Continuum mechanics description of foam flows

I. Cheddadi, P. Saramito, F. Graner B. Dollet, C. Raufaste Eur Phys J E 2011, J Rheol in press 2012

- individual : bubble
- "mesoscopic" : group of bubbles
- global : foam flow

What can we ask from models?

• from individual to mesoscopic :

determine material parameters - viscosity, shear modulus

• from mesoscopic to global :

use these parameters to predict the flow

Complete continuous models?

Existing continuous models : Janiaud et al. PRL 2006 : ID, friction of plates Katgert et al. PRL 2008 : ID, friction of plates, non-linearities Goyon - Bocquet - Colin 2009-2010 : ID, long range effect of T1s Marmottant et al. EPJE 2007 : 3D, progressive plasticity Benito et al. EPJE 2008, 2012 : 3D, non-linear elasticity Saramito JNNFM 2007, 2009 : 3D, obeys the second principle Optimum between simplicity and completeness :

- Find which rheology is required to capture the physics
- Answer the engineer's questions
- Model parameters measurable in experiments and simulations

Main ingredients :

- viscous, elastic, plastic
- tensorial

Two material parameters :

• yield strain ε_Y

• a characteristic time, adimensioned; eg : visco-plastic : Bingham = $\frac{\tau_Y L}{\eta V}$ visco-elastic : Weissenberg = $\frac{\eta V}{GL} = \frac{2\varepsilon_Y}{Bi}$

Flows in a geometry without stress heterogeneity :

- simple shear
- oscillating shear
- uniaxial extensional

Flows in a geometry without stress heterogeneity :

- simple shear
- oscillating shear
- uniaxial extensional

Saramito 2007, 2009

Flows in a geometry without stress heterogeneity :

- simple shear
- oscillating shear
- uniaxial extensional

Saramito 2007, 2009

Flows in a geometry with stress heterogeneity, 2D or 3D :

- Couette : between // or concentric plates \rightarrow predict localisation length ?
- Stokes : around an obstacle \rightarrow predict velocity field ?
- Poiseuille : in a channel
- constriction : across a hole

Flows in a geometry without stress heterogeneity :

- simple shear
- oscillating shear
- uniaxial extensional

Saramito 2007. 2009

Flows in a geometry with stress heterogeneity, 2D or 3D :

- Couette : between // or concentric plates \rightarrow predict localisation length?
- Stokes : around an obstacle \rightarrow predict velocity field?
- Poiseuille : in a channel
- constriction : across a hole

Cheddadi 2011, 2012 + in progress

Predict Stokes?

Main parameter : yield strain

map of velocity field - calculated in the half-plane

Predict Stokes?

Main parameter : yield strain

Real visco-elasto-plastic

- up- / down-stream asymmetry
- overshoot in velocity
- zero-velocity point behind the obstacle

speed along the main axis y = 0 referential moving with the foam

Test of prediction : $\mathbf{v} - \mathbf{V}_{in}$

Cheddadi et al, Eur. Phys. J. E (2011)

prediction : continuous model

dry foam experiment : discrete measurements

Good agreement

- amplitude of \boldsymbol{v}
- orientation of **v**
- recirculation zones
- arrest points
- overshoot

Test of prediction : strain

Cheddadi et al, Eur. Phys. J. E (2011)

Systematic tests of all quantities

dry foam experiment : discrete measurements

Continuous model at global scale = useful for physicist, mechanician, engineer?

- seems predictive
- contributes to debates : origin of localisation, discontinuity, non-uniqueness, overshoot
- stress versus total deformation rate & elastic deformation
 → visco-plastic Herschel-Bulkley in steady one-dimensional flow
- visco-elasto-plastic tensorial required to capture physics; non trivial effects
- parameter with the strongest effect : yield strain
- covers a realistic range of velocities
 4 decades, limited by coarsening and film breakage

- more details about bubble shape : Gay & Cantat
- non-locality : Bocquet & Goyon
- quasistatic (u
 ightarrow 0 not equivalent to u = 0) : Marmottant
- statistical effects : fluctuations, correlations, jamming, avalanches
- high speed : carbopol experiments

Marmottant 2007

local energy minimum

Small deformation

elastic solid

reversibly comes back to its initial shape

local energy minimum

T1 : neighbour change

Small deformation	Large deformation
elastic solid	plastic solid
reversibly comes back	irreversibly sculpted,
to its initial shape	new shape

Marmottant 2007

Marmottant 2007

local energy minimum

T1 : neighbour change

relaxation \rightarrow other minimum

Small deformationLarge deformationelastic solidplastic solidreversibly comes backirreversibly sculpted,to its initial shapenew shape

Quick deformation rate viscous liquid irreversibly flows, stress increases with rate

Marmottant 2007

local energy minimum

T1 : neighbour change

relaxation \rightarrow other minimum

especially in 2 dimensions

Small deformation
elastic solid
reversibly comes back
to its initial shapeLarge deformation
plastic solid
irreversibly sculpted,
new shapeQuick deformation rate
viscous liquid
irreversibly flows,
stress increases with rate

Advantages of foams

Disordered units which rearrange

- Bubbles act as tracers
- Multi-scale visualisation

model for : droplets, polymers, atoms, cells velocity, deformation, plastic events micro-structure & global flow

Discriminant experiment

- controlled, reproducible flow
- variety of shears and elastic deformations
- two or more dimensions of space

Dollet, Graner, JFM 07

Discriminant experiment

- controlled, reproducible flow
- variety of shears and elastic deformations
- two or more dimensions of space

B. Dollet

wet foam, $\phi = 7\%$

flow around an obstacle V = 1 cm/s

Graner et al. 2008, Marmottant et al. 2008

Graner et al. 2008, Marmottant et al. 2008

Graner et al. 2008, Marmottant et al. 2008

VelocityTextureBubble shape and packingImage: Second state st

Velocity gradient

Shape change

00

Graner et al. 2008, Marmottant et al. 2008

Shape change

Graner et al. 2008, Marmottant et al. 2008

Shape change

V, E and P contributions are expressed in the same units