

Jnivers

nes-

Modeling Random Wet 2D Foams with Controlled Polydispersity

"Back to the Future?"

Andy Kraynik Sandia National Labs (retired) CEAS, University of Manchester University of Erlangen-Nuremberg

> Simon Cox Aberystwyth University

Stephen Neethling Imperial College London

Random Foams

Kraynik, Reinelt & van Swol (2003) *Phys Rev E* **67**, 031403; (2004) *Phys Rev Lett* **93**, 208301; (2005) *Colloids Surfaces A* **263** 11-17.

- Spatially periodic structure
- 1728 cells

Cell volumes vary by three orders of magnitude

Outline

Motivation

Simulating random 2D foams with controlled polydispersity

Dry

Energy

Shear modulus

Wet

Increasing liquid fraction toward the jamming transition Shear modulus

Simulating Random Polydisperse Foam

Molecular Dynamics Random Close Packed (RCP) Spheres

Laguerre (Weighted Voronoi) Tessellation Surface Evolver Relaxed Foam

Tension-Compression Cycles

Annealing

Relax the lattice to achieve isotropic stress Elastic Recoil

Confocal microscopy of Plateau borders in emulsions

Eric Weeks, Physics, Emory University and Doug Wise, Physics, Harvard University

Plateau borders in liquid foams correspond to struts in solid foams

Wet monodisperse foams with 64 cells and isotropic stress

Bubble Overlap

Random Monodisperse Foam

Modeling the strut-level geometry of open-cell foams

Multiple solutions when the thin film tension is 2σ

The junction between the Plateau borders and the thin films is not unique computationally and can lead to overlapping interfaces near the cusp when the film tension is 2σ .

Random Polydisperse 2D Foams

Packed Disks

Voronoi Polygons

Equilibrium

Surface Free Energy Density in 3D

$$E = \sigma \frac{S_F}{V_F} = \sigma \frac{\sum S}{\sum V} = 3\beta\sigma \frac{\langle R^2 \rangle}{\langle R^3 \rangle} = 3\beta \frac{\langle R^3 \rangle^{1/3}}{R_{32}} \frac{\sigma}{\langle R^3 \rangle^{1/3}} = \frac{\beta (36\pi)^{1/3}}{1 + \left[\frac{R_{32}}{\langle R^3 \rangle^{1/3}} - 1\right]} \frac{\sigma}{\langle V \rangle^{1/3}}$$

$$E = \frac{3\beta\sigma}{R_{32}} = \frac{\beta (36\pi)^{1/3}}{1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{5.32}{1 + p} \frac{\sigma}{\langle V \rangle^{1/3}}$$
Sauter mean radius $R_{32} = \frac{\langle R^3 \rangle}{\langle R^2 \rangle}$ polydispersity $p = \frac{R_{32}}{\langle R^3 \rangle^{1/3}} - 1 \ge 0$

$$\int_{1.6}^{1.6} \frac{1}{1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = 1.101 \pm 0.006}{\frac{1}{1 + p} \frac{\sigma}{\langle V \rangle^{1/3}}} = \frac{5.2}{1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{1.01 \pm 0.006}{\frac{\sigma}{0} + 1 + p} \frac{\sigma}{\langle V \rangle^{1/3}} = \frac{\sigma}{\langle V \rangle^{1/3$$

Surface Free Energy Density in 2D

$$E = \sigma \frac{L_F}{A_F} = \sigma \frac{\sum L}{\sum A} = 2\beta\sigma \frac{\langle R \rangle}{\langle R^2 \rangle} = 2\beta \frac{\langle R^2 \rangle^{1/2}}{R_{21}} \frac{\sigma}{\langle R^2 \rangle^{1/2}} = \frac{2\beta\pi^{1/2}}{1 + \left[\frac{R_{21}}{\langle R^2 \rangle^{1/2}} - 1\right]} \frac{\sigma}{\langle A \rangle^{1/2}}$$

$$E = \frac{2\beta\sigma}{R_{21}} = \frac{2\beta\pi^{1/2}}{1 + p} \frac{\sigma}{\langle A \rangle^{1/2}} = \frac{3.75}{1 + p} \frac{\sigma}{\langle A \rangle^{1/2}}$$
Sauter mean radius
$$R_{21} = \frac{\langle R^2 \rangle}{\langle R \rangle}$$
polydispersity
$$p = \frac{R_{21}}{\langle R^2 \rangle^{1/2}} - 1 \ge 0$$

$$I_{114}^{112} = \frac{\langle R^2 \rangle}{\langle R \rangle}$$

$$I_{112}^{11} = \frac{\langle R^2 \rangle}{\langle R \rangle}$$

$$I_{114}^{112} = \frac{\langle R^2 \rangle}{\langle R \rangle}$$

$$I_{114}^{1$$

Scaled perimeter

Shear Modulus

2D

$$G \approx 0.155 \ E = 0.512 \ \frac{\sigma}{R_{32}}$$

Creating Wet Random Polydisperse 2D Foams

Weighted-Voronoi (Laguerre) Polygons

Weighted-Voronoi Polygons with Primitive Plateau Borders

Wet Topological Transition Neighbor Switching

Outlook for Random Wet 2D Foams

Topology Geometry Rheology Diffusive Coarsening

Swelling a foam by adding liquid

Transition Between Liquid-Like and Solid-Like Behavior

High Internal Phase Emulsion (HIPE)

 $\theta = 8^{\circ}$ $\rho = 0.02$

 $\rho = 0.07$

"Beyond Jamming"

Physics of Flocculated (Adhesive, Sticky) Emulsions

$$P = 4\pi R \left(1 + \frac{\theta^3}{6\pi} + \cdots \right)$$

$$E = 4\pi\sigma R \left(1 - \frac{\theta^3}{3\pi} + \cdots \right)$$

Aveyard et al. Langmuir 18, 3487-3494, (2002)

20 µm

0.4 M NaCl

The surface area of a foam cell is about 10% greater than an equal-volume sphere

Shear Modulus: Theory

B.V. Derjaguin (1933) Kolloid-Z. **64**, 1. Affine deformation of random soap films G = 4/15 E = 0.267 E

D. Stamenovic (1991) *J. Coll. Int. Sci.* **145**, 255. Deformation of idealized foam vertex

G = 1/6 E = 0.167 E

Kraynik & Reinelt (1996) *J. Coll. Int. Sci.* **181**, 511. Surface Evolver calculations for ordered foams

Shear Modulus: Measurements for foams and emulsions

H.M. Princen & A.D. Kiss (1986) J Coll Int Sci 112 427.

Static shear modulus of highly concentrated liquid-liquid emulsions

$$G \sim \sigma R_{32}^{-1} \phi^{1/3} (\phi - \phi_c)$$
$$R_{32} = \Sigma R^3 / \Sigma R^2$$

"dry" limit (\phi=1)
$$G = 0.51 \sigma R_{32}^{-1}$$

T.G. Mason, J. Bibette & D.A. Weitz (1995) PRL 75 2051.

Elasticity of compressed emulsions

$$G \sim \sigma \; R^{-1} \, \phi \; (\phi - \phi_{\rm c})$$

A. Saint-Jalmes & D.J. Durian (1999) *J Rheology* **43** 1411. Vanishing elasticity of wet foams Surface Evolver simulation of random wet foam

 $\phi = 0.025$

