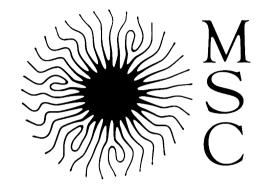
Role of liquid fraction and disorder on macroscopic response



Marc Durand

Matière et Systèmes Complexes

Université Paris Diderot, France

Dissipative Rheology of Foams, Dublin – january 09th-12th, 2012

Outline

- Role of liquid fraction on :

- static shear modulus
- Yield stress and strain
- Yield drag
- flow profile of linearly sheared foam

- Role of disorder on :
 - static shear modulus
 - T1 localization and flow profile of linearly sheared foam

Outline

- Role of liquid fraction on :

- static shear modulus
- Yield stress and strain
- Yield drag
- flow profile of linearly sheared foam

- Role of disorder on :
 - static shear modulus

- T1 localization and flow profile of linearly sheared foam

Role of liquid fraction on static shear modulus

Princen & Kiss (1986)

$$G \sim \sigma R_{32}^{-1} \Phi^{1/3} (\Phi - \Phi_c)$$

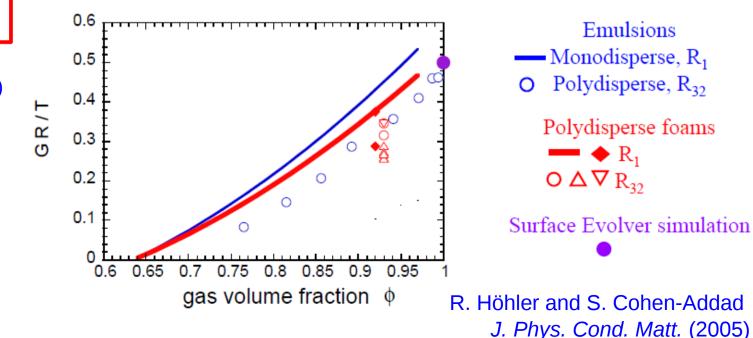
G = shear modulus

 Φ = gas fraction $R_{32} = \langle R^3 \rangle / \langle R^2 \rangle$ Sat σ = surface tension

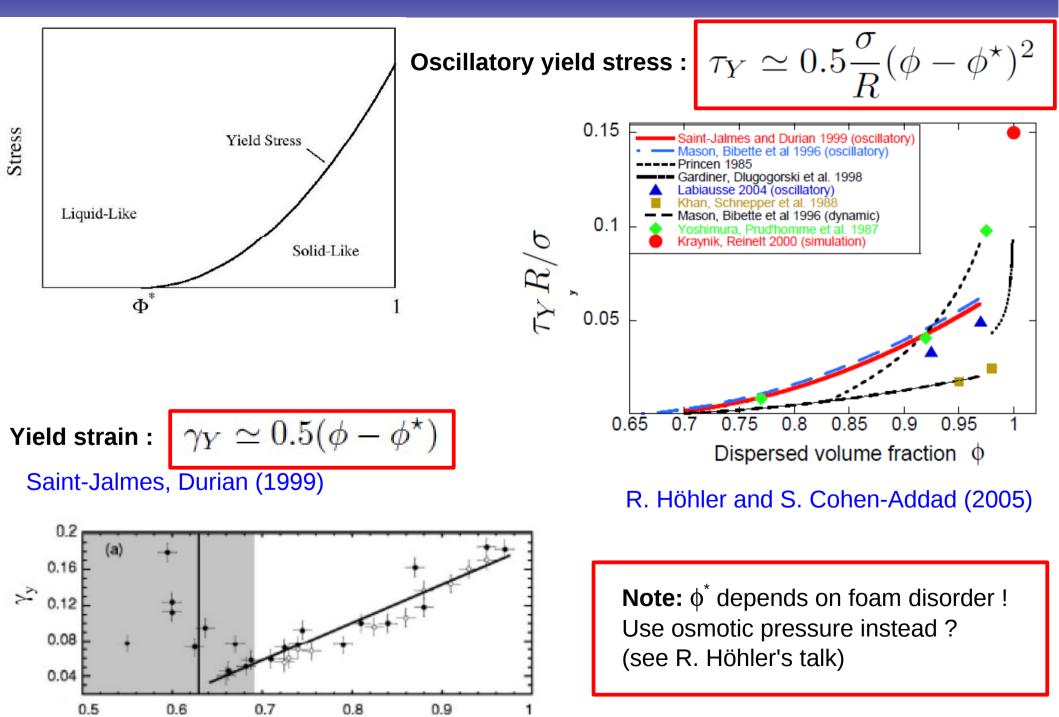
Sauter mean radius

 $G \sim \sigma/R \Phi (\Phi - \Phi^*)$

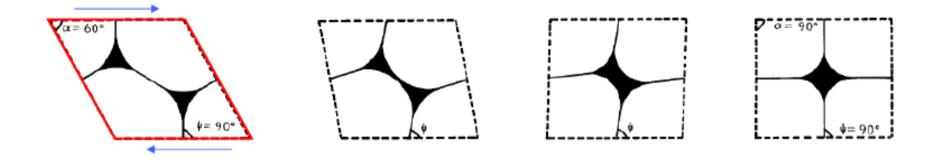
Mason, Bibette & Weitz (1995) Saint-Jalmes, Durian (1999)

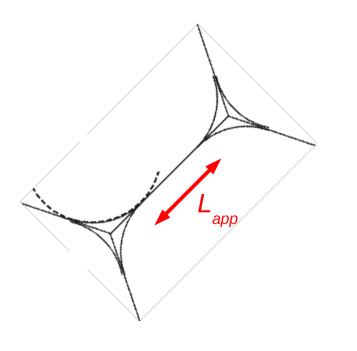


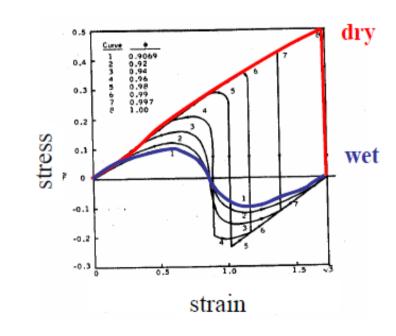
Role of liquid fraction on Yield stress and strain



Why liquid fraction Matters ?







Princen 1983

Role of liquid fraction on Yield drag

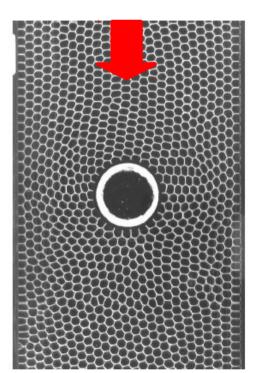
Eur. Phys. J. E 23, 217–228 (2007) DOI 10.1140/epje/i2006-10178-9

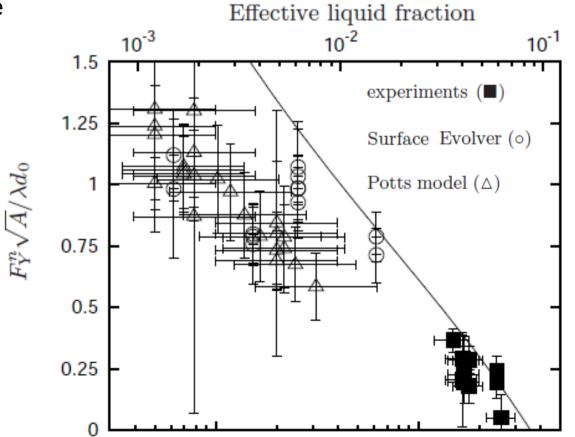
THE EUROPEAN PHYSICAL JOURNAL E

Yield drag in a two-dimensional foam flow around a circular

C. Raufaste^{1,a}, B. Dollet^{1,b}, S. Cox², Y. Jiang³, and F. Graner¹

Yield drag = minimal force required to create a movement of the foam relative to an obstacle

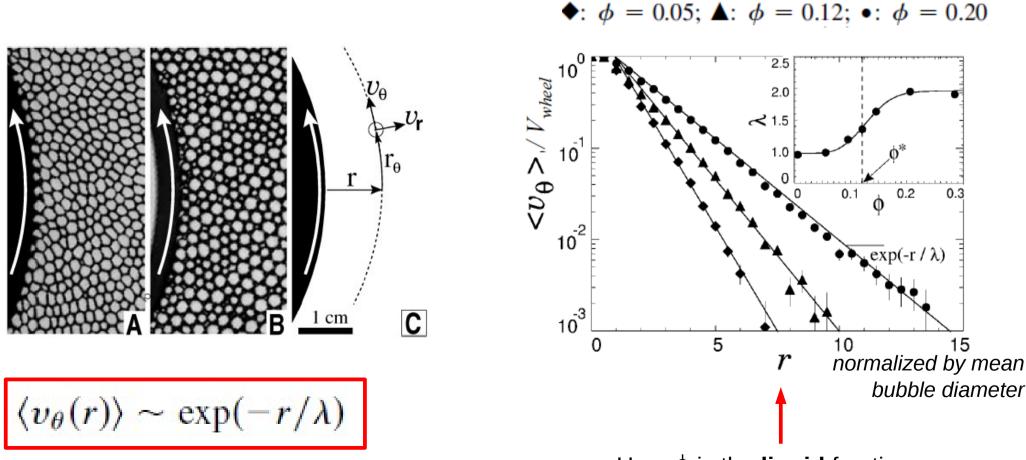




Role of liquid fraction on flow profile

Quasistatic, Couette flow in Hele-Shaw cell

Debregeas, Tabuteau, di Meglio 2001



(shear banding)

Here ϕ is the **liquid** fraction...

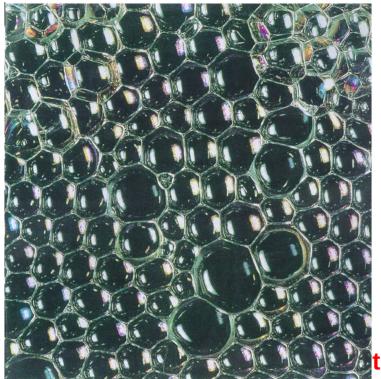
Outline

- Role of liquid fraction on :

- static shear modulus
- Yield stress and strain
- Yield drag
- flow profile of linearly sheared foam

- Role of disorder on :
 - static shear modulus
 - T1 localization and flow profile of linearly sheared foam

How to quantify disorder(s) ?



<u>2D foams</u>: mean number of sides is fixed : $\langle n \rangle = 6$

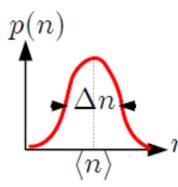
Assumption : Departure from regular (hexagonal) tiling is measured by the second moment of distributions of sides p(n), areas p(A), side lengths p(L),...

True for foams with **moderate dispersity** only (exact shape of distribution does not matter)

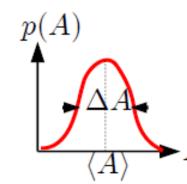
topological disorder : $\mu_2(n) = \sum_n p(n)(n - \langle n \rangle)^2 = \langle n^2 \rangle - \langle n \rangle^2$

geometrical disorders : $\mu_2(A) = \mu_2(L)$

To compare different foam samples, use of « normalized » quantities :



 $\frac{\Delta n}{\langle n \rangle} = \frac{\sqrt{\langle n^2 \rangle - \langle n \rangle^2}}{\langle n \rangle}$

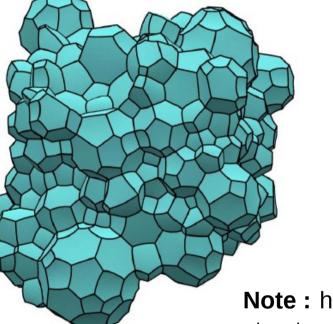


$$\frac{\Delta A}{\langle A \rangle} = \frac{\sqrt{\langle A^2 \rangle - \langle A \rangle^2}}{\langle A \rangle}$$

How to quantify disorder(s) ?

3D foams :

Disorders = second moments of distributions of faces p(f), sides p(n), volumes p(V), areas p(A), side lengths p(L).



topological disorders : $\mu_2(n)$ $\mu_2(f)$

geometrical disorders : $\mu_2(V) = \mu_2(A) = \mu_2(L)$

Note : here first moments *<n>* and *<f>* also depend (slightly) on foam structure

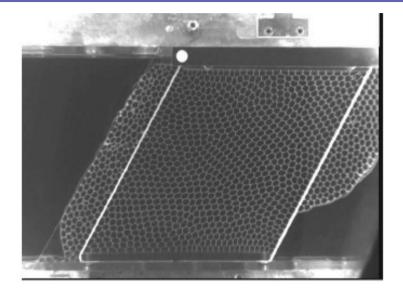
 $\langle n \rangle \simeq 5 \qquad \langle f \rangle \simeq 13 - 14$

Other measure of geometrical disorder :

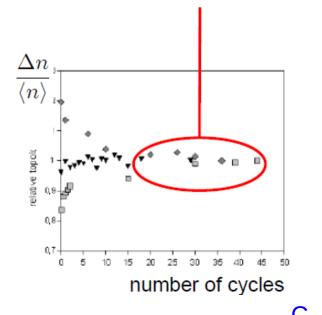
$$p = R_{32}/\langle R^3 \rangle^{\frac{1}{3}} - 1 = \langle R^3 \rangle^{\frac{2}{3}}/\langle R^2 \rangle - 1$$

Kraynik, Reinelt 2004

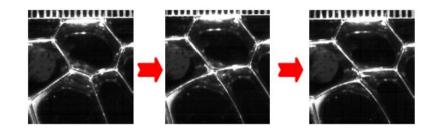
How are related the different measures of disorder ?

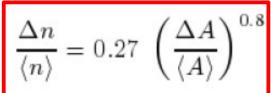


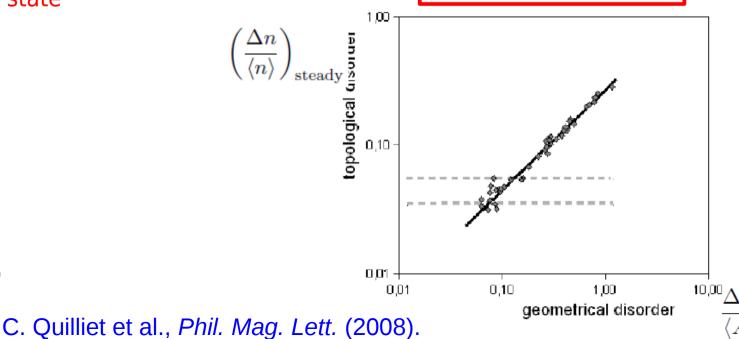
stationnary macroscopic state



rearrangements in a foam (T1 events):







Two models for disorder relationship (2D)

Statistical Physics approach

M.Durand *EPL* (2010) M. Durand, J. Käfer, C. Quilliet, S. Cox, S. Ataei Talebi, F. Graner *PRL* (2011).

Each bubble exchanges sides n and curvature κ with rest of foam, such that :

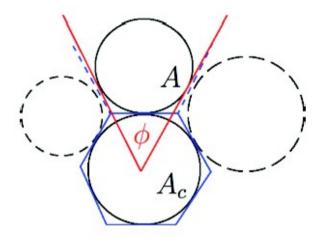
$$n + n_{\text{rest of foam}} = \text{constant} = 6N$$

 $\kappa + \kappa_{\text{rest of foam}} = \text{constant} = 0$

(large foam)

Granocentric model

M. P. Miklius, S. Hilgenfeldt, PRL (2012)



packing of hard discs with steric repulsion

Share common features :

- geometric models (energy does not play explicit role)
- mean field approximation (no correlations)
- no free parameters

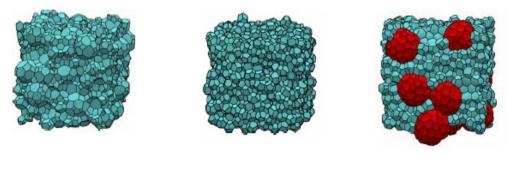
See S. Hilgenfeldt and F. Graner's presentation ...

Role of disorder on static shear modulus

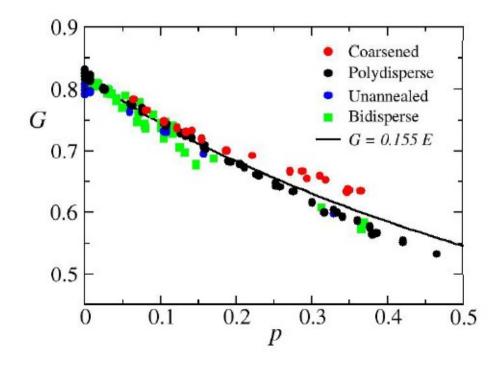
3D foams :

Princen & Kiss (1986) $G \sim \sigma R_{32}^{-1} \Phi^{1/3} (\Phi - \Phi_c)$ "dry" limit (Φ =1) $G = 0.51 \sigma R_{32}^{-1}$ $R_{32} = \langle R^3 \rangle / \langle R^2 \rangle$ Sauter mean radius

Kraynik, Reinelt 2004



$$p = R_{32}/\langle R^3 \rangle^{\frac{1}{3}} - 1 = \langle R^3 \rangle^{\frac{2}{3}}/\langle R^2 \rangle - 1$$



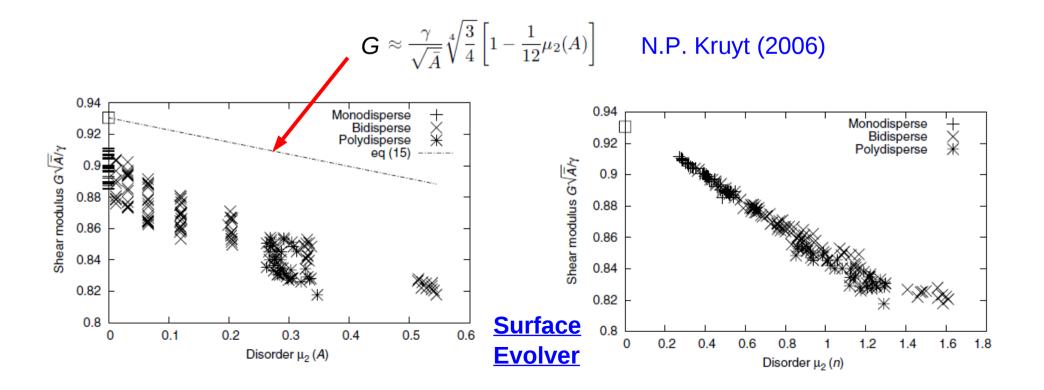
Role of disorder on static shear modulus

2D foams :

Eur. Phys. J. E **21**, 49–56 (2006) DOI 10.1140/epje/i2006-10044-x THE EUROPEAN PHYSICAL JOURNAL E

Shear modulus of two-dimensional foams: The effect of area dispersity and disorder

S.J. Cox^a and E.L. Whittick



Role of disorder on T1 localization

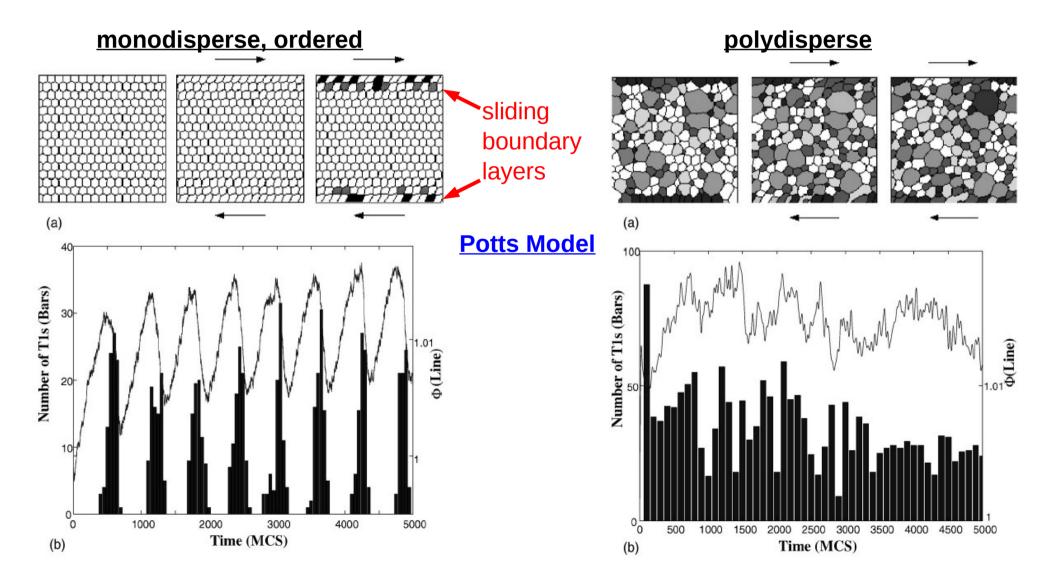
PHYSICAL REVIEW E

VOLUME 59, NUMBER 5

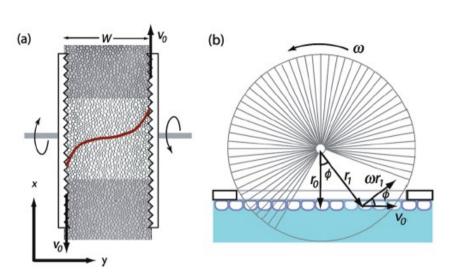
MAY 1999

Hysteresis and avalanches in two-dimensional foam rheology simulations

Yi Jiang,^{1,*} Pieter J. Swart,¹ Avadh Saxena,¹ Marius Asipauskas,² and James A. Glazier²



Role of disorder on velocity profile



Linearly-sheared 2D foam

Balance of drag forces between bubblebubble and bubble-top plate

G. Katgert, M. Möbius, and M. van Hecke (2008)

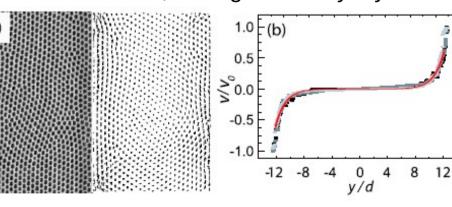
E. Janiaud, S. Hutzler, and D. Weaire (2006)

See also Y. Wang, K. Krishan, and M. Dennin (2006)

monodisperse

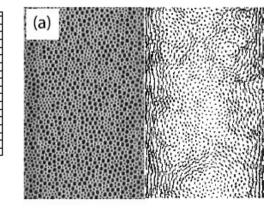
(a)

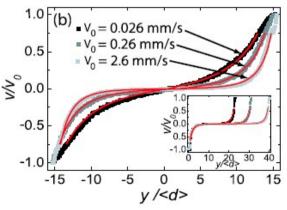
flow profile independent of shear ratelocalized, sliding boundary layers



<u>bidisperse</u>

- flow profile depends on shear rate
- becomes shear banded as shear rate \uparrow

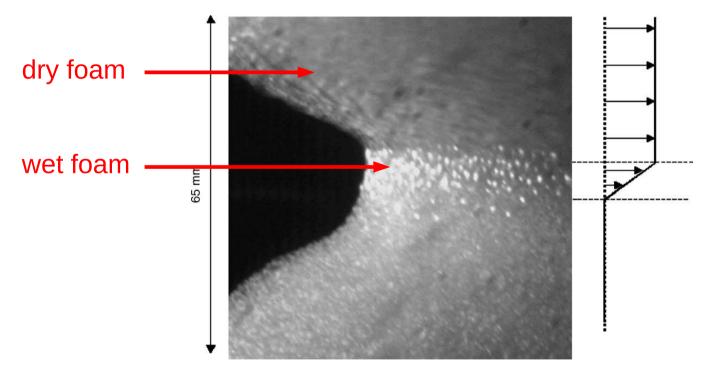




G. Katgert, M. Möbius, and M. van Hecke (2008)

Perspectives – open questions

- Interplay between rheology and drainage
- Interplay between rheology and liquid diffusion



S.P.L. Marze, A. Saint-Jalmes, D. Langevin (2005)

- Models for effect of disorder(s) on mechanical response of a foam.

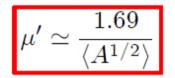
Statiscal Physics approach

$$p_A(n) = \chi(A)^{-1} \exp(-0.28\beta \frac{n(n-6)}{\sqrt{A}} + \mu n)$$

where effective « temperature » and « chemical potential » are related to the shape of area distribution.

For moderate dispersities :

$$\beta^{-1} \simeq 5.06 \frac{\langle A^{1/2} \rangle \langle A^{-1/2} \rangle - 1}{\langle A^{1/2} \rangle}$$



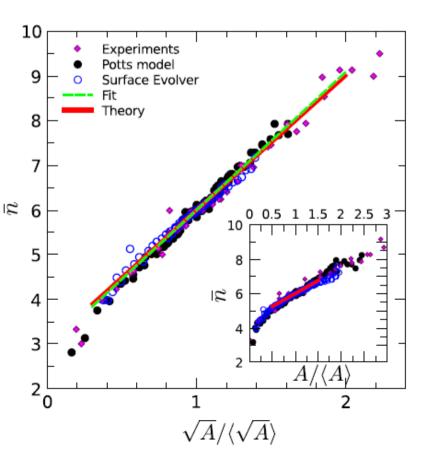
correlates geometrical disorder (p(A)) and topological disorder (p(n)):

$$p(n) = \int_0^\infty p(A) p_A(n) dA$$

Statistical Physics approach

For moderate dispersities, *i.e.* $(\Delta A/\langle A \rangle)^2 \ll 4$

 $\bar{n}(A) \simeq 3 \left(1 + \frac{\sqrt{A}}{\langle \sqrt{A} \rangle} \right)$



$$\frac{\Delta n}{\langle n \rangle} \approx \frac{1}{2^{3/2}} \frac{\Delta A}{\langle A \rangle} \approx 0.35 \frac{\Delta A}{\langle A \rangle}$$

