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Abstract

A local version of the concept of polynomial boundedness for operators on Ba-

nach spaces is defined and its relations to functional calculi are examined. For

certain positive operators on L
∞–spaces, especially for endomorphisms, lack of lo-

cal polynomial boundedness corresponds to mixing properties. In particular, we

give a new characterization of the weak mixing property. Some results extend to

more general C
∗–algebras. This is done by constructing certain topological embed-

dings of the unit vector base of l
1(IN0) into the orbits of an operator. To analyze

the underlying structure we introduce the concept of a transition set. We compute

transition sets for the shift operator on l
1(Z) and show how to define a correspond-

ing similarity invariant.

Contents: 1 Introduction 2 Local Functional Calculi 3 Relations to

Ergodic Theory 4 The Transition Set.

1 Introduction

Reading the classical monograph ”Harmonic Analysis of Operators in Hilbert

Spaces” by B. Sz.-Nagy and C. Foias [15] provides a strong impression of the

usefulness of large functional calculi in establishing a detailed structure the-

ory of operators. The property of polynomial boundedness is a necessary

condition for the possibility of defining these calculi. On the other hand, a

rather different sort of behaviour should be expected if we consider operators

which are not polynomially bounded.

In the second section we develop the concept of local polynomial bound-

edness. With the help of this point of view it is possible to obtain spectral

properties of an operator which are equivalent to the existence of certain

functional calculi. Results which are implicit in the work of many authors

∗This paper is part of a research project which is supported by the Deutsche Forschungsgemeinschaft.
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using functional calculi can be summarized in a convenient way. Conversely

we may characterize those operators on Banach spaces, which do not al-

low an approach by large functional calculi, by their lack of local polyno-

mial boundedness. In fact, the main idea behind our work in the following

sections has been to consider degrees of deviation from local polynomial

boundedness and to use the classification evolving in this manner as a new

structure theory of operators.

In the third section we show that for endomorphisms and some other pos-

itive operators on L∞–spaces this classification is closely related to the clas-

sification concerning mixing properties, known from ergodic theory. Some

of the results extend to more general C∗–algebras. The classical Rohlin

lemma and its modern version by A.Connes are used, and we give an equiv-

alent characterization of the weak mixing property in terms of local polyno-

mial boundedness, using a result of H. Furstenberg. The relation between

ergodic theory and polynomial boundedness is established by certain topo-

logical embeddings of l1(IN0) into the orbits of the operator. A lemma by

H. P. Rosenthal and L. Dor becomes relevant for operator theory as a tool

to identify such embeddings. For shift operators these constructions are

particularly easy.

Indeed the existence of such embeddings is completely opposite to any

polynomial boundedness properties. We try to encode the information ob-

tained in this way concerning deviation from polynomial boundedness into

the socalled transition set. The fourth section is devoted to this concept.

For the shift operator on l1(Z) all transition sets can be computed ex-

plicitly from symmetry properties of the set of zeros of Fourier transforms.

Extending the definition of the transition set, we can define an invariant for

similarity of operators. For example, if we find nonempty transition sets for

an operator, then infinitely many cyclic subspaces can be constructed such

that its restrictions are not similar. The complexity of a structure theory

for operators of this class is already evident from that.
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2 Local Functional Calculi

First of all we fix some notation which will be used throughout the text.

The open unit disk {z ∈ IC : |z| < 1} is denoted by D, and for its boundary

∂D we use a parametrization by [0, 2π) ∋ t 7→ eit ∈ ∂D.

dt denotes Lebesgue measure on [0, 2π), and M[0, 2π) is the set of all (com-

plex, regular, finite) Borel measures on [0, 2π). For any suitable function f

on ∂D we get Fourier coefficients f̂(n) := 1
2π

∫ 2π
0 f(t)e−int dt.

We consider the following function algebras on ∂D:

L∞(∂D), the algebra of dt-essentially bounded functions on ∂D,

C(∂D), the algebra of continuous functions on ∂D,

A(∂D) :=
{

f ∈ C(∂D) : ‖f‖A :=
∑

n∈Z |f̂(n)| < ∞
}

, the Wiener–algebra,

and in each case the subalgebra of those functions whose Fourier coeffi-

cients with negative indizes all vanish: H∞(∂D), C+(∂D), A+(∂D). It

is also possible to interpret these subalgebras as algebras of analytic func-

tions inside of the unit disk. We refer to [8] for these and all further details

concerning these algebras.

If T is any contraction on a Banach space X, it is possible to define an

operator f(T) for any f ∈ A+(∂D) by f(T ) :=
∑

n∈IN0
f̂(n)T n. For certain

contractions on a Hilbert space a H∞(∂D)–functional–calculus has been

defined by B. Sz.-Nagy and C. Foias [15]. An important ingredient of such

extensions is given by von Neumann’s inequality ‖p(T )‖ ≤ ‖p‖∞, valid for

all contractions on a Hilbert space and all polynomials p ∈ A+(∂D). More

generally a contraction T on a Banach space is called polynomially bounded,

if ‖p(T )‖ ≤ K‖p‖∞ is valid for a constant K ≥ 0 and all polynomials

p ∈ A+(∂D).

The relations between functional calculi and polynomial boundedness

can be stated in a concise way if the following local version of the concept

of polynomial boundedness is introduced, which to the knowledge of the

author has not been systematically investigated up to now.
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Definition 2.1 Let T be a contraction on a Banach space X. T is called

(locally) polynomially bounded in a vector x ∈ X, if

‖p(T )x‖ ≤ Kx‖p‖∞

is valid for a constant Kx ≥ 0 and all polynomials p ∈ A+(∂D).

If they exist we shall assume K or Kx to be chosen minimally. We shall

also speak of a polynomially bounded vector x ∈ X, with respect to the

operator T, in the sense defined above.

Remark 2.1: A contraction T is (globally) polynomially bounded if and

only if it is (locally) polynomially bounded in all x ∈ X.

Proof: Apply the principle of uniform boundedness to the set

{p(T ) : ‖p‖∞ = 1}.

Definition 2.2 Let T be a contraction on a Banach space X and let A

be a topological algebra of functions on ∂D which contains all polynomials

p ∈ A+(∂D).

A local A–functional–calculus of T in x ∈ X is a continuous linear map

F : A → X with the following properties:

(L1) F(p) = p(T )x for all polynomials p ∈ A+(∂D).

(L2) F(pf) = p(T )F(f) for all polynomials p ∈ A+(∂D) and all f ∈ A.

We shall write f(T)x instead of F(f), which is consistent with the usual

interpretation of this symbol for polynomials by (L1). Now (L2) reads:

(pf)(T )x = p(T )(f(T )x) for all p ∈ A+(∂D) and f ∈ A.

If we have a local A–functional–calculus F of T in x ∈ X, then for all

g ∈ A the map

Fg : A ∋ f 7→ (fg)(T )(x) ∈ X

defines a local A–functional–calculus of T in g(T)x: Continuity and linearity

follow from (L1) for F and from continuity and linearity of the multiplica-

tion in A. If p ∈ A+(∂D) is a polynomial and f ∈ A, then

Fg(p) = (pg)(T )x = p(T )(g(T )x),

Fg(pf) = (pfg)(T )x = p(T )((fg)(T )x) = p(T )(Fg(f)),

which proves (L1) and (L2) for Fg.
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Now in the obvious way the equation f(T )(g(T )x) = (fg)(T )x is well de-

fined and true, which justifies the terminus ”local functional calculus”. In-

deed if we have consistent A–functional–calculi simultaneous for all x ∈ X,

then this is just a functional calculus in the usual sense: a continuous ho-

momorphism of algebras.

In our first theorem we consider C+(∂D)–functional–calculi.

Theorem 2.1 Let T be a contraction on a Banach space X and x ∈ X.

The following assertions are equivalent:

(1) T is (locally)polynomially bounded in x.

(2) There is a (norm continuous) local C+(∂D)–functional–calculus of T in x.

(3) For every x∗ ∈ X∗ (the dual of X) there is a measure µx,x∗ ∈ M[0, 2π)

with

< T nx, x∗ >=
∫ 2π

0
eint dµx,x∗

for all n ∈ IN0.

Proof:

(1) ⇒ (2)

For any f ∈ C+(∂D) there is a sequence {pn}n∈IN ⊂ C+(∂D) of polynomials

such that ‖pn − f‖ → 0. By (1) the sequence {pn(T )x}
n∈IN is a Cauchy

sequence in X. We define f(T)x to be the limit of this sequence. It is now

easy to see that this limit does not depend on the choice of the polynomials

and that the map f 7→ f(T )x is normcontinuous. (L1) is valid by definition

and (L2) follows from

p(T )(f(T )x) = p(T )(limn→∞ pn(T )x) = limn→∞ p(T )pn(T )x

= limn→∞(ppn)(T )x = (pf)(T )x.

(2) ⇒ (3)

The map C+(∂D) ∋ f 7→< f(T )x, x∗ > is a continuous linear functional

which can be extended to C(∂D) by the Hahn-Banach theorem. This func-

tional corresponds to a Borel measure whose image µx,x∗ by the parametriza-

tion of ∂D satisfies the condition above.
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(3) ⇒ (1)

Regard {p(T )x : ‖p‖∞ = 1} as a set of linear functionals on X∗. We have

< p(T )x, x∗ >=
∫ 2π
0 p(eit) dµx,x∗ ≤ ‖p‖∞‖µx,x∗‖. Now the principle of uni-

form boundedness implies Kx = sup‖p‖∞=1 ‖p(T )x‖ < ∞.

Remark 2.2: We can also conclude that f(T)x is also polynomially

bounded and Kf(T )x ≤ Kx‖f‖∞.

Remark 2.3: The measure µx,x∗ is obviously not unique. By the theo-

rem of F. and M.Riesz [8, p.47] the difference between two choices is abso-

lutely continuous with respect to Lebesgue measure.

We consider now local H∞(∂D)–calculi. Remember that H∞(∂D) carries

a weak∗ topology inherited from the duality (L1, L∞).

Theorem 2.2 Let X be a Banach space which carries a weak∗ topology in-

duced by a predual X∗ and let T be a weak∗ continuous contraction on X

and x ∈ X.

The following assertions are equivalent:

(1) If a sequence {pn}n∈IN ⊂ H∞(∂D) of polynomials is weak∗ Cauchy, then

the sequence {pn(T )x}
n∈IN is also weak∗ Cauchy.

(2) There is a (weak∗ continuous) local H∞(∂D)–functional–calculus of T in x.

(3) For every ψ ∈ X∗ there is a function gx,ψ ∈ L1[0, 2π) with

< T nx, ψ >=
∫ 2π

0
eintgx,ψ(t) dt for all n ∈ IN0.

(4) limn→∞[ sup p Pol.

‖p‖∞≤1
| < p(T )T nx, ψ > | ] = 0 for all ψ ∈ X∗.

Proof:

(1) ⇒ (2)

For any f ∈ H∞(∂D) choose a sequence {pn}n∈IN ⊂ H∞(∂D) of polyno-

mials which converges to f in the weak∗ topology. By (1) the sequences

{< pn(T )x, ψ >}
n∈IN are convergent for all ψ ∈ X∗.

By the principle of uniform boundedness the sequence {pn(T )x}
n∈IN con-

verges in the weak∗ topology to an element of (X∗)
∗ = X which we call

f(T)x. Approximation by polynomials shows that this definition of f(T)x
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is independent of the choice of sequences and that the map f 7→ f(T )x

is sequentially weak∗ continuous. The complete weak∗ continuity follows

from that because of the separability of the predual of H∞(∂D) which can

be identified with a quotient of L1(∂D). This is a general fact for weak∗

topologies [2]. (L1) is true by definition. Because T and therefore also p(T)

are weak∗ continuous, we can prove (L2) by

p(T )(f(T )x) = p(T )(limn→∞ pn(T )x) = limn→∞ p(T )pn(T )x

= limn→∞(ppn)(T )x = (pf)(T )x,

where now the limits are weak∗–limits.

(2) ⇒ (3)

The weak∗ continuity of the map F : f 7→ f(T )x implies the existence of a

preadjoint F∗ : X∗ 7→ H∞(∂D)∗. Again H∞(∂D)∗ may be identified with a

quotient of L1(∂D). For any ψ ∈ X∗ we choose gx,ψ to be a representative

of the equivalence class of F∗ψ (more precisely we still have to transfer it

to [0, 2π) via parametrization).

For any f ∈ H∞(∂D) we have

< f(T )x, ψ >=< F(f), ψ >=< f,F∗ψ >=< f, gx,ψ >=
∫ 2π

0
f(eit)gx,ψ(t) dt.

Choose f(eit) = eint to get (3).

(3) ⇒ (1)

Let {pn}n∈IN ⊂ H∞(∂D) be a weak∗ Cauchy sequence of polynomials. For

all ψ ∈ X∗ we have < pn(T )x, ψ >=
∫ 2π
0 pn(eit)gx,ψ(t) dt. The conclusion

follows by the defining property of the weak∗ topology of H∞(∂D).

(3) ⇒ (4)

By (3) there is a function gx,ψ(t) ∈ L1[0, 2π) with

< p(T )T nx, ψ >=
∫ 2π
0 p(eit)eintgx,ψ(t) dt for all polynomials p ∈ H∞(∂D).

For every ǫ > 0 there is a number M ∈ IN and a function g̃ ∈ L1[0, 2π) with

g̃(t) =
∑M

k=−M ake
ikt and ‖gx,ψ − g̃‖ ≤ ǫ. For example take Césaro means of

partial sums of the Fourier expansion of gx,ψ.

For all n ≥ M + 1 we have

|
∫ 2π

0
p(eit)eintgx,ψ(t) dt | = |

∫ 2π

0
p(eit)eint [g̃(t) + (gx,ψ − g̃)(t)] dt |
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≤ 0 + ‖p‖∞‖gx,ψ − g̃‖1 ≤ ‖p‖∞ǫ

and therefore sup p Pol.

‖p‖∞≤1
| < p(T )T nx, ψ > | ≤ ǫ. This proves (4).

(4) ⇒ (1)

Let {pn}n∈IN ⊂ H∞(∂D) be a weak∗ Cauchy sequence of polynomials. For

every M ∈ IN, ǫ > 0 the set

UM
ǫ := {g ∈ H∞(∂D) : |ĝ(k)| ≤

ǫ

M
for k = 0, . . . ,M − 1}

is a weak∗ neighbourhood of 0 in H∞(∂D) because the maps

g 7→ ĝ(k) (k ∈ IN0) are weak∗ continuous linear functionals.

If g = pn − pm we have for all ψ ∈ X∗ and all M ∈ IN:

| < g(T )x, ψ > | = | <
M−1
∑

k=0

ĝ(k)T kx, ψ > + <
∞
∑

k=M

ĝ(k)T kx, ψ > |

≤
M−1
∑

k=0

|ĝ(k)| ‖x‖ ‖ψ‖ + ‖
∞
∑

k=M

ĝ(k)eikt‖∞ sup
p Pol.

‖p‖∞≤1

| < p(T )TMx, ψ > |

≤
M−1
∑

k=0

|ĝ(k)| ‖x‖ ‖ψ‖ + (‖g‖∞ +
M−1
∑

k=0

|ĝ(k)|) sup
p Pol.

‖p‖∞≤1

| < p(T )TMx, ψ > |.

By (4) it is possible to obtain sup p Pol.

‖p‖∞≤1
| < p(T )TMx, ψ > | ≤ ǫ by choosing

M ∈ IN large enough. Take now also n0 ∈ IN large enough so that for all

n,m ≥ n0 we have pn − pm ∈ UM
ǫ , in particular

∑M−1
k=0 |ĝ(k)| ≤ ǫ.

Summarizing we have for all n,m ≥ n0:

| < (pn − pm)(T )x, ψ > | ≤ ǫ ‖x‖ ‖ψ‖ + (2 sup
k∈IN

‖pk‖∞ + ǫ) ǫ

(sup
k∈IN ‖pk‖∞ < ∞ because {pn}n∈IN is weak∗ Cauchy). This implies that

{pn(T )x}
n∈IN is weak∗ Cauchy.

Remark 2.4: A global version of (4) (i.e. simultaneous for all x ∈ X)

was discussed in a somewhat different context in [1]. (4) should be inter-

preted as a version of the Riemann–Lebesgue lemma on the Fourier coeffi-

cients of L1–functions. See the following

8



Proposition: Suppose µ ∈ M[0, 2π).

The following assertions are equivalent:

(i) µ is absolutely continuous (with respect to Lebesgue measure).

(ii) limn→∞[ sup p Pol.

‖p‖∞≤1

∫ 2π
0 p(eit)eint dµ ] = 0.

Proof: Regard the multiplication operator M(exp it) on L2([0, 2π), µ) and

choose x = ψ = 1 to apply Theorem 2.2. We only have to observe that

the steps (3) ⇒ (4) and (4) ⇒ (1) in the proof of the theorem are valid for

every single ψ.

Considering this the implication (i) ⇒ (ii) follows immediately from (3) ⇒ (4).

To prove the implication (ii) ⇒ (i), let {pn}n∈IN be a weak∗ Cauchy se-

quence of polynomials. (4) ⇒ (1) shows that the sequence

{< pn(T )1, 1 >}
n∈IN = {

∫ 2π
0 pn(eit) dµ}

n∈IN is convergent. We infer that the

map p 7→
∫ 2π
0 p(eit) dµ extends to a weak∗ continuous linear functional on

H∞(∂D). If we represent this functional by an absolutely continuous mea-

sure, we know (see Remark 2.3) that its difference from µ also has to be

absolutely continuous.

Definition 2.3 If the conditions of Theorem 2.2 are satisfied the operator

T is called absolutely continuous in x ∈ X. We shall also call x ∈ X an

absolutely continuous vector with respect to T in this case.

Xpb := {x ∈ X : T is polynomially bounded in x },

Xac := {x ∈ X : T is absolutely continuous in x }.

We call T (globally) absolutely continuous if X = Xac. This is consistent

with the definition in [13]. Whenever we speak of absolute continuity we

shall implicitly assume that the setting of Theorem 2.2 is given.

Xpb and Xac are linear subspaces of X, and we have Xac ⊂ Xpb because the

weak∗ continuity of the local functional calculus F implies its norm continu-

ity. Therefore the property of local polynomial boundedness is a necessary

condition for more advanced calculi. This has been our first motivation for

a detailed study of this concept.

Remark 2.5: If x ∈ X is absolutely continuous with respect to T

then T nx → 0 in the weak∗ sense. This follows from Theorem 2.2(3) and

the Riemann-Lebesgue lemma. A partial converse is the following: If T
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is (globally) polynomially bounded and ‖T nx‖ → 0, then x is absolutely

continuous.

This follows immediately from Theorem 2.2(4).

Many well known facts about Hilbert space contractions fit naturally into

this frame:

It is easy to see that a vector is absolutely continuous in the sense defined

above if and only if its spectral measure with respect to a unitary dilation is

absolutely continuous. Because for completely nonunitary contractions all

these spectral measures are absolutely continuous [15], we can obtain the

H∞(∂D)–calculus of B. Sz.-Nagy and C. Foias mentioned in the beginning

from our Theorem 2.2. We give another result which also generalizes some

well known facts of Hilbert space theory:

Proposition: Let T be a contraction on a Banach space X.

(a) The map x 7→ Kx is a norm on Xpb.

(b) If Xpb is (norm-)closed so is Xac.

Proof: Remember that we agreed to choose Kx minimally. Thus Kx is

the norm of the operator C+(∂D) ∋ p 7→ p(T )x ∈ X. This proves (a).

We now prove (b): If Xpb is closed then T |Xpb
is (globally) polynomially

bounded: there is a number K ≥ 0 with ‖p(T |Xpb
)‖ ≤ K‖p‖∞ (see Remark

2.1). Again we choose K minimally. For all x ∈ Xpb we have

‖p(T )x‖ ≤ K ‖x‖ ‖p‖∞ and therefore Kx ≤ K‖x‖ (so the original norm is

finer than the one defined in part (a)).

Let now x ∈ X be in the (norm-)closure of Xac. By assumption we have

x ∈ Xpb. Take a weak∗ Cauchy sequence {pn}n∈IN of polynomials and ǫ > 0.

Fix now ψ ∈ X∗ and choose y ∈ Xac with ‖x − y‖ small enough so that:

| < (pn − pm)(T )(x − y), ψ > | ≤ 2 sup
n∈IN

‖pn‖∞ K ‖x − y‖ ‖ψ‖ ≤
1

2
ǫ.

On the other hand by Theorem 2.2(1) there is a n0 ∈ IN so that for all

n,m ≥ n0 we have | < (pn − pm)(T )y, ψ > | ≤ 1
2
ǫ and thus

| < (pn − pm)(T )x, ψ > | ≤ ǫ. This proves x ∈ Xac.

In the case of Hilbert space contractions (where X = Xpb by von Neu-

mann’s inequality) it is a well known result that Xac is closed.
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Examples:

Let T be a contraction on a Banach space X.

(a) For an eigenvector x of T n with eigenvalue λ, |λ| = 1, we have

x ∈ Xpb \ Xac and Kx ≤ n‖x‖.

Proof: Let p(z) =
∑J

j=0 γjz
j be a polynomial. Then

p(T )x = (γ0 + γnλ + γ2nλ
2 + . . .)x + (γ1 + γn+1λ + γ2n+1λ

2 + . . .)Tx + . . .

+ (γn−1 + γ2n−1λ + . . .)T n−1x.

We have |γ0 + γn + γ2n + . . . | = | 1
n

∑n−1
k=0 p(e2πi k

n )| ≤ ‖p‖∞,

and by evaluating similar sums we also get

|γj + γn+jλ + γ2n+jλ
2 + . . . | ≤ ‖p‖∞ for 0 ≤ j ≤ n − 1.

Now it is easy to establish the assertions in (a).

(b) If the spectral radius of T is strictly smaller than 1, then T is absolutely

continuous.

Proof: We can define a H∞(∂D)–functional–calculus as a subcalculus of

the usual Dunford–calculus.

(c) Let (Ω, Σ, µ) be a measure space and T = Mf a multiplication operator

with a function f ∈ L∞(Ω, Σ, µ) on X = Lq(Ω, Σ, µ), 1 ≤ q ≤ ∞.

If ‖f‖∞ ≤ 1 then Mf is polynomially bounded.

If 1 < q ≤ ∞ and |f | < 1 µ–a.e., then Mf is absolutely continuous.

Proof: ‖p(Mf )x‖q = ‖(p ◦ f) · x‖q ≤ ‖p‖∞‖x‖q proves the first part.

For the second part we define F : H∞ 7→ Lq by F(h) := h(Mf )x := (h◦f)·x

for all h ∈ H∞ (because |f | < 1 µ–a.e. this is defined µ–a.e.).

We now show that F is indeed a H∞–functional–calculus. For the nontrivial

part it suffices to prove: If {hn}n∈IN ⊂ H∞(∂D) converges to 0 in the weak∗

sense then {hn(Mf )x}n∈IN ⊂ Lq also converges to 0 in the weak∗ sense.

Suppose 1
q

+ 1
r

= 1 and ψ ∈ Lr.

Then < hn(Mf )x, ψ >=
∫

Ω hn(f(ω))x(ω)ψ(ω) dµ(ω). If |f(ω)| < 1 then

limn→∞ hn(f(ω)) = 0, and this is the case µ–a.e.. Because the integrand

is dominated by sup
n∈IN ‖hn‖∞ |x(ω)ψ(ω)| ∈ L1, the assertion follows by

Lebesgue’s theorem of dominated convergence.

Note that for q=2 this is exactly the case of complete nonunitarity.
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3 Relations to Ergodic Theory

In this section we shall examine certain contractions on L∞–spaces and C∗–

algebras and develop methods to prove the existence of vectors which are

not polynomially bounded. We shall see that this problem is closely related

to the ergodic theory of these operators.

Let (Ω, Σ, µ) be a probability space and T an endomorphism of the alge-

bra L∞(Ω, Σ, µ) which is induced by a measure preserving transformation

τ : Ω 7→ Ω, i.e. Tf(ω) := f(τω) for all f ∈ L∞(Ω, Σ, µ).

(If (Ω, Σ, µ) is a Lebesgue space, every automorphism is induced as above,

see [11, Theorem 1.4.7].)

If τnω = ω and n ∈ IN is minimal with that property, then we say that τ

has period n in ω. Define Ωn := {ω ∈ Ω : τnω = ω}, n ∈ IN.

The (global) period of τ is equal to n if µ(Ω \ Ωn) = 0 and n is minimal

with that property. τ is called aperiodic if µ(
⋃

n∈IN Ωn) = 0.

There is an obvious decomposition of an arbitrary measure preserving trans-

formation into periodic parts with certain periods and an aperiodic part

which can be examined separately: A periodic part of an endomorphism

is polynomially bounded. This can be subsumed under example (a) in the

last section. For the aperiodic case we need the

Rohlin Lemma: (see [6])

If τ is aperiodic then there is for every J ∈ IN and ǫ > 0 a set E ∈ Σ such

that E, τE, τ 2E, . . . , τJE are pairwise disjoint and

µ(E ∪ τE ∪ τ 2E ∪ . . . ∪ τJE) > 1 − ǫ.

This result of ergodic theory translates directly into a result about poly-

nomial boundedness:

Theorem 3.1 Let τ be an aperiodic measure preserving transformation of

the probability space (Ω, Σ, µ) and T the induced endomorphism of L∞(Ω, Σ, µ).

For any polynomial p(z) =
∑J

j=0 γjz
j we have ‖p(T )‖ =

∑J
j=0 |γj| = ‖p‖A.

In particular: T is not (globally) polynomially bounded.

12



Proof: If J is the degree of a polynomial p given as above, then by the

Rohlin lemma there is a set E ∈ Σ with µ(E) > 0 and E, τE, τ 2E, . . . , τJE

pairwise disjoint. We define a function

f ∈ L∞(Ω, Σ, µ) (with ‖f‖∞ = 1) by

f(ω) :=











γj

|γj |
if ω ∈ τ jE (j = 0, . . . , J)

0 elsewhere

Then we have for every ω ∈ E:

p(T )f(ω) =
J

∑

j=0

γjT
jf(ω) =

J
∑

j=0

γjf(τ jω) =
J

∑

j=0

|γj|.

We conclude that ‖p(T )‖ ≥
∑J

j=0 |γj|. The reversed inequality is just the

triangle inequality of the norm.

Important examples of aperiodic transformations are given by ergodic

transformations on probability spaces without atoms (see [11]), for example

rotations of the unit circle with irrational angles. It is interesting to rein-

terpret Theorem 3.1 in this case from the point of view of Fourier analysis:

Let T be the automorphism of L∞(∂D) induced by τz := e2πiαz with α

irrational. For any f ∈ A(∂D) an eigenvector expansion shows Kf ≤ ‖f‖A

(the norm of the Wiener algebra). In particular: Any f ∈ A(∂D) is polyno-

mially bounded with respect to T. On the other hand we can prove Theorem

3.1 directly in this special case without using the Rohlin lemma, by defining

the set E to be a small segment of the circle. This shows that the func-

tion f defined in the proof of Theorem 3.1 can be extended continuously

(instead of the extension by 0 used there). We conclude that even T |C(∂D)

is not polynomially bounded and (using Remark 2.1) there is a function

f ∈ C(∂D) which is not polynomially bounded with respect to T. We give

an application:

Proposition: There is a function f ∈ C(∂D) \ A(∂D) with the following

property: For any M ∈ IN there is an almost periodic sequence {ρn}n∈Z ⊂ IC

with |ρn| ≤ 1 for all n ∈ Z, so that the function g with Fourier coefficients

ĝ(n) = f̂(n)ρn for n ∈ Z belongs to C(∂D) \ A(∂D) and ‖g‖∞ > M .

Proof: Choose a function f ∈ C(∂D)\A(∂D) which is not polynomially

bounded with respect to the irrational rotation (see the discussion preceding

13



the proposition). If p is any polynomial we get (p(T )f )̂ (n) = f̂(n)p(e2πiαn)

for all n ∈ Z. If any M ∈ IN is fixed, we can find a polynomial p with

‖p‖∞ ≤ 1 and ‖p(T )f‖∞ > M . Now define ρn := p(e2πiαn) for all n ∈ Z

and g := p(T)f.

Open question: Is this valid for all f ∈ C(∂D) \ A(∂D) ?

A version of the Rohlin lemma was proved by A.Connes in the context

of W ∗–algebras. For the terminology of this mathematical topic which is

not explicitly defined here we refer to [14].

Let A be a finite W ∗–algebra and µ a faithful normal trace on A with

µ(1) = 1. For any x ∈ A we have the C∗–norm ‖x‖ and the norm ‖x‖2 := µ(x∗x)
1

2 .

A family of pairwise orthogonal and nonvanishing projections {pi} ⊂ A with
∑

i pi = 1 is called a partition of unity.

A ∗–automorphism T : A 7→ A is called aperiodic if there is no projection

p ∈ A with T n|pAp inner for any n ∈ IN.

(If A = L∞(Ω, Σ, µ) this coincides with the definition above because in

this case an inner automorphism acts as identity. We also have the follow-

ing generalization: If A is a W ∗–algebra without minimal projections and

T : A 7→ A is an ergodic ∗–automorphism then T is aperiodic, see

[14, Prop.17.7].) We can now cite the result of A.Connes:

Lemma (Rohlin-Connes) (see [14, 17.17])

Let A be a finite W ∗–algebra , µ a faithful normal trace on A with µ(1) = 1

and T : A 7→ A an aperiodic ∗–automorphism with µ ◦ T = µ.

For every J ∈ IN and ǫ > 0 there is a partition of unity {p0, p1, . . . , pJ} in

A such that ‖T (p0) − p1‖2 ≤ ǫ, ‖T (p1) − p2‖2 ≤ ǫ, . . . ,

‖T (pJ−1) − pJ‖2 ≤ ǫ, ‖T (pJ) − p0‖2 ≤ ǫ.

With the help of this lemma we can now prove the following analogue of

Theorem 3.1:

Theorem 3.2 Let A be a finite W ∗–algebra , µ a faithful normal trace on A

with µ(1) = 1 and T : A 7→ A an aperiodic ∗–automorphism with µ◦T = µ.

For any polynomial p(z) =
∑J

j=0 γjz
j we have ‖p(T )‖ =

∑J
j=0 |γj| = ‖p‖A.

In particular: T is not (globally) polynomially bounded.
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Proof: Let the polynomial p(z) =
∑J

j=0 γjz
j be given. For any fixed

δ > 0 choose ǫ > 0 such that (
∑J

j=0 |γj|j)(J + 1)
3

2 ǫ ≤ δ, and for J, ǫ let a

partition of unity according to the lemma of Rohlin–Connes be fixed. We

may assume ‖p0‖2 ≥ (J + 1)−
1

2 because we have
∑J

j=0 ‖pj‖
2
2 = 1.

Define now f :=
∑J

j=0 αjpj where the complex coefficients {αj}
J
j=0 are given

by the equations

γ0α0 = |γ0|,

γjαJ+1−j = |γj|, j = 1, . . . , J.

We have f ∈ A and ‖f‖ = 1. We can now perform the following computa-

tion where we indicate in brackets the justification of the main steps:

‖
J

∑

j=0

γj(T
jf)p0 −

J
∑

j=0

|γj| p0‖2 ≤
J

∑

j=0

‖γj

J
∑

k=0

αk(T
jpk)p0 − |γj| p0‖2

≤
J

∑

j,k=0

‖γjαk(T
jpk)p0 − γjαk p(j+k)mod(J+1) p0‖2

[Because of the orthogonality of the projections in the partition of unity we

have p(j+k)mod(J+1) p0 = 0 if (j+k)mod(J+1) 6= 0.]

≤
J

∑

j,k=0

|γj|jǫ

[Here we used ihe inequality ‖T jpk − p(j+k)mod(J+1)‖2 ≤ jǫ for

j, k = 0, . . . , J which follows from the lemma of Rohlin-Connes by induc-

tion.]

= (
J

∑

j=0

|γj|j)(J + 1)ǫ ≤ δ(J + 1)−
1

2 .

We can conclude from that

‖p(T )f‖ ‖p0‖2 ≥ ‖p(T )f ·p0‖2 ≥
J

∑

j=0

|γj| ‖p0‖2−δ(J+1)−
1

2 ≥ (
J

∑

j=0

|γj|−δ) ‖p0‖2.

Considering arbitrarily small values of δ we get the inequality

‖p(T )‖ ≥
∑J

j=0 |γj|. The reversed inequality is the triangle inequality of the

norm.

Remark 3.1: In particular we can infer immediately that the Banach al-

gebra in B(A), the bounded operators on A, which is generated by {T n}
n∈Z

is isomorphic to l1(Z). The (Gelfand-)spectrum of this algebra is ∂D, and

we conclude that the spectrum of T in B(A) is ∂D (see [14, 14.12]).
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The algebra l1(Z) (isomorphic to the Wiener algebra A(∂D) via Fourier

transform) which made their appearance in the last remark as well as its

subalgebra l1(IN0) (isomorphic to A+(∂D)) will play a prominent role from

now on. We shall need some well known results about embeddings of l1(IN0)

into Banach spaces which we summarize now for the convenience of the

reader. Proofs for the facts quoted below may be found in [3], in particular

in chapter XI.

A basic sequence in a Banach space is a sequence which is a Schauder

base for its closed linear span.

A bounded basic sequence {xj}j∈IN0
is called equivalent to the unit vector

base {ej}j∈IN0
(ej(k) = δjk) of l1(IN0) if there is a constant c > 0 so that

c
J

∑

j=0

|γj| ≤ ‖
J

∑

j=0

γjxj‖

for all (γ0, γ1, . . . , γJ) ∈ ICJ+1 and all J ∈ IN0.

This is just a necessary and sufficient condition for the map xj 7→ ej

(j ∈ IN0) to extend linearly to a topological isomorphism of the correspond-

ing closed linear spans.

The following method to identify basic sequences in l∞(Ω) (where Ω

is any set) which are equivalent to the unit vector base of l1(IN0) is due

to H.P.Rosenthal and L.Dor in connection with their embedding theorem.

First we have to prepare some terminology:

A sequence of subsets {Ωn}n∈IN of Ω is called a tree if Ω1 = Ω and if for all

n ∈ IN the sets Ω2n and Ω2n+1 are disjoint subsets of Ωn.

A sequence {(Ej, Oj)}j∈IN0
of pairs of disjoint subsets of Ω is called inde-

pendent if for any given disjoint finite subsets P ,N of IN0 the sets
⋂

j∈P Ej

and
⋂

j∈N Oj are not disjoint.

Remark 3.2: If a tree {Ωn}n∈IN of Ω is given then we can form an

independent sequence of pairs of disjoint subsets if we define Ej to be the

union of all Ωn with n = 2j+1, 2j+1 + 1, . . . , 2j+2 − 1 and n even and Oj

to be the union of all Ωn with n = 2j+1, 2j+1 + 1, . . . , 2j+2 − 1 and n odd.

This may be interpreted as an imitation of the stochastic independence of

Rademacher functions.
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Lemma (Rosenthal–Dor) (see [3, chapter XI])

Suppose {xj}j∈IN0
⊂ l∞(Ω) to be a bounded sequence, D0, D1 ⊂ IC to be

closed disks with diameter d and distance δ, d ≤ 1
2
δ.

If {(Ej, Oj)}j∈IN0
is an independent sequence of pairs of disjoint subsets of

Ω with xj(ω) ∈ D0 if ω ∈ Ej and xj(ω) ∈ D1 if ω ∈ Oj for all j ∈ IN0, then

we have
δ

8

J
∑

j=0

|γj| ≤ ‖
J

∑

j=0

γjxj‖∞

for all (γ0, γ1, . . . , γJ) ∈ ICJ+1 and all J ∈ IN0. In particular:

{xj}j∈IN0
is equivalent to the unit vector base of l1(IN0).

Remark 3.3: The proof of the lemma given in [3] shows that the fol-

lowing modifications are legitimate:

(a) If we have only finite sets {xj}
J
j=0 and {(Ej, Oj)}

J
j=0 with the relations

given in the lemma, then for this particular J the inequality remains valid:

δ

8

J
∑

j=0

|γj| ≤ ‖
J

∑

j=0

γjxj‖∞

for all (γ0, γ1, . . . , γJ) ∈ ICJ+1.

In this case we adapt the terminology given above in the obvious way.

(b) If we consider the essential supremum norm on L∞(Ω, Σ, µ) instead of

l∞(Ω), then we can use an analogous ”essential” terminology and prove an

”essential” Rosenthal–Dor lemma.

We shall now use the lemma to continue our examination of endomor-

phisms with respect to polynomial boundedness. Recall that a measure

preserving transformation τ on a probability space (Ω, Σ, µ) and its induced

endomorphism T of L∞(Ω, Σ, µ) are called weakly mixing if all eigenvectors

of T are constants. Weak mixing implies ergodicity, but the converse is not

true as can be seen from the irrational rotation considered above (see [11,

2.6]).

Theorem 3.3 Let (Ω, Σ, µ) be a probability space and T an endomorphism

of X = L∞(Ω, Σ, µ) which is induced by a measure preserving transforma-

tion τ .
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The following assertions are equivalent:

(1) T is weakly mixing.

(2) Every vector which is polynomially bounded with respect to T is a con-

stant, i.e. Xpb = IC1.

Proof: All constants are eigenvectors and therefore polynomially bounded

(see example (a) in the second section). If T is not weakly mixing then there

are other eigenvectors than the constants. It remains to show: If T is weakly

mixing and f ∈ L∞(Ω, Σ, µ) is not constant (a.e.), then f is not polynomially

bounded with respect to T.

Because f is not a constant there are at least two different values c0, c1

in the essential range of f, i.e. in particular: If D0, D1 ⊂ IC are disks with

centers c0, c1 and diameter d (where it is possible to choose d ≤ 1
2
δ as in

the lemma of Rosenthal–Dor if δ is the distance of the disks) then we have

µ(f−1Di) > 0, i=0,1. Define Σ ∋ A0 := f−1D0, Σ ∋ A1 := f−1D1.

Suppose now that p is a polynomial, p(z) =
∑J

j=0 γjz
j. We shall use a

result of H. Furstenberg (see [11, 4.3] or [5, chapter 4]) showing that the

following assertion about τ is equivalent to the weak mixing property:

There is a set J ⊂ IN of density zero so that for any sets

C0, C1, . . . , Ck ∈ Σ :

lim
m→∞,m6∈J

µ(C0 ∩ τ−mC1 ∩ τ−2mC2 ∩ . . . ∩ τ−kmCk) = µ(C0)µ(C1) . . . µ(Ck).

Using this property of weakly mixing transformations we conclude that

there is a number M = M(J) ∈ IN so that for all possible choices

Cj ∈ {A,B}, j = 0, . . . , J (there are a finite number of possibilities for that;

J is the degree of the given polynomial) we always have

µ(C0 ∩ τ−MC1 ∩ τ−2MC2 ∩ . . . ∩ τ−jMCj) > 0 (0 ≤ j ≤ J).

We can now see that the following finite tree of subsets {Ωn}
2J+2−1
n=1 con-

sists of sets of positive µ–measure (see Remark 3.3):

Ω1 := Ω,

Ω2 := A0, Ω3 := A1,

Ω4 := A0 ∩ τ−MA0, Ω5 := A0 ∩ τ−MA1, Ω6 := A1 ∩ τ−MA0,

Ω7 := A1 ∩ τ−MA1, Ω8 := A0 ∩ τ−MA0 ∩ τ−2MA0, . . . etc.
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The general formula for n = 2, 3, . . . , 2J+2 − 1 :

If n = 2j+1 + 2jǫj + 2j−1ǫj−1 + 2ǫ1 + ǫ0 (where ǫi ∈ {0, 1} for all i)

then we have Ωn := Aǫj
∩ τ−MAǫj−1

∩ τ−2MAǫj−2
∩ . . . ∩ τ−jMAǫ0 .

As in Remark 3.2 we can use this tree to define a finite independent

sequence {(Ej, Oj)}
J
j=0 of pairs of disjoint sets:

Ej :=
2j+2−1

⋃

n=2j+1

n even

Ωn =
⋃

n=2j+1+...+2ǫ1+0

Ωn

Oj :=
2j+2−1

⋃

n=2j+1

n odd

Ωn =
⋃

n=2j+1+...+2ǫ1+1

Ωn.

If we have ω ∈ Ej (j = 0, . . . , J) then there is a number

n = 2j+1 + 2jǫj + 2j−1ǫj−1 + 2ǫ1 + ǫ0 with ǫ0 = 0 such that ω ∈ Ωn,

in particular ω ∈ τ−jMA0, i.e. T jMf(ω) = f(τ jMω) ∈ D0 (j = 0, . . . , J).

In the same way we conclude T jMf(ω) ∈ D1 if ω ∈ Oj (j = 0, . . . , J).

Now we are in a position to apply the Rosenthal–Dor lemma.

Define p̃(z) := p(zM). Note that ‖p‖∞ = ‖p̃‖∞. If we assume f to be poly-

nomially bounded (so we aim to get a contradiction) we get the following

inequalities:

δ

8

J
∑

j=0

|γj| ≤ ‖
J

∑

j=0

γjT
jMf‖∞ ≤ Kf ‖p̃‖∞ = Kf ‖p‖∞.

δ as well as Kf are independent of p. Therefore with c := δ
8Kf

we get for

any polynomial p with p(z) =
∑J

j=0 γjz
j:

c
J

∑

j=0

|γj| ≤ ‖p‖∞ (≤
J

∑

j=0

|γj|).

This implies the supremum norm to be equivalent with the norm ‖ · ‖A of

the Wiener algebra on the space of all polynomials. This is clearly false,

and we have reached a contradiction.

It is possible to extend the definition of the weak mixing property to

arbitrary contractions on L∞(Ω, Σ, µ). A contraction T is weakly mixing

if any eigenvector with an eigenvalue whose modulus equals the spectral
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radius of T is necessarily a constant. The question arises whether Theorem

3.3 may also be generalized. Without further conditions this is of course

true for restrictions of endomorphisms. We now prove a less trivial result

in this direction with the use of dilation techniques.

Theorem 3.4 Let (Ω, Σ, µ) be a probability space and X = L∞(Ω, Σ, µ).

Suppose T to be a positivity preserving and weakly mixing contraction,

T1 = 1, µ ◦ T = µ. Let f ∈ L∞(Ω, Σ, µ) be decomposed in the form

f = c · 1 + f̃ , c ∈ IC,
∫

Ω f̃ dµ = 0.

If limn→∞ ‖T nf̃‖2 6= 0 then the vector f is not polynomially bounded with

respect to T. ( ‖ · ‖2 is the norm of L2(Ω, Σ, µ)).

Obviously this is an extension of Theorem 3.3.

Proof: The operator T may be looked upon as a transition operator of

a Markov process. From the point of view of operator theory we can speak

of a (minimal) Markov dilation, i.e. there is a probability space (Ω̂, Σ̂, µ̂)

and on that space a measure preserving transformation τ̂ which induces

an automorphism T̂ of X̂ := L∞(Ω̂, Σ̂, µ̂) such that the following diagram

commutes for all n ∈ IN0:

X
T n

→ X

j ↓ ↑ P

X̂
T̂ n

→ X̂

Here j denotes an injective algebra homomorphism and P0 := jP is a con-

ditional expectation of X̂ onto its subalgebra jX, and we have the following

additional properties:

–
∫

Ω̂ j(f)dµ̂ =
∫

Ω f dµ for all f ∈ X.

– If the conditional expectation of X̂ onto
∨

k∈IN0
T̂−k(jX) is denoted by

P(−∞,0], then for all g ∈
∨

k∈IN0
T̂ k(jX) the Markov property P(−∞,0]g = P0g

is valid.

–
∨

k∈Z T̂ k(jX) = X̂ (Minimality)

[Here ”
∨

” denotes the W ∗–algebraic hull.]

A more detailed discussion of the concept of a (minimal) Markov dilation

which we have introduced here in a very short manner can be found in [10].

We shall need the following result in the sequel: If T is weakly mixing then

also T̂ is weakly mixing (see [12] or [10]).
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Returning to the proof of Theorem 3.4 we infer from the preceding dis-

cussion that we can apply Theorem 3.3 for T̂ , and we shall now derive

Theorem 3.4 from that. If we form the closures with respect to ‖ · ‖2 in the

diagram above and if we use the same symbols for the Hilbert spaces formed

in this way, then the diagram describes a (nonminimal) unitary dilation T̂

on L2(Ω̂, Σ̂, µ̂) for the contraction T on L2(Ω, Σ, µ).

We infer for all f ∈ X the existence of the limits Λf := limn→∞ T̂−njT nf

(with respect to ‖ · ‖2). Indeed, Λj−1|jX is just the orthogonal projection

of X̂ onto the ∗–residual part of the dilation restricted to jX. We have used

here the terminology of [15, Chap.II.2, II.3], where also a proof for the ex-

istence of the limits may be found. (In [15] minimal unitary dilations are

examined, but this is not relevant for the result in question.)

From the definition of Λ we get immediately the following properties:

– Λ ∈ B(X, X̂) with ‖Λ‖ ≤ 1 for ‖ · ‖2 as well as for ‖ · ‖∞,

– ΛT = T̂Λ, Λ1 = 1, Λ({1}⊥) ⊂ {1}⊥,

– Λf = 0 is equivalent to limn→∞ ‖T nf‖2 = 0.

To finish the proof we need the following compatibility between polyno-

mial boundedness and similarity of operators which is stated in the

Remark 3.4: Suppose Y,Z to be Banach spaces and R ∈ B(Y ),

S ∈ B(Z) to be contractions. If there is an operator Λ ∈ B(Y, Z) such that

ΛR = SΛ, then for any y ∈ Y which is polynomially bounded with respect

to R, the image Λy ∈ Z is polynomially bounded with respect to S.

If Λ is a similarity between R and S (i.e. ΛR = SΛ and Λ is invertible) then

y ∈ Y is polynomially bounded with respect to R if and only if Λy ∈ Z is

polynomially bounded with respect to S.

Proof of Remark 3.4: If y ∈ Y is polynomially bounded with respect

to R, i.e. ‖p(R)y‖ ≤ Ky(R)‖p‖∞ for all polynomials p, then we have

‖p(S)Λy‖ = ‖Λp(R)y‖ ≤ ‖Λ‖Ky(R) ‖p‖∞, therefore KΛy(S) ≤ ‖Λ‖Ky(R).

The second part follows by applying the first to Λ and Λ−1.

We can now finish the proof of Theorem 3.4: If we have the decompo-

sition f = c · 1 + f̃ , c ∈ IC,
∫

Ω f̃ dµ = 0 for any f ∈ X = L∞(Ω, Σ, µ), we

conclude (using the properties of Λ listed above) that if
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limn→∞ ‖T nf̃‖2 6= 0 we get Λf = c · 1 + Λf̃ with 0 6= Λf̃ ∈ {1}⊥, i.e. Λf is

not a multiple of the identity.

If f would be polynomially bounded with respect to T, then by Remark 3.4

also Λf is polynomially bounded with respect to T̂ .

Because Λf is not a multiple of the identity and T̂ is a weakly mixing au-

tomorphism, we conclude on the other hand by Theorem 3.3 that Λf is not

polynomially bounded with respect to T̂ . To avoid a contradiction we have

to admit that f is not polynomially bounded with respect to T. This proves

Theorem 3.4.

Remark 3.5: In [10] it is also shown that for a transition operator T

we have limn→∞ ‖T nf‖2 = 0 for all f ∈ {1}⊥ if and only if a correspond-

ing minimal Markov dilation is a K–system in the sense of ergodic theory.

The transition operator T is called completely mixing in this case. This

establishes a nontrivial range of applications for Theorem 3.4. An explicit

construction of vectors for which Theorem 3.4 is applicable can be found in

[12, p.113ff.].

If we try to find generalizations of these results for more general C∗–

algebras (as we succeeded in Theorem 3.2 for Theorem 3.1), there are dif-

ficulties arising from the complexity of noncommutative ergodic theory. In

particular the author has not been able to give a necessary and sufficient

condition for endomorphisms to fulfil Xpb = IC1 as we have succeeded to

give for commutative algebras in Theorem 3.3. We can show however that

this phenomenon also exists in the noncommutative setting if we assume

very strong mixing properties. This is the intention of the following consid-

erations.

Let A be a C∗–algebra with a unit and Â :=
⊗

n∈IN0
A the infinite

minimal C∗–tensor product.

The tensor shift T : Â 7→ Â is the C∗–endomorphism which is defined by

T (
⊗N

n=0 1 ⊗ x ⊗ 1 ⊗ 1 ⊗ 1 . . .) =
⊗N+1

n=0 1 ⊗ x ⊗ 1 ⊗ 1 . . .) for all N and all

x ∈ A.
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Theorem 3.5 Let A be a C∗–algebra with a unit, Â :=
⊗

n∈IN0
A and T

the tensor shift. Every vector which is polynomially bounded with respect to

T is a multiple of the identity, i.e. Âpb = IC1.

In the proof of Theorem 3.5 we shall need the following modification of

the Rosenthal-Dor lemma:

Lemma: Let H be a Hilbert space, {qn}
2J+2−1
n=1 ⊂ B(H) a family of nonva-

nishing projections with q2n ≤ qn, q2n+1 ≤ qn, q2nq2n+1 = 0 for all

1 ≤ n ≤ 2J+1 − 1.

Let {xj}
J
j=0 ⊂ B(H) be a sequence of normal operators, D0, D1 ⊂ IC disks

with diameter d and distance δ, d ≤ 1
2
δ, furthermore pD0

(xj) and pD1
(xj)

the corresponding spectral projections of xj,

Ej :=
2j+2−1

∨

n=2j+1

n even

qn, Oj :=
2j+2−1

∨

n=2j+1

n odd

qn, j = 0, . . . , J.

If Ej ≤ pD0
(xj) and Oj ≤ pD1

(xj), j = 0, . . . , J then we have

δ

8

J
∑

j=0

|γj| ≤ ‖
J

∑

j=0

γjxj‖

for all (γ0, γ1, . . . , γJ) ∈ ICJ+1.

Note that the projections {qn}
2J+2−1
n=1 necessarily commute, while this

need not be the case for the normal elements {xj}
J
j=0 or their spectral pro-

jections.

Proof of the lemma: To apply the original Rosenthal–Dor lemma we

give a functional representation of the operators on the unit sphere H1 of

the Hilbert space H: For any x ∈ B(H) let x̂ be the function

x̂ : H1 → IC, x̂(h) :=< xh, h > .

We have ‖x‖ = ‖x̂‖∞.

To every projection p we can associate the image

p(H1) = {h ∈ H1 : ph = h} = {h ∈ H1 : p̂(h) =< ph, h >= 1}.

From the assumptions we infer

2j+2−1
⋃

n=2j+1

n even

qn(H1) ⊂ Ej(H1),
2j+2−1

⋃

n=2j+1

n odd

qn(H1) ⊂ Oj(H1), j = 0, . . . , J.
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Suppose h ∈ Ej(H1) ⊂ pD0
(xj)(H1).

Then x̂j(h) =< xjh, h >=< xjpD0
(xj)h, h >. This is an element of the

convex hull of the spectrum of xjpD0
(xj) and therefore belongs to D0. In

an analogous way we infer x̂j(h) ⊂ D1 if h ∈ Oj(H1). We can now apply

the Rosenthal–Dor lemma (respectively Remark 3.3(a)) and obtain

‖
J

∑

j=0

γjxj‖ = ‖
J

∑

j=0

γjx̂j‖∞ ≥
δ

8

J
∑

j=0

|γj|

for all (γ0, γ1, . . . , γJ) ∈ ICJ+1.

Proof of Theorem 3.5: We shall proceed in several steps. Some results

are interesting in their own right. It is convenient to give the following

definition:

Definition 3.1 Let X be a Banach space, T : X → X any map.

For any x ∈ X we define the transition set trans(x) (with respect to T) to

be the following subset of IN:

trans(x) :={n ∈ IN : {T njx}
j∈IN0

is equivalent to the unit vector base of l1(IN0)}.

Obviously a vector x with a nonempty transition set trans(x) cannot be

polynomially bounded, and the transition set may be regarded as a coarse

measure of deviation from polynomial boundedness. We shall give a more

detailed discussion of this in the fourth section.

We return now to the proof of Theorem 3.5:

Suppose A0 := A⊗ 1 ⊂ Â (i.e. A at position zero in the tensor product),

An := T nA0, A[m,n] :=
∨n

k=m Ak (C∗–algebraic hull).

For any element x of a C∗–algebra we denote by δ(x) the diameter of its

spectrum, i.e. δ(x) := max{|λ − µ| : λ, µ ∈ sp(x)}.

(a) If x ∈ A[0,L−1] \ IC1 is normal then [L,∞) ⊂ trans(x). We can use a

common constant c = δ(x)
8

.

Proof: To apply the lemma we start with a faithful representation (π,H)

of A[0,L−1]. By forming suitable finite tensor products we are able to rep-

resent products of spectral projections of x and of its translates by TL as

elementary tensors.

It is possible to choose disks D0, D1 ⊂ IC with diameter d and distance δ,

d ≤ 1
2
δ, so that the spectral projections pi = pDi

(x), i = 0, 1, do not vanish.
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Indeed for any δ′ > 0 we can choose δ > δ(x) − δ′.

We are now able to define a tree {qn} as it is used in the lemma:

q1 := 1,

q2 := p0, q3 := p1

q4 := p0 · T
Lp0, q5 := p0 · T

Lp1, q6 := p1 · T
Lp0, q7 := p1 · T

Lp1, . . . etc.,

in general:

qn := pǫj
·TLpǫj−1

·T 2Lpǫj−2
· . . . ·T jLpǫ0 if n = 2j+1 +2jǫj +2j−1ǫj−1 + . . .+ǫ0.

We may also write

qn = pǫj
⊗ pǫj−1

⊗ pǫj−2
⊗ . . . ⊗ pǫ0 ∈ π(A[0,L−1])

′′ ⊗ π(A[L,2L−1])
′′ ⊗ . . .

. . . ⊗ π(A[jL,(j+1)L−1])
′′.

This representation shows clearly that the assumptions of the lemma con-

cerning {qn} are valid here. In particular all qn are nonvanishing. We also

have

Ej :=
2j+2−1

∨

n=2j+1,n even

qn ≤ T jLp0 = pD0
(T jLx)

Oj :=
2j+2−1

∨

i=2j+1,n odd

qn ≤ T jLp1 = pD1
(T jLx),

Applying the lemma we conclude

δ

8

J
∑

j=0

|γj| ≤ ‖
J

∑

j=0

γjT
Ljx‖

for all (γ0, . . . , γJ) ∈ ICJ+1 and J ∈ IN0. The same argument is also possible

for L + 1, L + 2, . . . instead of L. This proves (a).

(b) If for x ∈ Â there is a normal element y ∈ A[0,L−1] with ‖x− y‖ ≤ ǫ,

then we have for all l ≥ L:

(
δ(y)

8
− ǫ)

J
∑

j=0

|γj| ≤ ‖
J

∑

j=0

γjT
ljx‖

for all (γ0, . . . , γJ) ∈ ICJ+1 and J ∈ IN0.

Proof: By (a) we get for the normal element y

δ(y)

8

J
∑

j=0

|γj| ≤ ‖
J

∑

j=0

γjT
ljy‖

for all l ≥ L, (γ0, . . . , γJ) ∈ ICJ+1 and J ∈ IN0. Because of ‖x − y‖ ≤ ǫ we

infer

‖
J

∑

j=0

γjT
ljx‖ ≥ ‖

J
∑

j=0

γjT
ljy‖ − ‖

J
∑

j=0

γjT
lj(x − y)‖
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≥
δ(y)

8

J
∑

j=0

|γj| − ‖x − y‖
J

∑

j=0

|γj| ≥ (
δ(y)

8
− ǫ)

J
∑

j=0

|γj|

This proves (b).

(c) If x,y are selfadjoint then |δ(x) − δ(y)| ≤ 2‖x − y‖.

Proof: Choose 0 < λ ∈ R large enough so that

x + λ1 > 0, y + λ1 > 0, x − λ1 < 0, y − λ1 < 0.

For selfadjoint elements norm and spectral radius are equal. We infer

δ(x) = max sp(x) − min sp(x) = (‖x + λ1‖ − λ) − (−‖x − λ1‖ + λ)

= ‖x + λ1‖ + ‖x − λ1‖ − 2λ.

Analogous for y.

Therefore we have

|δ(x) − δ(y)| = |(‖x + λ1‖ + ‖x − λ1‖ − 2λ) − (‖y + λ1‖ + ‖y − λ1‖ − 2λ)|

≤ ‖(x + λ1) − (y + λ1)‖ + ‖(x − λ1) − (y − λ1)‖ = 2‖x − y‖.

This proves (c).

(d) If x ∈ Â \ IC1 is selfadjoint then IN \ trans(x) is finite. More precise:

If we choose L ∈ IN minimal with the property that there is an element

y ∈ A[0,L−1] with ‖x − y‖ <
δ(x)
10

then [L,∞) ⊂ trans(x).

Proof: If x ∈ Â \ IC1 is selfadjoint then we have δ(x) > 0. Because
⋃

L∈IN A[0,L−1] is (norm-)dense in Â we can find a L ∈ IN minimal with the

property that there is an element y ∈ A[0,L−1] with ‖x− y‖ <
δ(x)
10

. We may

assume that y is also selfadjoint: otherwise replace y by 1
2
(y + y∗).

Using (c), an easy computation gives

‖x − y‖ < 1
8
(δ(x) − 2‖x − y‖) ≤ δ(y)

8
. Now (d) follows by an application of

(b).

(e) Âpb = IC1.

Proof: By (d) we already know that a selfadjoint element which is not

a multiple of the identity is not polynomially bounded. Suppose there is

any x ∈ Â \ IC1 which is polynomially bounded with respect to T. Then x∗

is also polynomially bounded:

‖p(T )x∗‖ = ‖
∑J

j=0 γjT
jx∗‖ = ‖

∑J
j=0(γjT

jx)∗‖ = ‖
∑J

j=0 γjT
jx‖

≤ Kx‖q‖∞ with q(z) =
∑J

j=0 γjz
j. Obviously ‖p‖∞ = ‖q‖∞.

We conclude that the selfadjoint elements x + x∗ and i(x − x∗) are also

polynomially bounded, and the decomposition x = 1
2
[(x+x∗)− i(i(x−x∗))]
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shows that at least one of them is not a multiple of the identity. This is a

contradiction to the assertions established above.

Theorem 3.5 is now completely demonstrated.

Remark 3.6: If we specialize A := ICn then Theorem 3.5 deals with

the symbolic shift with n symbols. This shift is weakly mixing for suitable

measures (for example product measures) and we could have achieved the

result of Theorem 3.5 in this special case by using Theorem 3.3. But the

proof of Theorem 3.5 shows that the stronger mixing properties of a sym-

bolic shift allow to construct a lot of topological embeddings of the sequence

space l1(IN0) into the orbits of the shift, while in the proof of Theorem 3.3

we only worked with (arbitrarily long) finite sections. These embeddings

correspond to what we have called nonempty transition sets. In regarding

the symbolic shift or the easy generalization of the result to (irreducible and

aperiodic) subshifts of finite type (see [11]) we can indeed notice a natural

relation between transition sets and transitions for shifts or subshifts in the

usual sense. This motivates our terminology.

4 The Transition Set

Let T be a contraction on a Banach space X and x ∈ X. Recall the definition

of the transition set: A number n ∈ IN belongs to trans(x) if and only if

{T njx}
j∈IN0

is equivalent to the unit vector base of l1(IN0). Using this

concept we shall define a similarity invariant for T-invariant subspaces, and

by actually computing this invariant in concrete examples we can perform

some classification.

We first extend the definition above:

Definition 4.1 Let T be a contraction on a Banach space X.

For any subset Y ⊂ X we define the transition set trans(Y) to be the union

of all trans(y) with y ∈ Y .

In particular for any x ∈ X we can speak of the transition set of the cyclic

subspace C(x) generated by x (i.e. C(x) := lin{T nx}
n∈IN0

).
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Let us first state some useful properties of transition sets:

Lemma: Let T be a contraction on a Banach space X.

(a) If x ∈ X and S : C(x) → X is a bounded linear operator which com-

mutes with T, then trans(Sx) ⊂ trans(x).

(b) Let Y be any subset of X. Then trans(∂Y ) ⊂ trans(Y ) = trans(Y ).

Proof: Ad (a): Because of trans(0) = ∅ we may assume S 6= 0. If we

have n ∈ trans(Sx) then there is a constant c > 0 so that for any polyno-

mial p we get c‖p‖A ≤ ‖p(T n)Sx‖ = ‖Sp(T n)x‖ ≤ ‖S‖ ‖p(T n)x‖

or equivalently ‖p(T n)x‖ ≥ c‖S‖−1‖p‖A which implies n ∈ trans(x).

Ad (b): Suppose n ∈ trans(∂Y ). There is an element x ∈ ∂Y such that

n ∈ trans(x), i.e. there is a constant c > 0 so that for all polynomials p we

have c‖p‖A ≤ ‖p(T n)x‖. Choose y ∈ Y with ‖x − y‖ ≤ c
2
. Then we find

‖p(T n)y‖ ≥ ‖p(T n)x‖ − ‖p(T n)(x − y)‖ ≥ c‖p‖A − c
2
‖p‖A = c

2
‖p‖A.

We infer n ∈ trans(y) and therefore n ∈ trans(Y ). Because the boundary

set ∂Y adds nothing to the transition set of Y, the equation

trans(Y ) = trans(Y ) is an immediate consequence.

We can now prove the announced relation between similarity and tran-

sition sets. As an abbreviation let us call two T-invariant subspaces of an

operator T similar if the respective restrictions of T to these subspaces are

similar.

Theorem 4.1 Let X be a Banach space, T : X → X a contraction on X.

(a) If C1, C2 are similar subspaces of T then trans(C1) = trans(C2),

i.e. the transition set is a similarity invariant for T-invariant subspaces.

(b) For all x ∈ X we have trans(x) = trans(C(x)),

i.e. the transition set of a cyclic subspace can be calculated as the transition

set of any cyclic vector.

Proof: Ad (a): If Λ : C1 → C2 is a similarity of T |C1
and T |C2

, then

apply part (a) of the lemma for all elements of C1 and C2 with S = Λ

respectively S = Λ−1. We infer trans(x) = trans(Λx) for all x ∈ C1, and

the assertion follows because Λ is bijective.

Ad (b): Suppose y ∈C(x). If there is a polynomial p with y=p(T)x, then
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by part (a) of the lemma with S := p(T) we infer trans(y) ⊂ trans(x). Any

element y ∈C(x) can be approximated by elements of this special form.

Using part (b) of the lemma we see that the inclusion trans(y) ⊂ trans(x)

remains valid also in the general case. This proves (b).

Remark 4.1: If we have a bounded inverse T−1 of the operator T

in Theorem 4.1, then (b) remains valid for a two-sided cyclic subspace

lin{T nx}
n∈Z and its (two-sided) cyclic vector x. This follows by an easy

modification of our proof above: use polynomials in T and T−1.

We now turn to methods which allow us to compute transition sets.

Some notation for certain subsets of ∂D will be useful: For any n ∈ IN and

α ∈ [0, 1) define ∆α
n := {exp [2πi( k

n
+ α)] : k = 0, . . . , n− 1}. Geometrically

∆α
n is the set of vertices of a regular n-gon.

Lemma: Let T be a contraction on a Banach space X and x ∈ X. If

α ∈ [0, 1) and if p is a polynomial with p|∆α
n

= 0 then n 6∈ trans(p(T )x).

Proof: We first assume α = 0.

Because of its zero set we conclude that p contains a factor q with

q(z) = zn − 1. By part (a) of the lemma above it is enough to show that

n 6∈ trans(q(T )x), and to prove this we show that {T njq(T )x}
j∈IN0

is not

equivalent to the unit vector base of l1(IN0) (for all x ∈ X).

For any (γ0, . . . , γJ) ∈ ICJ+1 we get:
∑J

j=0 γjT
njq(T )x =

=
J

∑

j=0

γjT
nj(T nx−x) = (−γ0x)+(γ0−γ1)T

nx+. . .+(γJ−1−γJ)T Jnx+γJT (J+1)nx.

Choose γj := 1
j

if j 6= 0 (and 0 otherwise).

Setting pJ(z) :=
∑J

j=0 γjz
j =

∑J
j=0

1
j
zj we get

‖pJ(T n)q(T )x‖ = ‖−T nx+(1−
1

2
)T 2nx+. . .+[

1

J − 1
−

1

J
] T Jnx+

1

J
T (J+1)nx‖

≤ (1 +
J−1
∑

j=1

[
1

j
−

1

j + 1
] +

1

J
)‖x‖ = 2‖x‖.

This is bounded if J → ∞, but

lim
J→∞

‖pJ‖A = lim
J→∞

J
∑

j=0

1

j
= ∞.
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The assertion is now proved for α = 0. For α ∈ [0, 1) we can use the

same proof with some modifications: q(z) := zn − e2πiαn, γj := 1
j
e−2πiαnj if

j 6= 0.

The lemma shows that sets of zeros of the form ∆α
n are obstructions for

the natural number n to belong to certain transition sets, independent of

the operator T or the vector x under discussion. The following detailed

determination of transition sets for a concrete operator shows that it is

possible that there are no other obstructions.

Consider the shift operator S on l1(Z) defined by (Sx)n := xn−1 for all

x = {xn}n∈Z ∈ l1(Z). Equivalently (via Fourier transform) we may con-

sider the multiplication operator Mz on the Wiener algebra A(∂D).

Theorem 4.2 Suppose X = A(∂D), T := Mz and f ∈ X.

For any n ∈ IN the following assertions are equivalent:

(1) n 6∈ trans(f).

(2) There is a number α ∈ [0, 1) such that f |∆α
n

= 0.

Proof:

(2) ⇒ (1)

This is proved above for polynomials. In the general case we use the follow-

ing approximation argument:

We shall restrict ourselves again to the case α = 0 and leave the modifi-

cations necessary in the other cases to the reader.

The set ∆0
n is finite and therefore a set of spectral synthesis (see [9,

Chap.V.1]) and we conclude that there is only one closed ideal in A(∂D)

whose zero set is exactly ∆0
n. In particular the ideal of all functions vanishing

in ∆0
n (which includes f) coincides with the closed principal ideal generated

by the polynomial q with q(z) = zn − 1. Thus there is a sequence

{gk}k∈IN ⊂ A(∂D) such that limk→∞ ‖f − gkq‖A = 0.

Successive application of the lemmata yields

n 6∈ trans(q), n 6∈ trans(gkq) and n 6∈ trans(f).
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(1) ⇒ (2)

Suppose that ∆α
n is not contained in the zero set of f for any α ∈ [0, 1). To

any z = z1 ∈ ∂D we can associate the numbers {zk}
n
k=1 with the same n-th

power, i.e. zn
1 = zn

2 = . . . = zn
n . There is at least one k ∈ {1, . . . , n} such

that f(zk) 6= 0. We call this a suitable choice of k.

We consider an operator Γ : A(∂D) → A(∂D), (Γg)(z) := g(zn)f(z).

Obviously Γ is bounded. It is also injective: If g 6≡ 0 then g(zn) 6= 0 for

some z and for a suitable k ∈ {1, . . . , n} we have (Γg)(zk) = g(zn)f(zk) 6= 0.

The range of Γ is closed in A(∂D):

Suppose h ∈ A(∂D) to be in the closure of Γ(A(∂D)). We can choose

a sequence {hj}j∈IN ⊂ Γ(A(∂D)) with limj→∞ ‖h − hj‖A = 0. There are

functions {gj}j∈IN ⊂ A(∂D) such that hj(z) = gj(z
n)f(z) for all z ∈ ∂D.

We have gj(z
n) = hj(zk)

f(zk)
for any suitable k. Because of ‖h − hj‖A → 0

we also have ‖h − hj‖∞ → 0, and thus it is possible to define a continuous

function g on ∂D such that for all z ∈ ∂D (and corresponding suitable k):

g(zn) = lim
j→∞

gj(z
n) = lim

j→∞

hj(zk)

f(zk)
=

h(zk)

f(zk)

or equivalently h(zk) = g(zn)f(zk).

The equation h(z) = g(zn)f(z) remains also true if f(z)=0 because of

h(z) = limj→∞ hj(z) = limj→∞ gj(z
n)f(z) = 0.

Thus it only remains to show that g ∈ A(∂D): For any z1 ∈ ∂D we have

g(zn
1 ) = h(zk)

f(zk)
for a suitable k. There is a neighbourhood U of z1 such that

f |zkz−1

1
U has no zero value. We can extend f |zkz−1

1
U to a function f̃ ∈ A(∂D)

with no zero values on ∂D: for example we can take f̃ = f + ψ where ψ

is any C1–function on ∂D which is zero on zkz
−1
1 U and differs from -f on

∂D \ zkz
−1
1 U .

By a theorem of Wiener (see [9, Chap.V.2]) f̃ is an invertible element of

A(∂D). We have g(zn) = hf̃−1(zkz
−1
1 z) for all z ∈ U .

We have proved that the function z 7→ g(zn) belongs locally to A(∂D),

i.e. for every z ∈ ∂D there is a neighbourhood of z inside of which the

function coincides with the restriction of a function in A(∂D) to this neigh-

bourhood. By another theorem of Wiener (see [9, Chap.II.4]) this implies
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that the function z 7→ g(zn) actually belongs to A(∂D). But then we have

also g ∈ A(∂D), and indeed the range of Γ is closed.

We can now finish the proof of Theorem 4.2. We conclude from the con-

siderations above that the operator Γ has a bounded inverse, i.e. there is a

constant c > 0 such that ‖Γg‖A ≥ c‖g‖A for all g ∈ A(∂D). In particular

for any polynomial p=g we have ‖p(T n)f‖A = ‖Γp‖A ≥ c‖p‖A. This shows

that n ∈ trans(f).

Proposition: Suppose X := A(∂D), T := Mz.

For a subset A ⊂ IN the following assertions are equivalent:

(1) There is a function f ∈ X, f 6≡ 0, such that A = IN \ trans(f).

(2) A is finite and contains all divisors of its elements.

Proof: For (1) ⇒ (2) observe that if A = IN \ trans(f) is infinite then

the zero set of f contains sets of the form ∆α
n with arbitrarily large n. Thus

the zero set is dense in ∂D and by the continuity of f we infer f ≡ 0.

The condition concerning divisors is trivial for cosets of transition sets with

respect to IN in general.

To prove (2) ⇒ (1) define a polynomial with a suitable zero set such that

A = IN \ trans(p).

Proposition: Suppose X := A(∂D), T := Mz.

There are infinitely many similarity classes of cyclic subspaces (one-sided

or two-sided). The only two-sided cyclic subspace similar to X is X itself.

Note that in this case a two-sided cyclic subspace is the same as a closed

principal ideal of the algebra A(∂D) (see [4, 11.1]). It is not known to the

author if the problem of similarity of such ideals has been considered before.

Proof: By the proposition above there are infinitely many elements of

A(∂D) with pairwise different transition sets. Using Theorem 4.1 (respec-

tively Remark 4.1) we conclude that the cyclic subspaces generated by these

elements belong to pairwise different similarity classes. If a cyclic subspace

is similar to A(∂D) then its transition set is IN. We conclude that any cyclic

function has no zeros on ∂D and is thus invertible in A(∂D) by Wiener’s
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theorem. Therefore the ideal generated by it is A(∂D) itself.

Remark 4.2: It is easy to check that the assertions in Theorem 4.2 and

the propositions following it remain valid if we consider T = Mz on A+(∂D).

Of course in the last proposition we can here only consider one-sided cyclic

subspaces which are in this case the same as closed principal ideals of the

algebra A+(∂D). The result that there are infinitely many different simi-

larity classes of cyclic subspaces for the one-sided shift on l1(IN0) should be

compared to the totally different situation for the one-sided shift on l2(IN0),

where Beurling’s theorem states (among other things) that the restriction

of the shift to cyclic subspaces is always unitarily equivalent (and therefore

also similar) to the shift itself (see [7]).

For the shift on l1(IN0) we can give the following characterization of the

cyclic subspaces which are similar to l1(IN0) itself:

Proposition: Suppose X := A+(∂D), T := Mz, f ∈ X.

The following assertions are equivalent:

(1) C(f) is similar to C(1)=X.

(2) trans(f) = IN.

(3) f 6= 0 everywhere on ∂D.

(4) C(f) = X or C(f) = (z − z1)
n1(z − z2)

n2 . . . (z − zk)
nk · A+(∂D), where

z1, . . . , zk are finitely many complex numbers in D and n1, . . . , nk ∈ IN.

Proof: (1) ⇒ (2) follows from Theorem 4.1 and (2) ⇒ (1) is immediate

from the definition of the transition set.

(2) ⇔ (3) follows from Theorem 4.2 and Remark 4.2.

The equivalence of (3) and (4) is more or less implicit in [9, Chap.XI.3]. We

give the main arguments: The function f being analytic in D and nonvan-

ishing on ∂D by (3), can only have finitely many zeros in D. If there is no

zero at all then f is invertible (by Gelfand theory for the Banach algebra

A+(∂D)).

So assume we have zeros z1, . . . , zk. Let n1 be the maximal number such

that all functions in C(f) contain the factor (z − z1)
n1 . Then the set of all

functions g ∈ A+(∂D) with the property that the function z 7→ (z−z1)
n1g(z)
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belongs to C(f) is an ideal whose set of zeros does not contain z1. Iterating

this procedure we obtain the representation (4).

Remark 4.3: If trans(f) 6= IN the classification of the corresponding

similarity classes of cyclic subspaces remains an open problem.

Remark 4.4: Some of the results above can be transferred to other

operators: If T is any contraction on a Banach space X and for x ∈ X

we have trans(x) 6= ∅ then in the cyclic subspace C(x) there are cyclic

subspaces belonging to infinitely many different similarity classes. For a

proof observe that if n ∈ trans(x) then for any f ∈ A+(∂D) we have

jn ∈ trans(f(T n)x) if and only if j ∈ trans(f) with respect to Mz in

A+(∂D) (j ∈ IN).

For example this remark is applicable for the tensor shift analyzed in

Theorem 3.5.
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