Dissipation Mechanisms in Bubble Scale Foam Rheology
Departures from Princen’s Sheared Honeycomb

P. Grassia1, B. Embley1, C. Oguey2

1CEAS
University of Manchester

2LPTM
University of Cergy-Pontoise
Outline

1. Hexagonal honeycomb foams
2. Foams out of mechanical equilibrium
3. Foams out of physicochemical equilibrium
Outline

1. Hexagonal honeycomb foams
2. Foams out of mechanical equilibrium
3. Foams out of physicochemical equilibrium
Under shear, system undergoes \textit{topological transformation} – so called ‘T1’
Unit cell of Princen honeycomb

Quasistatic mechanical equilibrium configuration

given vertex locations for unit cell

Vertex = *Fermat-Steiner* point
Films meet at \(\frac{2\pi}{3} \) angles
Princen model at topological transformation
Departures from mechanical equilibrium

Princen structure undergoes a *discrete* jump at topological transformation

How attempt to model the dissipative out-of-equilibrium relaxation process?
Outline

1. Hexagonal honeycomb foams
2. Foams out of mechanical equilibrium
3. Foams out of physicochemical equilibrium
Quasi-static model instantaneous jump to $x_B^{(final)}$

Dynamic model describes how the (half)length x_B of *newly created film* evolves with time t, in presence of surface viscosity μ_s, film tension γ_{eq} and Gibbs elasticity $\bar{\Gamma}$

Evolution time scale set by ratio μ_s/γ_{eq}, but influenced by $\bar{\Gamma}$
Surfactant conservation
Durand and Stone

Surfactant surface concn evolves as \(c(t) \) in growing film (assumed spatially uniform), and (by assumption) constant \(c_{eq} \) everywhere else.

Global conservation implies

\[
c(t)x_B(t) + c_{eq}L(t) = c_{eq}L_c
\]

where \(L_c \) is the initial value of \(x_B + L \).
Final mechanical equilibrium state
Durand and Stone

Surfactant *conc* on newly created film ↓ with time,
Tension on newly created film ↑ with time:
Mechanical force balance when $x_B = x_B^{(final)}$

If Gibbs parameter $\bar{\Gamma}$ ↑, more elastic (i.e. less compliant) films
→ Smaller $x_B^{(final)}$
Surfactant concentration
Durand and Stone

Surfactant coverage is related *directly* to geometry
\[c(t) = c_{eq}(L_c - L(t))/x_B(t) \]

\[\frac{c}{c_{eq}} \]

\[x_B \]

\[\sqrt{3}/2 \]
\[\sqrt{3} - 1 \]

\(c(t) \) deviates from \(c_{eq} \) *long before* \(x_B(t) \) becomes significant

Surfactant transferred *onto* newly created film from neighbours overwhelming any surfactant that is originally there
Film stretch rates

A consequence of inter-film surfactant transfer

\[\frac{\partial U}{\partial x} \] is stretch rate of film **material elements**, whereas \(\dot{x}_B / x_B \) is net stretch rate of film **vertex geometry**

\[\frac{\partial U}{\partial x} \] is **not** the same as \(\dot{x}_B / x_B \)

Vertex must **slip** relative to film material points

Amt of slip depends on angle \(\alpha \) between films and on \(c / c_{eq} \)
Comparison between $\frac{\partial U}{\partial x}$ and $\frac{\dot{x}_B}{x_B}$

For small x_B, with angle α between growing/shrinking films

$$\frac{\partial U}{\partial x} \approx \left(1 - \frac{\cos \alpha}{c/c_{eq}}\right) \frac{\dot{x}_B}{x_B}$$

$\dot{x}_B/x_B \gg \frac{\partial U}{\partial x}$
ev-en for $x_B \ll 1$

x_B exhibits

rapid initial acceleration
Effect of rapid initial acceleration

Durand and Stone

\[\dot{x}_B / x_B \gg \frac{\partial U}{\partial x} \]

for Durand and Stone

Contrast model of Biance et al. (2009)

Assumes \[\dot{x}_B / x_B = \frac{\partial U}{\partial x} \]

Exhibits *very slow* evolution

(note very different time scale cf. Durand and Stone graph)
Rapid motion (*after* initial acceleration) easiest to detect in experiment.

agreement with experiment here

actual start of T1
apparent start of T1
Summary and conclusions
Out of mechanical equilibrium foams

- Simple (but elegant) model for evolution of x_B in T1 process
 - Considers surfactant exchange *between* films (i.e. vertex *slips* relative to film material points), but ignores other (longer time scale) surfactant equilibration processes (Hence *unequal* tensions in ‘final’ state)
 - Surfactant coverage c related directly to geometry x_B
 - Abrupt change in c even whilst new film is very short ($x_B \ll 1$)
 - *Rapid initial acceleration* of x_B
Outline

1. Hexagonal honeycomb foams
2. Foams out of mechanical equilibrium
3. Foams out of physicochemical equilibrium
Surfactant transport in thin foam films
Consider film stretched by T1 and/or imposed shear

- Durand and Stone ‘final’ state has unequal film tensions
- Equilibrium surfactant concentration only restored from bulk over some (longer) characteristic time τ
- Equilibration is dissipative: decay of chemical potential
Consider shear of e.g. a hexagonal honeycomb foam with shear strain s (affecting film length L) applied at a rate comparable with physicochemical relaxation rate τ^{-1}.

\[
\frac{dc}{dt} = -s \frac{dL}{ds} c - \frac{(c - c_{eqm})}{\tau}
\]

\[
\left(\text{shear induced film stretch} \right) \quad \left(\text{equilibration with reservoir} \right)
\]

Grassia, Embley, Oguey

Dissipation Mechanisms
Deborah number
Physicochemical analogue of capillary number

\[De = \dot{s} \tau \]

- Controls departure from physicochemical equilibrium
- \(De \gg 1 \): *strong* departure from physicochemical equilibrium
 (Total surfactant on film *conserved* during shear flow)
- \(De \ll 1 \): *weak* departure from physicochemical equilibrium
 (Near *Princenian* behaviour)
Hexagonal honeycomb foams
Foams out of mechanical equilibrium
Foams out of physicochemical equilibrium

Unit cell in a honeycomb/staircase geometry via Cantat’s model

Mechanical relaxn rate \gg Physicochemical relaxn rate
Regardless of De, foam remains in mechanical eqm

- Film tensions: evolve via ode
- Vertex: constraint eqn $\sum \gamma_i t_i = 0$
- Film midpt: prescribed motion
- Film midpt: fixed
- Film midpt: fixed

Grassia, Embley, Oguey
Dissipation Mechanisms
High Deborah number limit
Conserved surfactant: Suppression of T1

Linearised surface tension model \(\gamma / \gamma_{eqm} = 1 - \bar{\Gamma} (c / c_{eqm} - 1) \)
becomes, for *conserved* surfactant coverage
\[
\frac{\gamma}{\gamma_{eqm}} = 1 - \bar{\Gamma} \left(\frac{L_{eqm}}{L} - 1 \right)
\]

If \(L / L_{eqm} \downarrow \), then \(\gamma / \gamma_{eqm} \downarrow \),
preventing further decrease in \(L / L_{eqm} \): T1 is *suppressed*

\[\rightarrow \text{Secular film growth to bursting point?} \]
Consider instead tension model with finite cutoff γ_{min} at cmc

Always have T1 if $\frac{\gamma_{min}}{\gamma_{max}} \geq \frac{1}{2}$

T1 is more likely if concn ratio $\frac{c_{eq}}{c_{cmc}}$ is small
Low Deborah number limit
Near Princenian behaviour

Near agreement with Princen’s model away from T1, punctuated by non-Princenian behaviour near T1

Non-Princenian effects:
can be physicochemical in origin, not just mechanical;
can occur immed. before T1, not only immed. after T1
Deviation from Princenian film length relations

For Princen, shrinking film length nearly linear in applied strain

![Graph showing deviation from Princenian film length relations](image)

Large *relative* changes in film length on approach to T1
Surfactant concentration grows \rightarrow Surface tension falls
Decay of film length is offset \rightarrow T1 is delayed
Delay in T1 depends on Deborah number De and on surface tension variation parameter $\bar{\Gamma} = |d\gamma/dc|$.

Bretherton-like $\frac{2}{3}$ power law behaviour.
Implications of mechanical equilibrium relation

Net pull of long films weakens both due to *swivel* and due to *finite length* of shrinking film.

Net pull of long films balances pull of shrinking film:

\[1 - \gamma_{\text{shrinking}} \sim (s - s_{\text{Princen}}) + L_{\text{shrinking}} \]

Concentration in shrinking film rises *above* equilibrium to match weakening net pull.
Surfactant coverage on shrinking film

Evolution of surfactant coverage (and hence film length) depends on deviation from equilibrium of shrinking film

\[De \frac{d(c L)}{ds} = L(c_{eqm} - c) \quad \Rightarrow \quad \frac{c}{c_{eqm}} \approx 1 + \frac{De}{L} \left| \frac{dL}{ds} \right| \]

Concn deviation \(c - 1 \) grows from \(O(De) \) to \(O(De^{1/2}) \) but remains small

\[\rightarrow \text{ Isotherm can be } \text{linearised} \]

Both \(1 - \gamma_{shrinking} \) and \(s - s_{Princen} \) also \(O(De^{1/2}) \)
Predicted film length evolution – Analytic solution

Zoom in near the Princen strain s_P

$$L = \frac{2\sqrt{\bar{\Gamma}} De}{1 + \text{erf}((s - s_P)/\sqrt{\bar{\Gamma}} De)} \exp\left(-\frac{(s - s_P)^2}{\bar{\Gamma} De}\right)$$
Predicted delay in T1

T1 occurs as film length L falls to ε (liquid fraction parameter)

$$\text{delay in T1} = \sqrt{\Gamma} De \sqrt{\log(\sqrt{\Gamma} De/\varepsilon)}$$

No free parameters
After topological transformation (low De limit only)

- New film created with length ε and then grows
- Mechanical relaxn *followed by* physicochemical relaxn
- Rel. amounts of each equilibration depend on $\bar{\Gamma} \equiv |d\gamma/dc|$
Post-T1 relaxation
Total film energy over all films

Large $\bar{\Gamma}$: minimal (instantaneous) mechanical relaxation; equilibration *entirely* physicochemical

Before mechanical relaxation

After mechanical relaxation

$O(\varepsilon)$

Grassia, Embley, Oguey

Dissipation Mechanisms
Small $\bar{\Gamma}$: significant *instantaneous* mechanical relaxation, followed by (relatively fast) physicochemical equilibration.

After mechanical relaxation

Before mechanical relaxation

$>> O(\varepsilon)$
Summary and conclusions
Out of physicochemical equilibrium foams

- Sheared staircase in *mechanical* equilibrium out of *physicochemical* equilibrium
- *Deborah number* controls departure from physicochemical equilibrium
- High Deborah number: strong *suppression* of topological transformations; instead secular growth/film bursting
- Low Deborah number: topological transformation *delayed* by an amount \sqrt{De}
- Low Deborah number: relaxation post-topological transformation can be entirely physicochemical, or can be part-mechanical, part-physicochemical