

Institut für Strömungsmechanik

Numerical Simulation of Bubble collisions with PRIME.

S. Heitkam^{1,2}, A. Hoffmann², W. Drenckhan¹, D. Langevin¹ J. Fröhlich²

LPS, Paris Sud XI¹ and ISM, TU Dresden²

CECAM Dublin, 09.01.2012

Example

Simulation of foam

Immersed Boundary Method

- Forcing points on particle surface
- Additional volumetric force in NSE to set boundary conditions (no-slip)
- Equation of motion (rigid particle) for bubble

Particles/Bubbles

Bubble collision

Pressure field of a bubble-wall-collision

Lamella thickness << Grid resolution

 \rightarrow Local force model= ?

Normal forces

Few data to validate collision model!!!

Test setup for collision

Zenit et al.: The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids 2009

- Very soft
- Large deformation
- Collision model fails

Different collision models

Different collision models

Explanation?

Virtual mass effect

Conclusion

- Low influence of shape of collison force
- Bubble is dominated by flow field
- Collision time important for dissipation (in flow field)

Thank you for your attention! Questions?