenges. The solidification by
cooling of a foamed liquid metal is a “race against time”,
in as much as the relatively heavy and inviscid liquid is
prone to drainage, which rapidly reduces the foam den-
sity and hence provokes instability and collapse. In this
paper, we analyse the competition between drainage and
heat transfer, leading to solidification, using an elemen-
tary model for computation.

The present analysis is one-dimensional: physically,
this requires that heat is extracted only at the top and
bottom surfaces of the sample. While this departs consid-
erably from the usual experimental situation, we believe
that there is much to be learned, in both a qualitative
and semi-quantitative sense, from such a model. Further-
more, this model can be extended to three dimensions in
due course. It may also be possible to test it directly with
modified experiments in which the sides of the sample are
insulated.

a e-mail: coxs@tcd.ie

1.1 The process of foam formation

In the method used by Baumgärtner et al. [5] and others,
a powdered metal is mixed with a blowing agent, pressed,
and heated to its melting point. A blowing agent is cho-
sen which releases gas close to this temperature, so that
melting is accompanied by foaming. The sample is im-
mediately cooled to trap this foam structure in a solid,
closed-cell foam. (Other techniques may result in open-
cell structures.) While the density of the foamed liquid
may be considered to be initially uniform, it is immedi-
ately subjected to gravity-driven drainage of liquid, creat-
ing a vertical profile of density (or liquid fraction). At any
point in the sample this adjustment must proceed until
the freezing point is reached. Thus, at intermediate times,
the sample consists of a solidified outer shell surrounding
a draining liquid core.

1.2 Heat transfer, drainage and collapse

In developing a one-dimensional model of these competing
processes, we shall make the simplest assumptions which
capture the essential features of the problem. These re-
late properties to the local mean bubble diameter, D, and
the relative density. This latter quantity is equivalent to
the liquid fraction Φl of a molten foam; however, when
the foam solidifies we shall use the term relative density.

Firstly, it is assumed that solid/liquid conduction is
the dominant mechanism of heat transfer. This contrasts
with the case of insulating foams, in which the conduction
of gas is dominant. We do not distinguish between solid
and liquid conduction, so that the thermal conductivity of
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Fig. 1. The photographs show cross-sections through samples of foamed aluminium; the only difference is that the sample on the
right has been kept in the furnace for a longer time. The foam on the left is well-formed, with uniform bubble size. However in
the right-hand sample some of the bubbles have collapsed, others have coalesced, and significant drainage has occurred, leading
to a large variation in bubble size as well as regions of solid metal. Both pictures are courtesy of J. Banhart and reproduced
from I. Duarte and J. Banhart, Acta Mater. 48, 2349 (2000).

the foam is directly proportional to Φl and has the same
coefficient in both phases.

The heat which is extracted is primarily the latent heat
of freezing Lf , although we do include the relatively small
heat capacity of solid and liquid, Cp. The latent heat is
represented in the simulation by a finite spike in the spe-
cific heat capacity at the freezing temperature Tcrit, purely
as a matter of convenience.

Drainage is described by the Foam Drainage Equa-
tion [4,6–8], which is now well established (although some
variation may be required in certain cases and can be ac-
counted for in terms of surface viscosity [9,10]). This par-
tial differential equation governs the variation of Φl due
to drainage of the Plateau borders (the liquid-filled chan-
nels between the bubbles) in the foam. It has not yet been
specifically tested for metallic foams. A key parameter in
the equation is the liquid viscosity, η, which we take to
be a continuous function of temperature which rises to a
very high value at the freezing point. Naturally, the actual
variation of the viscosity is more complicated, especially
for alloys, but this should capture its essential features.

Finally, we introduce a rule which allows for the rup-
ture of thin films. This coalescence criterion is the most
debatable ingredient of the model, and we would not
make strong claims for its validity at this stage. For a
more detailed discussion of the dynamics of film rup-
ture, in the context of glass foam formation, see [11]. The

rationalisation of this rule is given in Section 2.1: its effect,
in practice, is to prevent the size of the Plateau borders
falling below a prescribed critical value anywhere. If the
trend of drainage is towards a lower value at any point
then the bubble diameter D at this point is increased, to
simulate bubble coalescence. A compensating change of Φl

is then required by mass conservation, so that film rupture
increases mean bubble size.

2 Mathematical formulation

In this section we give the details of the relevant equations
for the processes of drainage and heat flux and describe
how they interrelate. The results follow in Section 3, which
should be readily understood in general terms without
recourse to these details. The most important ingredients
are the scheme used to represent the latent heat, and the
viscosity equation which accounts for solidification in a
simple way.

2.1 Drainage

The foam drainage equation is described elsewhere [12];
we briefly review its key elements here and demonstrate a
slightly different non-dimensionalisation to be consistent
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with the equations describing the heat flow and the vis-
cosity.

The main assumption in deriving the drainage equa-
tion is that the contribution to drainage from the films is
negligible, so that flow proceeds only through the Plateau
borders. Consider first a single Plateau border, which need
not be vertical, with cross-sectional area A that depends
upon both the downward vertical coordinate z and time t.
We define a parameter N(z) which specifies the number
of Plateau borders crossing a horizontal plane through the
foam at height z. This allows us to relate the liquid frac-
tion to the Plateau border area: Φl = NA. It also relates
to the number of bubbles in any cross-section of the foam
and will therefore help us to specify D(z, t). However, the
exact relationship between N , Φl, D and the number of
bubbles depends on the packing arrangement assumed for
the foam.

The continuity equation for fluid, which is assumed to
be incompressible, is

∂(NA)
∂t

+
∂(NAu)
∂z

= 0 (1)

where drainage theory gives the fluid velocity

u =
ρgA

3fη
− Cγ

3fη
1

2
√
A

∂A

∂z
, (2)

which is an average over the cross-section of the border
and all its possible orientations. The combination of (1)
and (2) gives the nonlinear partial differential equation for
A or Φl, which has become known as the Foam Drainage
Equation. The viscosity is η, which will depend on tem-
perature, ρ is the liquid density, g is the acceleration due
to gravity, γ is surface tension and C and f are known geo-
metrical factors. The liquid flow rate through each border
is then Ql = uA. In steady drainage, where a uniform
supply of liquid is added to the top of a foam, the foam
drainage equation has the trivial solution that A is con-
stant.

2.2 Heat

The heat flow due to conduction in a static foam is

Qh = −κ∂T
∂z

, (3)

where T (z, t) is the temperature and κ is the thermal con-
ductivity. Then, using the substantial derivative, conser-
vation of energy requires that

ρΦlCp
DT

Dt
= −∂Qh

∂z
(4)

which becomes, using (3),

ρΦlCp

(
∂T

∂t
+ u

∂T

∂z

)
=

∂

∂z

(
κ
∂T

∂z

)
· (5)

The specific heat is Cp, which we will make temperature
dependent to conveniently account for the extraction of
latent heat.

2.3 Non-dimensionalisation

We define the dimensionless variables τ, ξ, α,Θ, Q̂l, η̂, ρ̂,
ĝ, Ĉp and κ̂ according to:

time t = τt0,

position z = ξz0,

plateau border area A = αz2
0 ,

temperature T = Θ (Tinit − T0) + T0,

liquid flow rate Ql = Q̂lQ
0
l ,

liquid viscosity η = η̂η0,

liquid density ρ = ρ̂ρ0,

gravity g = ĝg0,

specific heat Cp = ĈpC
0
p,

thermal conductivity κ = κ̂κ0Φl

in which

t0 =
3fη0√
Cγρ0g0

, z0 =

√
Cγ

ρ0g0
and Q0

l =
C2γ2

3fη0ρ0g0
·

Tinit is the initial temperature of the foam, T0 the cooling
temperature, g0 = 9.8 m/s2 and ρ0, η0, C

0
p and κ0 will

depend on the particular metal being foamed. Note that
κ is scaled by Φl, so that a denser foam transports more
heat.

The dimensionless equations which must then be
solved simultaneously are those of liquid drainage:

∂(Nα)
∂τ

+
∂(NQ̂l)
∂ξ

= 0, (6)

in which the liquid flow rate is

Q̂l =
1
η̂

(
ρ̂ĝα2 −

√
α

2
∂α

∂ξ

)
, (7)

and heat flow:

ρ̂ΦlĈp

(
∂Θ

∂τ
+
Q̂l

α

∂Θ

∂ξ

)
=

1
Pe

∂

∂ξ

(
κ̂Φl

∂Θ

∂ξ

)
, (8)

where the Peclet number is

Pe =
z2

0ρ0C
0
p

t0κ0
· (9)

Since neither the liquid density or thermal conductivity
will change, we can equate both κ̂ and ρ̂ with unity. We
expect Pe to be of order unity, giving approximately equal
weighting to the advection and conduction terms.

2.4 Viscosity and latent heat

To describe a foam in both its solid and liquid states, we
choose a smooth step function for the dimensional viscos-
ity η that gives small values η0 at high temperatures and
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high values ηmax at low temperatures when the foam is
frozen. We write

η̂ = 1 +
ηmax/η0 − 1

1 + exp(wη(Θ − Θcrit))
· (10)

The value of ηmax/η0 must be sufficiently high that there
is no drainage at the low temperatures at which the foam
is effectively solid. The parameter wη measures the nar-
row range of temperature over which the viscosity changes
from η0 to ηmax. This “mushy” zone is in practice achieved
by the use of metal alloys; it may be that in a less basic
model than this the precise details of the change in vis-
cosity must be taken into account. In what follows, we
consistently use the values ηmax/η0 = 105 and wη = 104;
the precise values of these two parameters are not signifi-
cant.

To incorporate the latent heat of fusion, we change the
specific heat to

Ĉp = 1 +
Lfw

C0
p

√
π

exp
[
− (w(Θ −Θcrit))

2
]
. (11)

This describes a symmetrical peak in the specific heat,
around the melting temperature, which represents the
heat that must be absorbed before the foam solidifies; this
is purely a convenient way of representing Lf . The param-
eter w measures the range in temperature of the peak (and
is different to wη). We will retain w = 50 throughout and
normalise the latent heat by C0

p ; that is, Lf → Lf/C
0
p. We

take Lf = 10.

2.5 Boundary conditions

We impose boundary conditions of no flow (Q̂l = 0) at
the top (ξ = 0), since no fluid enters the system, and at
the bottom (ξ = L), where the foam is being cooled. Note
that if Q̂l = 0 is specified everywhere, then we obtain the
equilibrium profile of the foam:

αeq(ξ) =
(

1√
αL

+ L− ξ
)−2

(12)

where αL corresponds to the liquid fraction at the bottom
of the foam. This is the profile to which all liquid foams
are eventually brought by gravity drainage; note that αeq

is nowhere zero.
The boundary conditions associated with the temper-

ature are that the bulk of the foam is initially at uniform
temperature T = Tinit ⇒ Θ = 1 while the lower end
has T = T0 ⇒ Θ = 0. The freezing temperature trans-
lates into a value Θcrit between zero and one. We take
Θcrit = 0.9 throughout.

We consider two scenarios for the top temperature con-
dition (see Fig. 2): case I, where the sample is cooled in
the same way as the bottom, with the condition Θ = 0,
and case II, where the top boundary condition is that of
no heat flow, ∂Θ/∂ξ = 0, so that cooling proceeds only
from the bottom.

We assume that the number of borders N is initially
uniform throughout the sample. In the model described
here, N changes only by virtue of coalescence. We hypoth-
esise that films will rupture below a critical thickness, and
since the equilibrium film thickness should be a monotonic
function of the Plateau border area, we allow bubbles to
merge when this area becomes smaller than some critical
value, α < αcrit. At this point ξ1 we decrease N(ξ1) to

N(ξ1)α(ξ1, τ)/αcrit

then put α(ξ1, τ) = αcrit so that D increases accord-
ingly. (In the event of coalescence, we will assume that
the change is small enough that we can ignore the tem-
poral derivative of N in (1).) We will assume throughout
an initial distribution of N(ξ) = 1 ∀ξ to simplify the
analysis.

The liquid fraction of the foam is given by Φl = Nα. If
each bubble has a cross-sectional area of π(D/2)2 we have
that

D(ξ, τ) = 2

√
1− Φl

Nπ
· (13)

Therefore D is also initially constant, but will subse-
quently change as Φl varies and as bubbles coalescence.

2.6 Method of solution

We solve (6) and (8) using an explicit finite difference rep-
resentation with constant step sizes in both time (upwind)
and space. This conservative formulation minimises errors
due to numerical roundoff.

We now retain all variables in dimensionless form, but
omit their caps, e.g. ρ̂→ ρ.

3 Results

We shall describe in detail only the progress of solidifica-
tion for case I, since case II is in some sense equivalent
to the lower half of the sample in case I. In this case two
freezing fronts move inwards to meet near the centre of the
sample. Behind each front there is an approximately linear
variation of relative density. In the next part we describe
the results of numerical simulations. These provide the
motivation for an analytic model, detailed in Section 3.2,
which compares well with the full solution. Sections 3.3
and 3.4 describe various extensions to the model, includ-
ing the coalescence criterion and the effects of varying the
gravitational acceleration.

3.1 Examples

We show in Figures 3 and 4 how the profile of Φl evolves
over time. In both cases the liquid fraction is initially uni-
form, that is, it is represented by a vertical line Φl = Φ0

l .
In case I (Fig. 3) both ends are frozen at time τ = 0. The
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Fig. 2. A sketch of the two cases considered, showing the competition between drainage and freezing.
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Fig. 3. Successive profiles of relative density are shown for
case I, starting from a liquid foam with constant liquid fraction
Φ0

l = 0.01 and Pe = 1. Dashed lines denote the profiles at time
intervals of τ = 20 and the solid line is the eventual, frozen,
profile at τ = 140.

relative density at the top of the foam initially decreases
as liquid drains due to gravity, and the freezing front also
moves downward, towards the centre of the foam, to give
an approximately linear decrease in relative density in the
frozen sample.

At the bottom of the foam a freezing front moves up-
ward. At the same time, liquid drains towards this front,
and accumulates above it before being frozen itself. There-
fore the relative density at the bottom of the foam grows,
and again this increase in Φl is roughly linear, with a sim-
ilar slope to the one at the top of the sample.

The relative density between the two freezing fronts, in
the centre of the foam, at first remains close to its initial
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Fig. 4. Successive profiles of relative density are shown for
case II, starting from a liquid foam with constant liquid fraction
Φ0

l = 0.01 and Pe = 1. Dashed lines denote the profiles at time
intervals of τ = 36 and the solid line is the eventual frozen
profile at τ = 450.

value, but in due course it evolves towards a profile which
smoothly interpolates between the low values of Φl at the
top of the foam and the high values at the bottom. In
the final phase of its evolution, the profile of this central
region, which is still liquid, closely approaches the equilib-
rium form (12). It therefore ceases to change appreciably
as the two freezing fronts proceed to meet and solidify the
entire sample. This can be seen in the profiles for case I in
Figure 3, but is even clearer in Figure 4: in case II there
is a greater proportion of the sample which is molten, yet
the profile at time τ = 216 is indistinguishable from the
final profile at τ = 450.
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In case II, the liquid fraction at the top of the foam
decreases just as it would in the standard free drainage
experiment [12], until it is frozen at the very end of the
process when the freezing front reaches the top.

So in case I the characteristic form of the final profile
is that of a “sawtooth” pattern. This resulting variation in
relative density is generally undesirable. The theory which
we next elucidate, in Section 3.2, offers a criterion for the
avoidance of such inhomogeneity in terms of the physical
parameters and the sample dimensions.

3.2 Analytic approximation

The linearity of the profiles of relative density at the top
and bottom of the foam suggests that it may be possible to
supply an analytical description of the early stages of the
solidification process. We now try to reproduce the early
evolution of the profile with a simple theory which appeals
to conservation of both heat and liquid. The first step is
to find the distance of the freezing fronts from the top
and bottom of the sample, as a function of time. Then
the quantity of liquid which has drained in this time is
calculated, to enable the variation of relative density to
be found.

To find the position of the freezing front, we consider
the heat loss from the top of the foam in unit time. On
the one hand, (3) shows that the heat flux Qh varies as
κ(Tcrit−T0)/xf , where xf is the distance of the front from
the top of the foam. But the amount of heat extracted in
unit time is equal to the product of the latent heat, the
velocity of the front and the mass of liquid: LfρΦldxf/dt,
ignoring the contribution of the specific heat. Thus, in the
dimensionless variables used here,

LfρΦl
dξf
dτ

=
κΦl

Pe

Θcrit

ξf
· (14)

Integrating (14) gives

ξ2
f =

2κΘcrit

PeLfρ
τ, (15)

enabling the position of the front to be found as a function
of time. At the bottom of the sample the same argument
is applicable, with ξf replaced by L−ξf , so that in Figure 5
we can compare the position of the fronts at both the top
and the bottom of the foam.

It is possible to track the position of the freezing fronts
using our numerical code, so that we can estimate the ac-
curacy of (15) in comparison with the full model. The
agreement, also shown in Figure 5, is excellent. The freez-
ing front moving up the foam in case II has much the same
shape but continues to ascend.

Now, to continue in our stated aim of recreating the
final profile of relative density, we must consider a balance
of mass transport. The volume of fluid drained from the
top of the sample is approximately equal to the area of
the growing triangles sketched in Figure 6, based upon the
neglect of the diffusive, or smoothing, term in the liquid
flow rate. This area is V = 1

2x
2
f (−dΦl/dx).

At early times, the central part of the profile has con-
stant liquid fraction and therefore constant flow rate. Fur-
ther, the liquid that has drained from the top of the sample
must pass through this region. So this volume of liquid is
equal to the product of the flow rate and time: V = NQlτ .
Thus

1
2
ξ2
f

(
−dΦl

dξ

)
= NQlτ. (16)

We can then substitute for ξf from (15), to give not only
the slope of the relative density at the top of the foam:

dΦl

dξ
= −PeNLfρ

κΘcrit

ρg(Φ0
l )2

N2η0
= −PeLfρ

2g(Φ0
l )2

NκΘcritη0
(17)

but also, upon integration, the variation of the relative
density itself:

Φl = Φ0
l −

PeLfρ
2g(Φ0

l )2

NκΘcritη0
ξ. (18)

Can we apply the same argument at the bottom of the
foam to give the same slope of relative density? We ap-
peal to conservation of liquid (the bottom of the sample
is initially frozen so that no liquid can escape) and note
that the freezing front moving up from the bottom has
the same speed as the descending front, in the absence of
heat transport due to drainage. Then a similar derivation
to the above gives

Φl = Φ0
l +

PeLfρ
2g(Φ0

l )2

NκΘcrit η0
(L− ξ) (19)

so that the ends of the final profile are antisymmetric.
An approximation to the central part of the final pro-

file is somewhat more straightforward to calculate. As
noted earlier, the sample stops draining before it is ev-
erywhere frozen. Therefore gravity drainage must be the
dominant process in the central region, so we expect that
the eventual profile in the middle of the foam will closely
approach the equilibrium profile (12). The particular pro-
file connecting the two linear segments is given uniquely
by the central point of the initial profile of phase fraction:
that is, we substitute αL = Φ0

l /N and replace L by L/2
in (12):

Φl =

(√
N

Φ0
l

+
L

2
− ξ
)−2

. (20)

To complete the final profile of relative density we must
join the two straight end sections to the central “equilib-
rium” section. To find each of the points of intersection
requires the solution of a cubic equation for ξ, given by
equating (20) with (18) and with (19) respectively. In the
case illustrated in Figure 7 we find ξ = 2.9 and ξ = 6.5.
Resubstitution gives a minimum value of Φl = 0.007 and
a maximum of Φl = 0.014.

It should be noted that this formulation incorporates a
small but finite change in the total volume of liquid present
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Fig. 5. The position ξ of the freezing fronts against time τ in both cases, for the profiles shown in Figures 3 and 4. Also shown
is the analytical result (15), for both the top and bottom fronts. This result is an excellent approximation at the top of the
foam. We attribute the small discrepancy at the bottom to the neglect of the specific heat and the contribution of drainage to
reduced cooling in the lower part of the foam.
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Fig. 6. A description of the approximations made in reproducing the profiles of relative density analytically for case I. (a) At
early times, the relative density at the top decreases linearly, and at the bottom it increases linearly, with the same slope.
The centre of the profile remains at its initial, constant, value (the dotted line). The area of the shaded triangle represents the
volume of fluid which has drained down to the bottom of the foam. (b) At much later times, when the foam is frozen, the linear
regimes have extended farther towards the centre of the foam. These two sections are joined by a smooth “equilibrium” curve.

(approximately one percent for the calculation shown);
in practice this is corrected by the lack of antisymmetry
in the end profiles, which also shifts the central section
downwards.

In Figure 7 we compare these approximate profiles
with the full numerical solution. Given that we have ne-
glected the specific heat, the agreement is remarkably
good. These estimates could be improved further with a
more accurate estimation of the volume of liquid which
has drained from the top of the foam, since the overesti-
mate in the slope is due to an underestimate in calculating
the triangle area.

The volume flux balance (17) describing the variation
of the slope of relative density with position suggests a

criterion for deciding when a metallic foam sample will be
uniform/homogeneous. This would require a small value of

L

Φl

dΦl

dξ
·

Then we suggest the following

homogeneity criterion :
PeLfρ

2gLΦ0
l

NκΘcritη0
� 1. (21)

For the parameter values used here (Lf = 10, Θcrit =
0.9, L = 10, ρ = g = κ0 = η0 = N = 1 and Φl = 0.01)
this quantity is slightly greater than one; the results in
Figure 7 show that the maximum deviation from homo-
geneity is about 40% of the initial liquid fraction.
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Fig. 7. Comparison between theory and numerics in case I.
The final profile of phase fraction is redrawn from Figure 3, to
show how good the analytic result is. The straight sections are
given by (18) and (19), and are joined uniquely by a section of
the equilibrium solution (12). The differences are due mostly
to the error in approximating the amount of liquid drained
(triangle area), and also to the neglect of the specific heat.

Variation of freezing time

We should supplement this criterion with a measure of
the total freezing time, τf . That is, how long does it take
for the whole sample to freeze? Note that the sample may
stop draining, and reach equilibrium under gravity, before
it is everywhere solid.

We refer again to (15); the length of foam which must
be frozen is L/2, so that

τf =
PeLfρL

2

8κΘcrit
· (22)

This gives τf = 139 in case I, while our computations give
τf = 133, and in general further results of numerical calcu-
lation show good agreement with this functional for tf . So,
as would be expected in any heat diffusion problem, the
freezing time is proportional to the square of the length
of the foam, and in inverse proportion to the thermal con-
ductivity.

3.3 Coalescence and collapse

When the criterion (21) for homogeneity is not satisfied,
we expect additional effects. In particular, the bubbles of
the foam will coalesce where the liquid fraction is small
and a liquid pool will form where the liquid fraction be-
comes large. Any one of several changes in the physical

Solidified Pool

Solid Foam

Solid Foam

Solid Foam

Region of Coalescence

Fig. 8. If the initial value of Φ0
l is increased tenfold, we enter

the strongly inhomogeneous regime, as illustrated schemati-
cally. Our simulations show that coalescence occurs near the
top of the foam, where the relative density falls, and a liquid
pool forms near the bottom of the foam. This pool will freeze
in due course to form a lump of solid metal. (The bubble struc-
ture is purely for illustrative purposes, and does not represent
the result of the calculations described here.)

parameters or dimensions of the foam may cause these
events to occur; in Figure 8 we sketch the effect of a higher
initial liquid fraction. An increase in the initial liquid frac-
tion Φ0

l also changes the shape of the lower freezing front,
so that its central part becomes linear. This is due to the
dependence of the thermal conductivity on Φl.

In case II we would expect coalescence to occur in the
same way, but at the very top of the foam.

Although our numerical code breaks down with the
formation of a pool, because there are no longer bubbles
present, we can use it to investigate coalescence using the
model described in Section 2.5. That is, we introduce a
cut-off at low Plateau border areas α, at which point we
allow the number of bubbles N to increase. The results
are shown in Figure 9, which displays the bubble size dis-
tribution for the profiles of Figure 3 with a coalescence
criterion of αcrit = 0.9Φ0

l . Without assuming a particular
bubble packing, however, this measure of D may be taken
as a guide only. The figure does show that bubble size can
increase significantly. We find also that the profile of liquid
fraction is shifted upward and freezing times are length-
ened slightly, since the “velocity” of heat conduction is
reduced in this bubbly region of the foam.

3.4 Microgravity

Variation of the parameter g allows the model to be used
to predict the effect of metallic foam formation in space
or in parabolic flights. A decrease in gravity to around
g = 0.001, for example, changes the criterion for homo-
geneity (21) by three orders of magnitude, since it slows
down drainage. Thus, as expected, our model predicts that
it will much easier to make metallic foams with uniform
relative density in space, all other parameters being equal.
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Fig. 9. Demonstrating the effect on the bubble diameter, D (in arbitrary units), of introducing a coalescence criterion in case I.
There is a small variation in D because of the change in liquid fraction due to drainage, but the large peak is due to bubbles
merging when the walls between them become too thin. The initial liquid fraction is Φ0

l = 0.01 and Pe = 1.

4 Summary

The development of metallic foam is proceeding apace,
while the theoretical description of its formation lags well
behind. We have supplied a first description of the freezing
stage of this formation process, using a one-dimensional
model which combines the equations of foam drainage
with those of conductive heat transfer.

Comparisons between our numerical results and a sim-
ple analytic theory are very encouraging. The numerics
include the effects of coalescence, indicating where metal-
lic foams may contain gaps, and also where the foam itself
may collapse. The theoretical approximations work best in
the limit of low liquid fraction, i.e. for dry foams, which is
also the limit in which the foam drainage equation is best
applied.

Moreover, the theory allows us to specify a criterion
for homogeneity of the final, solid, foam (21) in terms
of the physical parameters of the constituent metal and
the dimensions of the sample. In combination with this
criterion, we give a sketch in Figure 10 of the interaction
between some of the more easily adjustable parameters.
We suggest that collapse is more likely to occur in long or
wet foams where the liquid metal is heated to well above
the melting point.

We believe that comparison with one-dimensional ex-
periments, yet to be performed, would be extremely useful
for the development of this theory. The extraction of heat
from only the top and bottom of the sample is currently
an idealisation, but we have shown that it allows clear and
concise analysis of the process.

In extending the method to three dimensions, we fore-
see few difficulties. The important extensions will be to
improve our coding of film rupture/coalescence and liquid
collection.

Fig. 10. The variation of the final profile of relative density, in
case I, with the product of the length of the foam L and its ini-
tial liquid fraction, and the melting point of the molten metal
Θcrit. The small inset sketches suggest possible final profiles of
position against relative density. As Θcrit decreases, the point
of maximum relative density in the final profile moves toward
the bottom of the foam. As L or Φ0

l increases, the maximum
relative density grows. Both of these scenarios are likely to lead
to foam collapse, due to coarsening and liquid accumulation.
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Appendix: Notation

A(z, t), α(ξ, τ) Plateau border area
C2 =

√
3− π/2 Geometrical constant associated

with Plateau border
Cp Generalised specific heat capacity
γ Surface tension
D(ξ, τ) Gas bubble diameter
f ≈ 50 Constant for Poiseuille flow in

Plateau border
g Acceleration due to gravity
κ(Φl) Thermal conductivity
Lf Latent heat of fusion
η Viscosity
N(ξ) Number of Plateau borders crossing

a unit area of foam
Pe Peclet number
Φl Relative density or liquid fraction

of foam
ρ Liquid density
Qh(ξ, τ) Heat flow rate
Ql(ξ, τ) Liquid flow rate
t, τ Time
τf Dimensionless time at which foam

completely solidified
T (z, t), Θ(ξ, τ) Temperature
u Liquid flow velocity
V Volume of drained fluid
z, ξ Position in foam 0 ≤ ξ ≤ L
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5. F. Baumgärtner, I. Duarte, J. Banhart, Adv. Eng. Mat. 2,
168 (2000).

6. G. Verbist, D. Weaire, Europhys. Lett. 26, 631 (1994).
7. G. Verbist, D. Weaire, A.M. Kraynik, J. Phys.-Cond. Mat-

ter 8, 3715 (1996).
8. S.J. Cox, D. Weaire, S. Hutzler, J. Murphy, R. Phelan, G.

Verbist, Proc. Roy. Soc. London A 456, 2441 (2000).
9. S.A. Koehler, S. Hilgenfeldt, H.A. Stone, Phys. Rev. Lett.

82, 4232 (1999).
10. M. Durand, G. Martinoty, D. Langevin, Phys. Rev. E 60,

R6307 (1999).
11. N. Pittet, in Foams and Emulsions, edited by S.F.

Sadoc, N. Rivier (Nato Science Series: E Applied Sciences,
Kluwer, Dordrecht, 1999).

12. D. Weaire, S. Hutzler, G. Verbist, E. Peters, Adv. Chem.
Phys. 102, 315 (1997).

To access this journal online:
www.edpsciences.org


