Dissipation Mechanisms in Bubble Scale Foam Rheology Departures from Princen's Sheared Honeycomb

P. Grassia¹, B. Embley¹, C. Oguey²

¹CEAS University of Manchester

²LPTM University of Cergy-Pontoise

・ロト ・ 同ト ・ ヨト ・ ヨト

Poams out of mechanical equilibrium

Foams out of physicochemical equilibrium

▲御▶ ▲ 国▶ ▲ 国▶

Outline

Princen's honeycomb Unit cell

Poams out of mechanical equilibrium

3 Foams out of physicochemical equilibrium

Princen's honeycomb Unit cell

Princen's honeycomb late 1970s through 1980s, plus several reviews

Under shear, system undergoes *topological transformation* – so called 'T1'

ヘロン 人間 とくほ とくほう

э

Princen's honeycomb Unit cell

Unit cell of Princen honeycomb

Quasistatic mechanical equilibrium configuration given vertex locations for unit cell

Vertex = Fermat-Steiner point Films meet at $\frac{2\pi}{3}$ angles

Princen's honeycomb Unit cell

Princen model at topological transformation

Departures from mechanical equilibrium

Princen structure undergoes a *discrete* jump at topological transformation

How attempt to model the dissipative out-of-equilibrium relaxation process?

Surfactant conservation Film stretch rates Rapid initial acceleration

2 Foams out of mechanical equilibrium

3 Foams out of physicochemical equilibrium

Surfactant conservation Film stretch rates Rapid initial acceleration

Relaxation to mechanical equilibrium

Quasi-static model instantaneous jump to $x_B^{(final)}$

Dynamic model describes how the (half)length x_B of *newly created film* evolves with time t, in presence of surface viscosity μ_s , film tension γ_{eq} and Gibbs elasticity $\overline{\Gamma}$

Evolution time scale set by ratio μ_s/γ_{eq} , but influenced by $\overline{\Gamma}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Surfactant conservation Film stretch rates Rapid initial acceleration

Surfactant conservation

Surfactant conservation Film stretch rates Rapid initial acceleration

Final mechanical equilibrium state

If Gibbs parameter $\overline{\Gamma}$ \uparrow , more elastic (i.e. less compliant) films \rightarrow Smaller $x_B^{(final)}$

Surfactant conservation Film stretch rates Rapid initial acceleration

Surfactant concentration Durand and Stone

Surfactant coverage is related *directly* to geometry $c(t) = c_{eq}(L_c - L(t))/x_B(t)$

c(t) deviates from c_{eq} long before $x_B(t)$ becomes significant

Surfactant transferred *onto* newly created film from neighbours overwhelming any surfactant that is originally there

Surfactant conservation Film stretch rates Rapid initial acceleration

Film stretch rates

 $\partial U/\partial x$ is stretch rate of film material elements, whereas \dot{x}_B/x_B is net stretch rate of film vertex geometry

 $\partial U/\partial x$ is *not* the same as \dot{x}_B/x_B

Vertex must *slip* relative to film material points

Amt of slip depends on angle α between films and on c/c_{eq}

(A) < (A)

Surfactant conservation Film stretch rates Rapid initial acceleration

Comparison between $\partial U/\partial x$ and \dot{x}_B/x_B

For small x_B , with angle α between growing/shrinking films

$$\frac{\partial U}{\partial x} \approx \left(1 - \frac{\cos \alpha}{c/c_{eq}}\right) \frac{\dot{x}_B}{x_B}$$

$$\dot{x}_B/x_B \gg \partial U/\partial x$$

even for $x_B \ll 1$

x_B exhibits *rapid initial acceleration*

Surfactant conservation Film stretch rates Rapid initial acceleration

Effect of rapid initial acceleration Durand and Stone

 $\dot{x}_B/x_B \gg \partial U/\partial x$ for Durand and Stone

Contrast model of Biance et al. (2009)

Assumes $\dot{x}_B/x_B = \partial U/\partial x$

Exhibits *very slow* evolution (note very different time scale cf. Durand and Stone graph)

Surfactant conservation Film stretch rates Rapid initial acceleration

Evolution of film length – Experimental observations

Rapid motion (after initial acceleration) easiest to detect in expt

Surfactant conservation Film stretch rates Rapid initial acceleration

Summary and conclusions Out of mechanical equilbrium foams

• Simple (but elegant) model for evolution of x_B in T1 process

 Considers surfactant exchange between films (i.e. vertex slips relative to film material points), but ignores other (longer time scale) surfactant equilibration processes (Hence unequal tensions in 'final' state)

Surfactant coverage c related directly to geometry x_B

• Abrupt change in *c* even whilst new film is very short ($x_B \ll 1$)

• Rapid initial acceleration of x_B

Poams out of mechanical equilibrium

Foams out of physicochemical equilibrium

antat model ligh *De* limit ow *De* limit

Surfactant transport in thin foam films Consider film stretched by T1 and/or imposed shear

- Durand and Stone 'final' state has unequal film tensions
- Equilibrium surfactant concentration only restored from bulk over some (longer) characteristic time τ
- Equilibration is dissipative: decay of *chemical potential*

Cantat model High *De* limit Low *De* limit

Out of physicochemical equilibrium foams Cantat (2011) model

Consider shear of e.g. a hexagonal honeycomb foam with shear strain *s* (affecting film length *L*) applied at a rate comparable with physicochemical relaxation rate τ^{-1}

Cantat model High *De* limit Low *De* limit

Deborah number

Physicochemical analogue of capillary number

$$De = \dot{s} \tau$$

- Controls departure from physicochemical equilibrium
- De ≫ 1: strong departure from physicochemical equilibrium

(Total surfactant on film *conserved* during shear flow)

 De << 1: weak departure from physicochemical equilibrium (Near Princenian behaviour)

Cantat model High *De* limit Low *De* limit

Unit cell in a honeycomb/staircase geometry via Cantat's model

Cantat model High *De* limit Low *De* limit

High Deborah number limit Conserved surfactant: Suppression of T1

Linearised surface tension model $\gamma/\gamma_{eqm} = 1 - \overline{\Gamma}(c/c_{eqm} - 1)$ becomes, for *conserved* surfactant coverage $\gamma/\gamma_{eqm} = 1 - \overline{\Gamma}(L_{eqm}/L - 1)$

If $L/L_{eqm} \downarrow$, then $\gamma/\gamma_{eqm} \downarrow$,

preventing further decrease in L/L_{eqm} : T1 is suppressed

 \rightarrow Secular film growth to bursting point?

Cantat model High *De* limit Low *De* limit

Phase diagram for T1s Two parameter surface tension model in the high *De* limit

Consider instead tension model with finite cutoff γ_{min} at cmc

Always have T1 if $\gamma_{min/max} \ge \frac{1}{2}$ T1 is more likely if concn ratio c_{eq}/c_{cmc} is small

Cantat model High *De* limit Low *De* limit

Low Deborah number limit

Near agreement with Princen's model away from T1, punctuated by *non-Princenian* behaviour near T1

Non-Princenian effects:

can be *physicochemical* in origin, not just mechanical; can occur immed. *before* T1, not only immed. after T1

< 🗇 🕨

Cantat model High *De* limit Low *De* limit

Deviation from Princenian film length relations Pre-T1

For Princen, shrinking film length nearly linear in applied strain

Large *relative* changes in film length on approach to T1 Surfactant concentration grows \longrightarrow Surface tension falls Decay of film length is offset \longrightarrow T1 is delayed

Delay in T1

Cantat model High *De* limit Low *De* limit

Delay in T1 depends on Deborah number *De* and on surface tension variation parameter $\overline{\Gamma} = |d\gamma/dc|$

Bretherton-like $\frac{2}{3}$ power law behaviour

A ▶

Cantat model High *De* limit Low *De* limit

Implications of mechanical equilibrium relation

Net pull of long films weakens both due to *swivel* and due to *finite length* of shrinking film

Net pull of long films balances pull of shrinking film

$$1 - \gamma_{shrinking} \sim (s - s_{Princen}) + L_{shrinking}$$

__ swivel

不得下 イヨト イヨト

Concentration in shrinking film rises above equilibrium to match weakening net pull

Cantat model High *De* limit Low *De* limit

Surfactant coverage on shrinking film

Evolution of surfactant coverage (and hence film length) depends on deviation from equilibrium of shrinking film

$$Derac{d(c\,L)}{ds} = L(c_{eqm}-c) \longrightarrow rac{c}{c_{eqm}} pprox 1 + rac{De}{L} \left|rac{dL}{ds}
ight|$$

Conc deviation c - 1grows from O(De) to $O(De^{1/2})$ but remains small

 \rightarrow Isotherm can be *linearised*

Both $1 - \gamma_{shrinking}$ and $s - s_{Princen}$ also $O(De^{1/2})$

ヘロト ヘアト ヘヨト

Cantat model High *De* limit Low *De* limit

Predicted film length evolution – Analytic solution Zoom in near the Princen strain *s*_P

$$L = \frac{2\sqrt{\bar{\Gamma} De}}{1 + \operatorname{erf}\left((s - s_P)/\sqrt{\bar{\Gamma} De}\right)} \exp\left(-\frac{(s - s_P)^2}{\bar{\Gamma} De}\right)$$

イロト イポト イヨト イヨト

э

Cantat model High *De* limit Low *De* limit

Predicted delay in T1

T1 occurs as film length L falls to ε (liquid fraction parameter)

delay in T1 =
$$\sqrt{\overline{\Gamma} De} \sqrt{\log(\sqrt{\overline{\Gamma} De}/\varepsilon)}$$

No free parameters

< 🗇 🕨

< E.

-

Cantat model High *De* limit Low *De* limit

After topological transformation (low *De* limit only)

- $\bullet\,$ New film created with length ε and then grows
- Mechanical relaxn followed by physicochemical relaxn
- Rel. amounts of each equilibration depend on $\bar{\Gamma} \equiv |d\gamma/dc|$

• Total film energy over all films relaxes

Cantat model High *De* limit Low *De* limit

Post-T1 relaxation Total film energy over all films

Large $\overline{\Gamma}$: minimal (instantaneous) mechanical relaxation; equilibration *entirely* physicochemical

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Cantat model High *De* limit Low *De* limit

Post-T1 relaxation Total film energy over all films

Small $\overline{\Gamma}$: significant *instantaneous* mechanical relaxation, followed by (relatively fast) physicochemical equilibration

・ 同 ト ・ ヨ ト ・ ヨ ト

Cantat model High *De* limit Low *De* limit

Summary and conclusions Out of physicochemical equilibrium foams

- Sheared staircase in *mechanical* equilibrium out of *physicochemical* equilibrium
- *Deborah number* controls departure from physicochemical equilibrium
- High Deborah number: strong suppression of topological transformations; instead secular growth/film bursting
- Low Deborah number: topological transformation *delayed* by an amount \sqrt{De}
- Low Deborah number: relaxation post-topological transformation can be entirely physicochemical, or can be part-mechanical, part-physicochemical

・ロン ・ 一 レ ・ 日 と ・ 日 と