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Noncommutative Markov Processes

Noncommutative Markov processes are models for quantum
systems. In the 1990′s Bhat and Parthasarathy introduced
socalled ‘weak’ processes as a simple common core of existing
theories. Roughly:

The dynamics is a semigroup (θt)t≥0

of ∗-endomorphisms of B(H) (or a C ∗-algebra),

weak filtration: increasing sequence of subspaces (ht)t≥0,

weak Markov property: The transition operators

Zt := P0 θt(x)P0[
Pt projects onto ht and x ∈ B(h0) = P0 B(H)P0

]
form a semigroup and

Ps θs+t(x)Ps = θs(Zt(x))



Processes with discrete time parameter t = n ∈ N0

discrete (weak Markov) process: (H,V , h) with
I H Hilbert space
I V row isometry

[
V : H⊗P → H isometry, equivalently:

V = (V1, . . . ,Vd ) with Vk isometries with orthogonal ranges
]

I h ⊂ H co-invariant subspace
[
V ∗

k h ⊂ h for all k
]

I minimality: H = span{Vαh : α ∈ F+
d }

[
F+

d free semigroup
]

An operator theorist can look at it as the minimal isometric
dilation of the compression of V to h.

related to our previous notion of weak process by

θ : B(H)→ B(H), X 7→ V X ⊗ 1lV ∗ =
∑

VkXV
∗
k

h0 = h, hn = Pnh with Pn = sup(P0, θ(P0), . . . , θn(P0))



Subprocesses and Quotient Processes

(G,V G , g) is called a subprocess of the process (H,V , h) if g
is a closed subspace of h which is co-invariant for V and
V G = V |G where G = span{Vαg : α ∈ F+

d }.
g is also co-invariant for V G and (G,V G , g) is a process.

Given a subprocess (G,V G , g) of a process (H,V , h) we can
form the quotient process

(H,V , h)/(G,V G , g) := (K,VK, k)

where k := h	 g, K := span{Vαk : α ∈ F+
d }, V

K := V |K.

(K,VK, k) is a process. In general k is not co-invariant for V .

short exact sequence of processes:

0 // (G,V G , g)
1lg // (H,V , h)

Pk // (K,VK, k) // 0



γ-cascades 1

Given processes (G,V G , g) and (K,VK, k) and any contraction
γ : E k∗ → Eg we can define a combined process: the γ-cascade

(G,V G , g) Cγ (K,VK, k) := (H,V , h)

Eg := span(g,V G(g⊗P))	g, E k∗ := span(k,VK(k⊗P))	VK(k⊗P)

(wandering subspaces!)

h := g⊕ k, H := g⊕K ⊕
⊕
α∈F +

d

(Dγ∗)α .

V :=


(
1lg ⊕

(
γ∗

Dγ∗

))
V G on g

VK on K
canonical row shift on

⊕
α∈F +

d
(Dγ∗)α



γ-cascades 2

If γ = 0 then the γ-cascade is nothing but the direct sum of
the processes (G,V G , g) and (K,VK, k).

In the dilation picture we deal here with dilations of row

contractions of the form

(
X 0
Y Z

)
.

THEOREM: There is a one-to-one correspondence between
equivalence classes of extensions of the process (K,VK, k) by
the process (G,V Gg) as in

0 // (G,V G , g) // (H,V , h) // (K,VK, k) // 0

and contractions γ from E k∗ to Eg.
This correspondence is given by the γ-cascade construction.



Representation of Structure Maps

� � �
output Y input Uinternal X

C Ak Bk

6

D

Noncommutative Fornasini-Marchesini system
via representation of structure maps (A,B,C ,D)
within a process (H,V , h) : X = h internal space,
U ⊂ E input space, Y ⊂ h⊕ E (a wandering) output space.

A = (Ak ) := V ∗|X : X → X ⊗ P
B = (Bk ) := V ∗|U : U → X ⊗ P

C := PY |X : X → Y, D := PY |U : U → Y



Cascading

It can be checked that in a γ-cascade of processes,
choosing YK := E k∗ and UG := Eg,
the corresponding structure maps cascade as linear systems.

This motivates the terminology.

xG xK� �� ��
��
yG uG yK uK

γ



Observability

Given an output pair (A,C ) for an internal space X and an
output space Y, a subset X ′ ⊂ X is called observable if
(CAα|X ′)α∈F +

d
, the observability map restricted to X ′, is

injective (as a map from X ′ to the Y-valued functions on F+
d ).

The interpretation of observability is that every ξ ∈ X ′ can be
reconstructed from the outputs CAαξ.



Asymptotic Completeness

THEOREM:
Consider the γ-cascade (G,V G , g) Cγ (K,VK, k) = (H,V , h) with
the output space Y := Eg (automatically wandering as input space
for the subprocess!). TFAE:

(1) k is observable in (H,V , h).

(2) span{(Aα)∗ g : α ∈ F+
d } = h

(3) G = H
(4) VK is a row shift and γ : E k∗ → Eg is injective (isometric).

If the transition operator Z of (H,V , h) is unital then we also have
the following equivalent condition:

(5) limn→∞ Zn(Pg) = 1lh (in the strong operator topology)

In this case we say that

0 // (G,V G , g) // (H,V , h) // (K,VK, k) // 0

is asymptotically complete.



Subprocesses from invariant states

Given a process (H,V , h), suppose that φ is a normal state
of B(h) which is invariant for the transition operator Z , i.e.,

φ(Z (x)) = φ(x) for all x ∈ B(h) .

Then with Pg := s(φ), the support projection for the state φ,
the subspace g is co-invariant for V .

Hence we can always find a subprocess from a normal
invariant state and this subprocess is nontrivial, in the sense
that g 6= h, if and only if the state is not faithful.

rich probabilistic source for subprocesses!



Operator algebraic processes 1

Our theory can also be applied for noncommutative Markov
processes in an operator algebraic setting:

Let A and C be C ∗-algebras and let

j : A → A⊗ C

be a non-zero ∗-homomorphism. By iteration we find
∗-homomorphisms

jn : A → A⊗
n⊗
1

C .

We can interpret the (jn) as noncommutative random
variables and together they form an (operator-algebraic)
Markov chain.



Operator algebraic processes 2

To get probabilistic statements we need to consider states on
these algebras.

If φ resp. ψ are states on A respectively C and we impose the
stationarity condition

(φ⊗ ψ) ◦ j = φ

we get an (operator-algebraic) stationary Markov chain.

from GNS-construction: Hilbert spaces and vector states
The whole structure extends to a weak process.

Even better:
The invariant vector state (from φ) gives rise to a subprocess
(as explained above).

associated γ-cascade (automatically!)



Scattering Theory and Asymptotic Completeness

What does asymptotic completeness mean here?

In 2000 Kümmerer and Maassen introduced a scattering
theory for noncommutative Markov chains (in analogy to
Lax-Phillips scattering theory).

It turns out that asymptotic completeness in the sense of
scattering theory is equivalent to our notion of asymptotic
completeness for the associated weak process.

Conceptually this is a nice way to understand some of the
criteria developed for checking asymptotic completeness.



Summary of Strategy

constructions from (nc) probability worked out via (nc)
operator and system theory, in a conceptually clear way.

and from there:

application of (nc) operator and system theory to obtain a
better understanding of the corresponding quantum models.

guidance for the development of (nc) operator and system
theory in relevant directions.

details for the constructions I rushed over to be found in

R.G.: Weak Markov Processes as Linear Systems (arxiv)
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