Foams and granular media

Brian Tighe

wet foams

dense grains

Soft repulsive spheres

Review articles

Van Hecke, J Phys Cond Matt 2010 Liu & Nagel, Ann Rev Cond Matt Phys 2010 Liu, Nagel, Van Saarloos & Wyart 2010 Bolton & Weaire 1990 Durian PRL 1995 Liu &Nagel Nature 1998 O'Hern et al PRE 2003 How does jamming differ for (overdamped, viscous, wet) foams and (massive, frictional) grains?

 $\gamma(t)$

time dependent (oscillatory)

quasistatic

Microscopic interactions

Foams are isostatic at zero pressure Grains need not be

Isostaticity: No static friction

$$\sum_{j} \vec{f}_{ij} = 0$$

 $z \ge 2d$ contacts per particle

$$\left|\vec{r_i} - \vec{r_j}\right| = R_i + R_j$$

 $z \leq 2d$ contacts per particle

thus $z_c = 2d$

image: CS O'Hern

Isostaticity: No static friction

$$z - z_c \sim (\phi - \phi_c)^{1/2}$$

image: CS O'Hern

O'Hern et al., PRE 2003

$$-\underbrace{k_n}_{k_{n+1}}\underbrace{k_{n+1}}_{k_n} \underbrace{k_n}_{k_n} = \text{eigenvalue of the Hessian}$$

what is the spectrum of eigenvalues? what is the density of states?

Density of states

density of states $D(\omega)$

plateau at low ω

crossover frequency

"Cutting argument"

excess contacts ~ volume $N_{\rm b} \sim (z_{\rm c} + \Delta z) L^d$

cut contacts ~ surface area $N_{\rm c} \sim L^d/\ell$

create zero modes if

 $\ell < \ell^* \sim 1/\Delta z$

Density of states

Silbert et al., PRL 2005 Wyart et al., EPL 2006

$$\frac{1}{G} \propto \int \frac{D(\omega)}{\omega^2} \mathrm{d}\omega \sim \frac{1}{k^{1/2} \,\omega^*} \sim \frac{1}{k \,\Delta z}$$

shear modulus vanishes at isostatic point!

O'Hern et al., PRE 2003

$$\frac{1}{G} \propto \int \frac{D(\omega)}{\omega^2} \mathrm{d}\omega \sim \frac{1}{k^{1/2} \,\omega^*} \sim \frac{1}{k \,\Delta z}$$

shear modulus vanishes at isostatic point!

O'Hern et al., PRE 2003

Frictionless jamming scenario

Shear modulus proportional to crossover frequency in DOS Crossover frequency vanishes at isostatic point Frictionless spheres (wet foams) isostatic at unjamming

Isostaticity: With static friction

$$\sum_{j} \vec{f}_{ij} = 0$$

(+ torque balance)

 $z \ge d+1$ contacts per particle

$$\left|\vec{r_i} - \vec{r_j}\right| = R_i + R_j$$

 $z \leq 2d$ contacts per particle

thus $d+1 \le z \le 2d$ at p = 0

image: CS O'Hern

Isostaticity: With static friction

$$\sum_{j} \vec{f}_{ij} = 0$$

(+torque balance)

 $z \ge d+1$ contacts per particle

$$\left|\vec{r_i} - \vec{r_j}\right| = R_i + R_j$$

 $z \leq 2d$ contacts per particle

thus $d+1 \le z \le 2d$ at p = 0

Somfai et al., PRE 2004

Isostaticity: With static friction

Somfai et al., PRE 2004

Quasistatic response with friction

Quasistatic response with friction

Somfai et al., PRE 2004

Quasistatic response with friction

Nguyen et al., PRL 2011

Somfai et al., PRE 2004

Frictional jamming scenario

Shear modulus (still) proportional to crossover frequency in DOS Crossover frequency (still) vanishes at isostatic point But frictional spheres (grains) hyperstatic at unjamming Shear modulus has a jump How does jamming differ for (overdamped, viscous, wet) foams and (massive, frictional) grains?

$\gamma(t)$

quasistatic

time dependent (oscillatory)

Microscopic interactions

$$\begin{aligned} & \operatorname{driving\,frequency} \\ & (\hat{K} + \imath \omega \, \hat{B}) | u \rangle = \sigma(\omega) \, L^d | \hat{\gamma} \rangle \\ & \stackrel{\text{viscous}}{\underset{friction}{\underset{B_{ij}}{=}}} & \frac{\partial^2 R}{\partial \dot{u}_i \partial \dot{u}_j} \end{aligned} \quad \begin{array}{l} & \operatorname{Rayleigh} \\ & \operatorname{dissipation} \\ & \operatorname{dissipation} \\ & \operatorname{funcion} \\ \end{array} \end{aligned}$$

Storage and loss moduli

Storage and loss moduli

 ω

$$\begin{aligned} & \operatorname{driving\,frequency} \\ & (\hat{K} + \imath \omega \, \hat{B}) | u \rangle = \sigma(\omega) \, L^d | \hat{\gamma} \rangle \\ & \operatorname{viscous} \\ & \operatorname{friction} \\ & B_{ij} = \frac{\partial^2 R}{\partial \dot{u}_i \partial \dot{u}_j} \end{aligned} \qquad \begin{aligned} & \operatorname{Rayleigh} \\ & \operatorname{dissipation} \\ & \operatorname{funcion} \end{aligned}$$

 s_n = generalized eigenvalue of $\{\hat{K},\hat{B}\}$

$$\frac{1}{G^*} \propto \sum_n \frac{1}{s_n + \imath \omega}$$

Density of states (DOS)

$$DOS \sim \frac{1}{s^{1/2}}$$

$$s^* := \frac{1}{\tau^*} \sim \Delta \phi$$

generalize "cutting argument" of Wyart Nagel & Witten (EPL 2005) to damped dynamics

$$\frac{1}{G^*(\omega)} \propto \int \frac{D(s) \,\mathrm{d}s}{s + \imath \omega}$$

Storage and loss moduli

W

Dynamical critical scaling

Dynamical critical scaling

Shear thinning in experiment

 $G^* \sim (\imath \omega)^{1/2}$

what's new?

- clear connection to jamming
- multiple regimes with crossovers
- no fluctuation-dissipation

Shear thinning in experiment

2%

Gopal & Durian, PRL 2003

 $G^* \sim (\imath \omega)^{1/2}$

emulsions, liquid foams, organic foams, microgel suspensions...

Höhler & Cohen-Addad, PRE 1998 Hébraud et al., Langmuir 2000 Kropka & Celina, JCP 2010

Creep compliance

Nguyen et al., PRL 2011

see also McDowell & Khan, Gran. Matt. 2003

Conclusions

anomalous slow modes near isostaticity control response

frictionless/foams

necessarily isostatic at p = 0

vanishing G

diverging viscosity

shear thinning

frictional/grains

not necessarily isostatic at p = 0

jump in G