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Abstract

The probabilistic index of a completely positive map is defined

in analogy with a formula of M. Pimsner and S. Popa for conditional

expectations. As an application, we describe a new strategy for com-

puting the Jones index of the range of certain endomorphisms. We

use extended transition operators to associate to an endomorphism a

unital completely positive map acting on a finite dimensional matrix

algebra. Then the index to be computed equals the probabilistic index

of this map. For a class of examples we get a complete classification.
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1 Introduction

In [PP], M. Pimsner and S. Popa studied a notion of index for subfactors
which became known as Pimsner-Popa index or probabilistic index. For
II1−factors it coincides with the Jones index introduced by V. Jones in [Jo1].
Many generalizations have been based on it, in particular by interpreting it
as an index of a conditional expectation, see [Ko].

We are mainly interested in the original setting, namely in the following
formula: Let A0 ⊂ A be an inclusion of II1−factors. Then the probabilistic
index π(E) of the trace-preserving conditional expectation E : A → A0 can
be computed by

π(E)−1 = inf
06=a∈A+

‖E(a)‖2
2

‖a‖2
2

,

with ‖ · ‖2 the norm defined by the trace. See Section 4 and [PP], 2.2, for
more details.
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The notion of probabilistic index for a completely positive map which we
introduce in this paper, see Definition 4.1, is a very natural generalization
of this formula. Its elementary properties are developed in Section 4. The
paper is arranged in such a way that we can give in the end an application
of this new concept to a well known problem, namely the computation of
the Jones index of the range of certain endomorphisms of the hyperfinite
II1−factor. Let us describe this problem.

One of the connections between the noncommutative theory of probability
and the theory of operator algebras lies in the fact that the time evolution
of a noncommutative stationary stochastic process is an endomorphism of
an operator algebra, see for example [Kü]. In recent time the author has
studied the question how the probabilistic notion of adaptedness of a process
with respect to a filtration manifests itself on the level of endomorphisms of
operator algebras. See [Go1] for some general theory, here we concentrate on
the following very interesting class of examples.

Think of the hyperfinite II1−factor R as a weak closure with respect to
the trace of an infinite tensor product of copies (Md)n of Md, the algebra of
complex d × d−matrices (d ≥ 2):

R =

(

∞
⊗

n=0

(Md)n

)−

This tensor product structure may be interpreted as a filtration, and moti-
vated by the above considerations we call a (unital normal *-) endomorphism
α : R → R adapted if for all N ∈ N0

α

(

N
⊗

n=0

(Md)n

)

⊂
N+1
⊗

n=0

(Md)n.

It is not difficult to show that such an endomorphism admits a product
representation in the following sense (see [Go1], 4.5.2, or [JS], 5.1.6):

α = lim
N→∞

Ad(U1 . . . UN),

where Un is a unitary in (Md)n−1 ⊗ (Md)n (naturally embedded in R), so
that Ad(Un) = Un · U∗

n is an automorphism of (Md)n−1 ⊗ (Md)n. Given any
sequence of unitaries Un ∈ Md ⊗ Md, such a limit always exists pointwise in
the σ-weak topology (because on localized elements only finitely many factors
in the product act nontrivially) and it defines an adapted endomorphism. Let
us call the particular case when all Un are equal to some fixed U ∈ Md ⊗Md

the homogeneous case and denote it by αU .
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In fact, it is possible to arrive at these endomorphisms in quite different
ways. As analyzed by J. Cuntz in [Cu1, Cu2], any endomorphism of a Cuntz
algebra Od is induced by a unitary element U ∈ Od and may be indexed λU .
Now Od contains an infinite tensor product of Md in a natural way, and if
U ∈ (Md)0 ⊗ (Md)1 then it can be checked that the restriction of λU to this
subalgebra (and weak closure with respect to the trace) yields αU . See [Cu2],
1.2.

This point of view also shows that the αU are of some interest in algebraic
quantum field theory [Ha]. It was R. Longo who in [Lo] started to use the
theory of sectors to study properties of these endomorphisms. In particular
he posed the problem of computing the index of the range which equals the
square of the statistical dimension. Partial results are obtained in [Lo, Jo2]
and refinements of these methods and many more results along these lines are
contained in [CP, CF]. The concept of ‘localized endomorphism’ as defined
by R. Conti and C. Pinzari in [CP] is a slightly more general version of what
we have called ‘homogeneous adapted endomorphism’ above, and the reader
can find in their introduction a discussion how this is related to the concept
of ‘localized endomorphism’ in algebraic quantum field theory [Ha].

As V. Jones and V.S. Sunder write in [JS], 5.1.6, ‘it would be very interest-
ing to determine the exact dependence of the index on the initial sequence
of unitary elements’. Despite the progress sketched above one cannot say
that this goal is fully achieved and it may well be worth to consider re-
formulations of the problem. The methods we present here come from the
probabilistic interpretation sketched in the beginning. In the monograph
[Go1] we give ample evidence that the study of noncommutative stationary
processes greatly benefits from the systematic use of certain operators which
are not contained in the original von Neumann algebras. Our description of
this approach in Section 2 is concise but selfcontained for our purposes here.
In detail, we associate to an adapted endomorphism α a family of unital com-
pletely positive maps, all acting on finite dimensional spaces. In Theorem
2.3 it is shown how their asymptotic properties determine whether α is an
automorphism (i.e. surjective) or not. In the homogeneous case the result
is especially nice: Surjectivity corresponds to the existence of an absorbing
vector state for the associated completely positive map.

In Section 3 we review the concept of an extended transition operator
from [Go1, Go2] and derive some new aspects of it, namely an interesting
interplay between these operators and the positive cone of the von Neumann
algebra or the GNS-space. In this way we get a close connection between the
algebraic level and the level of GNS-spaces, which may be seen as a part of
spatial theory.

The connection between all these topics is finally established in Section
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5. In Theorem 5.1 we show that the Jones index [R : α(R)] of the range
of an adapted endomorphism α equals the probabilistic index of a unital
completely positive map Xα acting on Md. Thus we have a reduction to a
finite dimensional problem. Note that this does not depend on localizability
assumptions for the conditional expectation onto α(R) which underly many
results in [CP].

In Section 6 we show how the computation can actually be done for
a class of real orthogonal 4 × 4−matrices. Even in this low dimensional
case the complete classification seems to be new. These computations are
elementary but need some work because Xα is obtained as a limit and because
evaluation of the probabilistic index requires a detailed understanding of the
completely positive map. But we think that we have achieved a separation
of the relevant problems in such a way that in each part we can profit from
independent theoretical progress. It is an interesting question, for example,
how other properties of the endomorphism α reflect themselves in the finite
dimensional map Xα.

Some conventions: For operator algebraic terminology we refer to [Ta].
The algebras considered in this paper are von Neumann algebras and maps
between them are assumed to be normal. In particular, by the notation
T : (A, φA) → (B, φB) we mean a normal unital completely positive map
T : A → B which respects the normal states φA of A and φB of B in the sense
that φB ◦ T = φA. We denote by Tr the non-normalized trace for trace class
operators, while tr always denotes a tracial state, i.e. tr(1I) = 1. The norm
‖ · ‖2 is defined by ‖a‖2

2 = tr(a∗a). The positive cone in a von Neumann
algebra A is denoted A+, and A1

+ consists of the normalized elements in A+

in the sense that ‖a‖2 = 1.

2 An approach via GNS-spaces

Suppose R = (
⊗∞

n=0(Md)n)
−

is the hyperfinite II1−factor and

α = lim
N→∞

Ad(U1 . . . UN)
[

with unitaries Un ∈ (Md)n−1 ⊗ (Md)n

]

is an adapted endomorphism, as described in Section 1. By the GNS-
construction with respect to the tracial state we obtain a Hilbert space H
with a cyclic and separating vector Ω. If (Hn, Ωn) is obtained by GNS-
construction from (Md)n with the tracial state then we can think of H as
an infinite tensor product of Hilbert spaces Hn along the sequence of unit
vectors Ωn. Because the trace is invariant for the endomorphism α we can
define an extension to an isometry v on H. With unitaries un ∈ B(H) given
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by
unaΩ := AdUn(a)Ω, n ∈ N, a ∈ R

we have
vaΩ := α(a)Ω = lim

N→∞
u1 . . . uNaΩ.

If qN is the orthogonal projection from H onto the subspace
⊗N

n=0 Hn and eN

is the orthogonal projection onto v
(

⊗N

n=0 Hn

)

then because v|⊗N

n=0
Hn

=

u1 . . . uN+1|⊗N

n=0
Hn

we have

eN = u1 . . . uN+1 qN u∗
N+1 . . . u∗

1.

We want to compute ‖E(a)‖2, where E : R → α(R) is the trace-preserving
conditional expectation onto α(R) and ‖ · ‖2 is defined by ‖a‖2

2 = tr(a∗a).
Let e ∈ B(H) be the orthogonal projection onto the closure of α(R)Ω, i.e.
E(a)Ω = eaΩ for all a ∈ R. Then

‖E(a)‖2 = ‖E(a)Ω‖ = ‖eaΩ‖
= lim

N→∞
‖eNaΩ‖ = lim

N→∞
‖qN u∗

N+1 . . . u∗
1aΩ‖.

The following lemma prepares a reformulation of this equality in terms of
completely positive maps.

Lemma 2.1 Let K1,K2 be Hilbert spaces, Ω2 ∈ K2 a unit vector. If q is the
orthogonal projection from K1 ⊗ K2 onto K1 ⊗ Ω2 and v : K1 → K1 ⊗ K2 is
an isometry, then for all ξ ∈ K1

‖q v ξ‖2 = 〈Ω2 , T r1(v pξ v∗) Ω2〉.

Here pξ denotes the one-dimensional projection onto Cξ, and Tr1 denotes
the partial trace evaluated on K1, i.e. Tr1(ρ1 ⊗ ρ2) = Tr(ρ1)ρ2.

Proof. Choose an ONB (δi) of K2 with δ0 = Ω2. Note that v pξ v∗ is the
one-dimensional projection onto Cvξ. Thus if we expand vξ =

∑

i ξi ⊗ δi

with ξi ∈ K1, then we get

〈Ω2 , T r1(v pξ v∗) Ω2〉 = 〈δ0,
∑

i,j

〈ξi, ξj〉δj〉 〈δi, δ0〉 = 〈ξ0, ξ0〉 = ‖q v ξ‖2

2

Proposition 2.2 For all a ∈ ⊗M

n=0(Md)n with ‖a‖2 = 1

‖E(a)‖2
2 = lim

N→∞
〈ΩN , FN . . . FM+1(ρ) ΩN〉.
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Here ρ := Tr0,...,M−1(u
∗
M . . . u∗

1 paΩ u1 . . . uM) is a positive operator with Tr(ρ) = 1
(a so-called density operator) on HM and paΩ is the one-dimensional projec-
tion onto CaΩ. Further for all n ∈ N the map Fn(·) := Trn−1(vn · v∗

n) is
completely positive, mapping density operators on Hn−1 into density opera-
tors on Hn, where vn is an isometry from Hn−1 into Hn−1 ⊗ Hn given by
vn ξ := u∗

n(ξ⊗Ωn) for ξ ∈ Hn−1. The subscripts of Tr indicate the collection
of indices of those Hn where the partial trace is evaluated.

Proof. For M ≤ N use Lemma 2.1 with K1 :=
⊗N

n=0 Hn and K2 := HN+1

to obtain

‖qN u∗
N+1 . . . u∗

1aΩ‖2

= 〈ΩN+1, T r0,...,N(u∗
N+1 . . . u∗

1 paΩ u1 . . . uN+1)ΩN+1〉
= 〈ΩN+1, T rM,...,N(u∗

N+1 . . . u∗
M+1 ρ uM+1 . . . uN+1)ΩN+1〉

= 〈ΩN+1, FN+1 . . . FM+1(ρ) ΩN+1〉.
Combining this with the computations in the beginning of this section yields
the result. 2

Note that for index computations by the Pimsner-Popa formula (as ex-
plained in Section 1) we need to control ‖E(a)‖2 for positive a ∈ R. It
will be shown in the following sections how this can be done. If we only
want to know whether α is an automorphism we only have to check whether
‖E(a)‖2 = 1 for all a ∈ R with ‖a‖2 = 1. Criteria for this can thus be
derived directly from Proposition 2.2.

Theorem 2.3 The adapted endomorphism α is an automorphism if and only
if for all M ∈ N0 and all density operators ρM on HM

lim
N→∞

(FN . . . FM+1(ρM) − pΩN
) = 0

Here pΩN
denotes the one-dimensional projection onto CΩN . Note that the

spaces are finite dimensional and we can interpret the limit in many equiva-
lent ways, for example by operator norms getting small.

We remark that only tails (Fn)n≥M , with M arbitrarily large, are relevant
in this criterion. If α is homogeneous, α = αU , then identifying all Hn with
H0 and all Ωn with Ω0 we can also identify all Fn with F := F1, mapping
the space of density operators on H0 into itself. Then the criterion can be
simplified as follows:

Corollary 2.4 The homogeneous adapted endomorphism αU is an automor-
phism if and only if the vector state given by Ω0 is absorbing for F , in the
sense that for all x ∈ B(H0) and all density operators ρ on H0 we have

lim
N→∞

Tr
(

FN(ρ) x
)

= 〈Ω0, xΩ0〉.
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Because in the setting of Corollary 2.4 we have to consider powers of
a single completely positive map F we can use spectral theory to check
whether we have an automorphism or not. See [Go1] for more details about
connections with ergodic theory.
Proof. α is an automorphism if and only if ‖E(a)‖2 = 1 for all a ∈ R
with ‖a‖2 = 1. It is enough to check this for a ∈ ⊗M

n=0(Md)n for all M .

Running in Proposition 2.2 through all a ∈ ⊗M

n=0(Md)n with ‖a‖2 = 1 we

get all one-dimensional projections on
⊗M

n=0 Hn as paΩ and (for M ≥ 1)
also as u∗

M . . . u∗
1 paΩ u1 . . . uM and thus all density operators on HM as ρ.

Summarizing, α is an automorphism if and only if

lim
N→∞

〈ΩN , FN . . . FM+1(ρM) ΩN〉 = 1

for all M and all density operators ρM on HM . Now Theorem 2.3 and
Corollary 2.4 are a consequence of the following folklore result about trace
class operators which we only state below. A detailed proof is written down
in [Go1], A.5.3. Compare further [Ta], III.5.11. The lemma also indicates
the correct notions of convergence to be used here if one considers infinite
dimensional generalizations. 2

Lemma 2.5 Consider sequences (Kn) of Hilbert spaces, (Ωn) of unit vectors,
(ρn) of density matrices such that Ωn ∈ Kn and ρn on Kn for all n. Then for
N → ∞ the following assertions are equivalent:

(1) 〈ΩN , ρNΩN〉 → 1

(2) ‖ ρN − pΩN
‖1 → 0

[

‖ρ‖1 := Tr|ρ|
]

(3) For all uniformly bounded sequences (xn) with xn ∈ B(Kn) for all n:
Tr(ρN xN) − 〈ΩN , xNΩN〉 → 0.

3 Extended transition and positivity

Consider von Neumann algebras A,B, C on Hilbert spaces G,H,K with cyclic
vectors ΩG, ΩH, ΩK. The normal states on A,B, C induced by these vectors
are denoted φA, φB, ψ. Further suppose that

j : (B, φB) → (A⊗ C, φA ⊗ ψ)

is a (normal unital *-)homomorphism. Here we use von Neumann tensor
products and the notation introduced at the end of Section 1. It is convenient
to assume that φA and φB are faithful, and we do that from now on. Then

7



the vectors ΩG and ΩH are also separating and j is injective.
We can extend j to a map

v : H → G ⊗K
bΩH 7→ j(b) ΩG ⊗ ΩK,

which is easily checked to be isometric and which will be called the associated
isometry. Then we can define a normal unital completely positive map

Z : B(G) → B(H)

x 7→ v∗ (x ⊗ 1I) v.

Note further that vΩH = ΩG ⊗ ΩK and thus 〈ΩG, xΩG〉 = 〈ΩH, Z(x)ΩH〉.
Operators Z of this type have been studied in [Go1, Go2] and have been

called ‘extended transition operators’. They play an interesting role in the
spatial theory of noncommutative Markov processes and their name is derived
from the fact that if we think of j as a dilation of a transition operator from
B to A, then Z extends the dual transition operator on the commutants.
For a survey on this type of noncommutative Markov processes we refer to
[Kü], further probabilistic background and details of the extension theory
mentioned above can be found in [Go1, Go2]. Here we shall be concerned
with another property of this class of operators:

Theorem 3.1 Let Z : B(G) → B(H) be an extended transition operator as
introduced above. Suppose that there exists a conditional expectation Q from
A ⊗ C onto j(B) with invariant state φA ⊗ ψ. Then for any X : (A, φA) →
(A, φA) there exists a unique Ẑ(X) : (B, φB) → (B, φB) so that for some
contraction x ∈ B(G) the following equations are valid:

xaΩG = X(a)ΩG for all a ∈ A (1)

Z(x)bΩH = Ẑ(X)(b)ΩH for all b ∈ B. (2)

Explicitly: Ẑ(X) = j−1Q (X⊗Id) j, where Id is the identity on C.

Proof. The Kadison-Schwarz inequality for X tells us that X(a∗) X(a) ≤
X(a∗a), and using the φA-invariance this implies that there is a contraction
x ∈ B(G) which is uniquely determined by the first equation.
Further we get

Z(x)bΩH = v∗ (x ⊗ 1I) vbΩH

= v∗ (x ⊗ 1I) j(b) ΩG⊗ΩK

= v∗ X⊗Id(j(b)) ΩG⊗ΩK

=
[

j−1Q (X⊗Id) j
]

(b) ΩH,
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because v∗ (a ⊗ c) ΩG ⊗ ΩK = j−1Q(a ⊗ c) ΩH for a ∈ A, c ∈ C. Because
ΩH is separating, Ẑ(X) is uniquely determined by the second equation and
thus we have

Ẑ(X) = j−1Q (X⊗Id) j.

From the properties of the factors of this product it is then easily checked
that indeed Ẑ(X) is a normal unital completely positive map with invariant
state φB. 2

Remark 3.2 In [Go1, Go2] we also considered non-unital homomorphisms
j with j(1I) ≥ 1I ⊗ pΩK

, where pΩK
is the one-dimensional projection onto

CΩK. Then all the arguments above still work except that Ẑ(X) may fail to
be unital.

On the other hand, the following special unital case is particularly convenient
and will in fact be the only one which appears in the applications in Section 6:
Let us call the homomorphism j : (B, φB) → (A ⊗ C, φA ⊗ ψ) automorphic
if A = B, G = H, φA = φB =: φ and there is a (normal *-)automorphism
β : (A⊗ C, φ ⊗ ψ) → (A⊗ C, φ ⊗ ψ) such that

j(a) = β(a ⊗ 1I) for all a ∈ A.

Then Theorem 3.1 can be simplified as follows:

Corollary 3.3 In the automorphic case the conditional expectation Q always
exists, namely Q = β Q0 β−1, where Q0 : (A ⊗ C, φ ⊗ ψ) → (A, φ) is the
conditional expectation determined by Q0(a⊗c) = a ψ(c) (‘slice map’). Then
we have

Ẑ(X) = Q0 β−1 (X⊗Id) β.

Proof. Immediate from the definition of automorphic and Theorem 3.1. 2

The preceding results show that an extended transition operator Z can
also be interpreted as a map Ẑ between spaces of completely positive maps.
This is a second kind of positivity which must be clearly distinguished from
the complete positivity of Z itself. To make this more precise, we give

Definition 3.4 Let A be a von Neumann algebra with a faithful normal state
φ. A normal completely positive map X : A → A is called (φ-)doubly positive
if additionally

φ(a∗X(a)) ≥ 0 for all a∈A.

Example 3.5 Let A be a d×d−matrix with nonnegative real entries. Think-
ing of it as a positive map on the commutative algebra C

d with the arithmetic
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mean as the state, we can check that in this case double positivity means

that A is also positive semidefinite. For example A =

(

2 1
1 1

)

is such a ma-

trix. In the theory of matrices ‘doubly positive’, or more precisely: ‘doubly
nonnegative’, is a well established terminology for that (but beware: ‘com-
pletely positive’ is used with a different meaning), see [Be]. Some examples
of doubly positive operators acting on noncommutative algebras can be seen
in Remark 4.9.

Proposition 3.6 Let Z : B(G) → B(H) be an extended transition operator
corresponding to some j : (B, φB) → (A⊗C, φA⊗ψ). If X : (A, φA) → (A, φA)
is φA−doubly positive then Ẑ(X) : (B, φB) → (B, φB) is φB−doubly positive.

Proof. It suffices to check the additional property in Definition 3.4. If
xaΩG = X(a)ΩG for all a ∈ A, then by assumption

0 ≤ φA(a∗X(a)) = 〈aΩG, xaΩG〉, i.e. x ≥ 0.

Then also Z(x) ≥ 0 and for all b ∈ B

φB(b∗Ẑ(X)(b)) = 〈bΩH, Z(x)bΩH〉 ≥ 0.

This shows that Ẑ(X) is φB−doubly positive. 2

4 A probabilistic index for completely posi-

tive maps

Definition 4.1 Let A be a von Neumann algebra with a faithful normal
tracial state and let S : A → A be a normal unital completely positive map.
Then π(S), the probabilistic index of S, is defined by

π(S)−1 := inf
06=a∈(A⊗Mn)+, n∈N

tr (a · S⊗Idn(a))

tr(a2)
.

Introducing the notation (A⊗ Mn)1
+ for positive elements a with tr(a2) = 1

we can also write π(S)−1 := inf tr (a · S⊗Idn(a)), the infimum over a ∈
(A ⊗ Mn)1

+ and all n ∈ N. Obviously we have π(S) ∈ [1,∞] and π(S) = 1
if and only if S = Id. We now discuss further elementary properties of this
concept in a series of remarks.
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Remark 4.2 Suppose that a, b ∈ (A⊗ Mn)+. Then

tr
(

(a + b) · S⊗Idn(a + b)
)

≥ tr (a · S⊗Idn(a)) + tr (b · S⊗Idn(b)) ,

because the mixed terms are nonnegative. If further 0 6= a, b and tr(ab) = 0
then tr(a2) + tr(b2) = tr((a + b)2) and

tr
(

(a + b) · S⊗Idn(a + b)
)

tr((a + b)2)

≥ tr (a · S⊗Idn(a))

tr(a2)

tr(a2)

tr((a + b)2)
+

tr (b · S⊗Idn(b))

tr(b2)

tr(b2)

tr((a + b)2)

≥ min

{

tr (a · S⊗Idn(a))

tr(a2)
,

tr (b · S⊗Idn(b))

tr(b2)

}

.

Using the spectral theorem for positive operators we infer that

π(S)−1 = inf
06=p

tr (p · S⊗Idn(p))

tr(p)
,

where p ranges over all (nonzero) projections of A⊗ Mn for all n ∈ N. If all
such projections are orthogonal sums of minimal ones then it is enough to
consider the infimum for minimal projections.

Remark 4.3 If A is a II1−factor and S = E is a trace-preserving condi-
tional expectation onto a II1−subfactor A0, then π(S) coincides with the
probabilistic index or Pimsner-Popa index introduced in [PP]. In [PP], 2.2,
it is shown that this also coincides with the Jones index [A : A0] introduced
in [Jo1]. In fact, by [PP], 2.2, we have

[A : A0]
−1 = inf

06=a∈A+

‖E(a)‖2
2

‖a‖2
2

= inf
06=a∈A+

tr (a · E(a))

tr(a2)

and similarly π(S)−1 =

inf
06=a∈(A⊗Mn)+, n∈N

tr (a · E⊗Idn(a))

tr(a2)
= inf

n∈N

[A⊗ Mn : A0 ⊗ Mn] = [A : A0]
−1,

where the last inequality follows from [Jo1], 2.1.15.

Remark 4.4 There is another situation where no amplification of S is needed
in Definition 4.1: If A is commutative then

π(S)−1 = inf
06=a∈A+

tr (a · S(a))

tr(a2)
.
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Proof: Identify A with L∞(Ω, Σ, µ) for a probabiliy space (Ω, Σ, µ). The
probability measure µ represents the trace. Then

A⊗ Mn = L∞(Ω, Σ, µ) ⊗ Mn ≃ L∞(Ω, Σ, µ; Mn),

i.e. Mn−valued functions. Let p̃ be a projection-valued function which yields
a good approximation of the infimum in Remark 4.2. We can approximate p̃

by a step function with only finitely many projections as values (for details in
measure theory we refer to [Ru]). Using Remark 4.2 we infer that we can find
a nonzero projection p⊗ q ∈ A⊗Mn which also yields a good approximation
of the infimum. But now we get

tr (p ⊗ q · S⊗Idn(p ⊗ q))

tr(p ⊗ q)
=

tr (p · S(p))

tr(p)
,

which shows that we do not need to consider amplifications of S to compute
the index. Note that if A = C

d with the arithmetic mean as the trace and
S : A → A is considered as a stochastic matrix, then π(S)−1 is nothing but
the smallest diagonal entry.

Remark 4.5 To see an example where amplification is needed to get the
correct value of the probabilistic index, consider the trace-preserving condi-
tional expectation P0 : M2 → M2, a 7→ tr(a) 1I. Then inf tr(p P0(p)) = 1

2

if the infimum is computed for one-dimensional projections in M2. This is
easily checked by using the explicit parametrization as a Bloch sphere, see
for example [NC]. But π(P0) = 4, as can be seen by applying Proposition 4.8
below. This is also the correct value for the index of the inclusion C ⊂ M2

in the sense of [GHJ], Chapter 2.

Remark 4.6 For S : Mn → Mn we have

π(S)−1 = inf
a∈(Mn⊗Mn)1

+

tr (a · S⊗Idn(a)) .

In fact, if m ≥ n then for any η ∈ C
n ⊗ C

m there exists η′ ∈ C
n ⊗ C

n and
an isometry w : C

n → C
m such that η = (1I ⊗ w)η′, see for example [ER],

Lemma 2.2.1. Thus for any one-dimensional projection p ∈ Mn ⊗ Mm there
exists a one-dimensional projection p′ ∈ Mn⊗Mn with p = (1I⊗w)p′(1I⊗w∗).
But then

Tr(p · S⊗Idm(p)) = Tr(p′ · S⊗Idn(p′)).

The result follows from this because by Remark 4.2 considering minimal
projections is enough.
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Remark 4.7 Recall from Definition 3.4 that we call S (tr-)doubly positive
if it additionally satisfies tr(a∗ S(a)) ≥ 0 for all a ∈ A. If the (unital) map S

is also trace-preserving and (tr-)doubly positive then we get an upper bound

π(S) ≤ π(P0),

where P0 : A → A, a 7→ tr(a) 1I is the conditional expectation onto the
constants. Note that P0 is itself trace-preserving and (tr-)doubly positive.

Proof: Decompose a ∈ (A⊗ Mn)+ as a = a0 + a1 with a0 = P0 ⊗ Idn(a)
and a1 = a − P0 ⊗ Idn(a). Note that the ai are selfadjoint and satisfy
tr(a0 · a1) = 0. Now we compute tr

(

a · S⊗Idn(a)
)

= tr
(

a · S⊗Idn(a0)
)

+ tr
(

a0 · S⊗Idn(a1)
)

+ tr
(

a1 · S⊗Idn(a1)
)

The first summand is

tr
(

a · (S⊗Idn)(P0⊗Idn)(a)
)

= tr
(

a · P0⊗Idn(a)
)

.

For the second summand we find

tr
(

P0⊗Idn(a) · S⊗Idn(a1)
)

= tr
(

S⊗Idn

(

P0⊗Idn(a) · a1

))

= tr
(

(P0⊗Idn)(a) · a1

)

= 0.

Finally the third summand is nonnegative because if S is (tr-)doubly positive
then S⊗Idn is (tr ⊗ trn)-doubly positive. In fact, writing b =

∑

i,j bij⊗eij

with bij ∈ A and matrix units eij ∈ Mn we get

(tr⊗trn)(b∗·S⊗Idn(b)) =
∑

i,j,k,ℓ

tr(b∗ijS(bkℓ)) trn(e∗ijekℓ) =
1

n

∑

i,j

tr(b∗ijS(bij)) ≥ 0.

2

We now compute π(S) for a class of examples.

Proposition 4.8 Let S : M2 → M2 be a unital completely positive map with
the Pauli matrices

σ0 =

(

1 0
0 1

)

, σ1 =

(

1 0
0 −1

)

, σ2 =

(

0 1
1 0

)

, σ3 =

(

0 −i

i 0

)

as eigenvectors, i.e., S σi = λi σi with λ0 = 1, λ1, λ2, λ3 ∈ R. With λmin :=
min{λ1, λ2, λ3} we get

π(S)−1 = min

{

1

2
(1 + λmin),

1

4

3
∑

i=0

λi

}

.
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Remark 4.9 Note that any S : M2 → M2 as in Proposition 4.8 is auto-
matically trace-preserving. It is well known (see [KR], Appendix B) that a
unital linear map on M2 with the Pauli matrices as eigenvectors is completely
positive if and only if the tuple (λ1, λ2, λ3) of eigenvalues is contained in the
(real) tetrahedron with corners at

(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

As it should be, this implies that the formula for π(S)−1 in Proposition 4.8
always yields values in the interval [0, 1].

If M2 ∋ a =
∑3

i=0 αi σi for some numbers αi, then from tr(σi σj) = δij

we infer that tr(a∗S(a)) =
∑3

i=0 λi |αi|2. Thus S is (tr-)doubly positive if
and only if we have additionally λ1, λ2, λ3 ≥ 0. In this case 1 ≤ π(S) ≤
π(P0) = 4 by Remark 4.7. On the other hand, if we drop double positivity
we can easily write down examples with π(S) = ∞. For example, check that
S : a 7→ σ1 a σ1 has λ1 = 1, λ2 = λ3 = −1 and then use Proposition 4.8.

Proof. Using Remark 4.6 we have

π(S)−1 = inf
a∈(M2⊗M2)1

+

tr (a · S⊗Id2(a)) .

Now write a ∈ (M2 ⊗ M2)
1
+ in the form

a =
3

∑

i=0

σi ⊗ ρi

with ρi ∈ M2. We have ρi = ρ∗
i and

∑3
i=0 tr(ρ2

i ) = 1. Then

π(S)−1 = inf
a∈(M2⊗M2)1

+

tr (a · S⊗Id2(a)) = inf
a∈(M2⊗M2)1+

3
∑

i=0

λi tr(ρ
2
i ).

Therefore Proposition 4.8 is an immediate consequence of the following

Lemma 4.10 Consider the set

M :=
{ (

tr(ρ2
0), tr(ρ

2
1), tr(ρ

2
2), tr(ρ

2
3)

) }

a∈(M2⊗M2)1+

as a subset of the hyperplane x0 + x1 + x2 + x3 = 1 in R
4. Then the convex

hull of M is the polyhedron with corners at

(1, 0, 0, 0),
1

2
(1, 1, 0, 0),

1

2
(1, 0, 1, 0),

1

2
(1, 0, 0, 1),

1

4
(1, 1, 1, 1).
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Proof. Let us first check that the given corners belong to the set M . In
fact, we find the following correspondences:

a0 = σ0 ⊗ σ0 ¤ (1, 0, 0, 0)

a1 =
1√
2
(σ0 ⊗ σ0 + σ1 ⊗ σ1) ¤

1

2
(1, 1, 0, 0)

a2 =
1√
2
(σ0 ⊗ σ0 + σ2 ⊗ σ2) ¤

1

2
(1, 0, 1, 0)

a3 =
1√
2
(σ0 ⊗ σ0 − σ3 ⊗ σ3) ¤

1

2
(1, 0, 0, 1)

a4 =
1

2
(σ0 ⊗ σ0 + σ1 ⊗ σ1 + σ2 ⊗ σ2 − σ3 ⊗ σ3) ¤

1

4
(1, 1, 1, 1).

a0, . . . , a4 are multiples of projections, normalized so that they belong to
(M2 ⊗ M2)

1
+.

It remains to show that any element of M is a convex combination of
these corners. To see that, we derive some properties shared by all elements
(α, β, γ, δ) of M :

(0) α, β, γ, δ ≥ 0

(1) α + β + γ + δ = 1

(2) α ≥ β, γ, δ

(3) α + β ≥ γ + δ, α + γ ≥ β + δ, α + δ ≥ β + γ

In fact, (0) and (1) are immediate from the definition. To see (2) and (3) let

us write a ∈ (M2 ⊗ M2)
1
+ as a block matrix

(

A B∗

B C

)

with A,B,C ∈ M2.

Then

ρ0 =
1

2
(A + C), ρ1 =

1

2
(A − C), ρ2 =

1

2
(B + B∗), ρ3 =

1

2i
(B − B∗).

Because A,C ≥ 0 we have ρ0 ± ρ1 ≥ 0. We conclude that

tr(ρ2
0 − ρ2

1) = tr ((ρ0 + ρ1)(ρ0 − ρ1)) ≥ 0,

which is α ≥ β. The other inequalities α ≥ γ and α ≥ δ in (2) follow by
applying automorphisms of M2 which permute the Pauli matrices.

Further see [HJ], 3.5.15, for a general inequality for such block matrices
which specialized to the trace norm ‖ · ‖2 yields

tr(BB∗) ≤ ‖A‖2 ‖C‖2.
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Using this we get

γ + δ = tr(ρ2
2) + tr(ρ2

3)

=
1

4

[

tr((B + B∗)2) − tr((B − B∗)2)
]

=
1

2
tr(BB∗ + B∗B) = tr(BB∗)

≤ ‖A‖2 ‖C‖2 ≤ 1

2
(‖A‖2

2 + ‖C‖2
2)

=
1

2
(tr(A2) + tr(C2)) = tr(ρ2

0) + tr(ρ2
1) = α + β.

Again by applying automorphisms of M2 which permute the Pauli matrices
we also get the other inequalities in (3).

Now start with any (α, β, γ, δ) ∈ M , and without restriction of generality
assume that β is the minimal number in β, γ, δ. Define α′ := α − β, γ′ :=
γ − β, δ′ := δ − β. Then

(α, β, γ, δ) = β(1, 1, 1, 1)+γ′(1, 0, 1, 0)+δ′(1, 0, 0, 1)+
(

α′−γ′−δ′
)

(1, 0, 0, 0).

Using properties (0), (1), (2), (3) above we can easily check that this presents
(α, β, γ, δ) as a convex combination of the corners given in Lemma 4.10. Thus
Lemma 4.10 is proved. 2

5 Computation of [R : αR]

Putting together the definitions and results from the previous sections we
can describe a strategy for the computation of [R : αR] for an adapted
endomorphism α. This is summarized in

Theorem 5.1 Let α = limN→∞ Ad(U1 . . . UN) be an adapted endomorphism
of R = (

⊗∞
n=0(Md)n)

−
. Then there exists a unital completely positive and

trace preserving map Xα : Md → Md such that

[R : αR] = π(Xα).

Explicitly: Using the maps Fn from Section 2 and the notation from Section
3 (see also Remark 5.3 below), the limit

X(M)
α := lim

N→∞
F̂ ∗

M+1 . . . F̂ ∗
N(PN)

(

with PN : (Md)N → (Md)N , a 7→ tr(a)1I
)

exists for all M ∈ N0, and we can

take for Xα any accumulation point of the X
(M)
α (as maps on Md). If α is

homogeneous then we define

Xα := X(0)
α = lim

N→∞
(F̂ ∗)N(P0).
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Proof. From Proposition 2.2, for a ∈ ⊗M

n=0(Md)n with ‖a‖2 = 1 we have

‖E(a)‖2
2 = lim

N→∞
〈ΩN , FN . . . FM+1(ρ) ΩN〉

with ρ := Tr0,...,M−1(u
∗
M . . . u∗

1 paΩ u1 . . . uM) and Fn(·) := Trn−1(vn · v∗
n),

where vn := u∗
n|Hn−1

. We transform this as follows:

〈ΩN , FN . . . FM+1(ρ) ΩN〉
= Tr(pΩN

FN . . . FM+1(ρ)) = Tr(F ∗
M+1 . . . F ∗

N(pΩN
) ρ)

= Tr(1I0,...,M−1 ⊗ F ∗
M+1 . . . F ∗

N(pΩN
) u∗

M . . . u∗
1 paΩ u1 . . . uM)

= 〈ξ, 1I0,...,M−1 ⊗ F ∗
M+1 . . . F ∗

N(pΩN
)ξ〉,

where pΩN
is the one-dimensional projection onto CΩN , ξ := u∗

M . . . u∗
1aΩ =

Ad(U∗
M . . . U∗

1 )(a)Ω and F ∗
n is the adjoint of Fn with respect to the duality

given by Tr. Explicitly:

F ∗
n : B(Hn) → B(Hn−1)

x 7→ v∗
n (1I ⊗ x) vn.

In fact, if x ∈ B(Hn) then

Tr(Fn(ρ)·x) = Tr(Trn−1(vnρv∗
n)·x) = Tr(vnρv∗

n·1I⊗x) = Tr(ρ·v∗
n 1I⊗x vn).

Because vn is an isometric extension of AdU∗
n|(Md)n−1

it turns out that F ∗
n

is an extended transition operator as studied in Section 3. See Remark 5.3
below for additional details which are helpful for later computations but are
not needed in this proof. Note further that

pΩN
aΩN = PN(a)ΩN for all a ∈ (Md)N .

We conclude from Theorem 3.1 that for b ∈ (Md)M

F ∗
M+1 . . . F ∗

N(pΩN
)bΩM = XMN(b)ΩM

with a unital completely positive and trace preserving map

XMN := F̂ ∗
M+1 . . . F̂ ∗

N(PN) : (Md)M → (Md)M .

Because vN+1ΩN = ΩN ⊗ ΩN+1 we get F ∗
N+1(pΩN+1

) ≥ pΩN
and thus

F ∗
M+1 . . . F ∗

N+1(pΩN+1
) ≥ F ∗

M+1 . . . F ∗
N(pΩN

),
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which means that xMN := F ∗
M+1 . . . F ∗

N(pΩN
) is (for N → ∞) an increasing

sequence of positive operators. It is bounded by 1I and thus it converges to
a positive operator x

(M)
α ∈ B(HM). Then for all b ∈ (Md)M we get

XMN(b)ΩM = xMNbΩM
N→∞−→ x(M)

α bΩM =: X(M)
α (b)ΩM .

Here X
(M)
α (b) is well defined because ΩM is separating, and as a limit of

unital completely positive and trace preserving maps, X
(M)
α is also a unital

completely positive and trace preserving map from (Md)M to (Md)M .
Now recall that for a ∈ ⊗M

n=0(Md)n with ‖a‖2 = 1 we have ‖E(a)‖2
2 =

lim
N→∞

〈Ω, Ad(U∗
M . . . U∗

1 )(a∗)1I0,...,M−1 ⊗ F ∗
M+1 . . . F ∗

N(pΩN
)Ad(U∗

M . . . U∗
1 )(a)Ω〉.

Varying a in
(

⊗M

n=0(Md)n

)1

+
we notice that also Ad(U∗

M . . . U∗
1 )(a) takes all

values in
(

⊗M

n=0(Md)n

)1

+
and thus with inf = inf

a∈(
⊗

M

n=0
(Md)n)

1

+

inf ‖E(a)‖2
2 = inf lim

N→∞
〈Ω, a 1I0,...,M−1 ⊗ F ∗

M+1 . . . F ∗
N(pΩN

) aΩ〉

= inf 〈Ω, a 1I0,...,M−1 ⊗ X(M)
α (a)Ω〉

= inf tr
(

a 1I0,...,M−1 ⊗ X(M)
α (a)

)

. (∗)

Let us first consider the homogeneous case. Then the X
(M)
α can all be iden-

tified with Xα := X
(0)
α on (Md)0. Considering M → ∞ for

(

⊗M

n=0(Md)n

)1

+
we get

inf
a∈R1

+

‖E(a)‖2
2 = inf

M∈N0, a∈(
⊗

M

n=0
(Md)n)

1

+

tr (a · 1I0,...,M−1 ⊗ Xα(a)) .

The left hand side is the Pimsner-Popa index, which is equal to the Jones
index [R : αR], see Section 1, Remark 3.3, and first of all [PP], 2.2, for a
proof of this equality. The right hand side is π(Xα), the probabilistic index of
Xα, see Definition 4.1. Thus for the homogeneous case the proof is finished.

In the inhomogeneous case let the X
(M)
α all act on Md and then let Xα

be any accumulation point of the X
(M)
α . Such points exist because the set

of unital completely positive maps on Md is compact. Equation (∗) above
shows that

inf
a∈(

⊗

M

n=0
(Md)n)

1

+

tr
(

a · 1I0,...,M−1 ⊗ X(M)
α (a)

)

is decreasing with M , and then similar arguments as above make clear that
[R : αR] = π(Xα). 2
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Remark 5.2 Using Proposition 3.6 we conclude that Xα is (tr-)doubly pos-
itive. By Remark 4.7 this yields the upper bound

[R : αR] = π(Xα) ≤ π(P0).

For example, for d = 2 we have π(P0) = 4, see Remark 4.5 and Proposition
4.8. Of course the inequality [R : αR] ≤ d2 is well known by other arguments,
see [Lo, JS].

Remark 5.3 Let us describe F ∗
n as an extended transition operator in more

detail: As noted in the proof of Theorem 5.1 we have

F ∗
n(x) = v∗

n (1I ⊗ x) vn,

where vn extends AdU∗
n|(Md)n−1

. Identifying all (Md)n with Md, we can iden-
tify F ∗

n with an extended transition operator Z♯
n which is given in an auto-

morphic way, as in 3.3. With canonical unit vectors (δi) and

flip : C
d → C

d, δi ⊗ δj 7→ δj ⊗ δi,

the defining automorphism β♯
n is given explicitly as

β♯
n : Md ⊗ Md → Md ⊗ Md, β♯

n = Ad(U ♯
n) with U ♯

n := flip ◦ U∗
n.

6 A class of examples

We now present a class of examples where we can obtain a complete classifi-
cation of the occurring index values. This is based on the following compu-
tations.

Lemma 6.1 Suppose that X : M2 → M2 is a unital completely positive map
with Xσi = λiσi, i = 0, 1, 2, 3 (as in 4.8). Further let U ∈ M2 ⊗M2 ≃ M4 be
a real orthogonal matrix with

U =

(

1 0
0 0

)

⊗
(

α 0
0 d

)

+

(

0 0
0 1

)

⊗
(

a 0
0 δ

)

+

(

0 0
1 0

)

⊗
(

0 b

γ 0

)

+

(

0 1
0 0

)

⊗
(

0 β

c 0

)

≃









α 0 0 β

0 d c 0
0 b a 0
γ 0 0 δ









.
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Form the extended transition operator Z for the automorphism β = AdU ,
see 3.3 (automorphic case). Then Ẑ(X)σi = λ′

iσi with








λ′
0

λ′
1

λ′
2

λ′
3









= A









λ0

λ1

λ2

λ3









,

where A is a stochastic 4× 4−matrix whose rows A0, A1, A2, A3 are given by

A0 = (1, 0, 0, 0)

A1 =
( 1

4
(α2 + b2 − γ2 − d2)2,

1

4
(α2 − b2 − γ2 + d2)2,

(αγ + bd)2, (αγ − bd)2
)

A2 =
( 1

4
(αc + βd + γa + δb)2,

1

4
(αc + βd − γa − δb)2,

1

2
(αa + βb)2 +

1

2
(γc + δd)2, 0

)

A3 =
( 1

4
(αc − βd − γa + δb)2,

1

4
(αc − βd + γa − δb)2,

0,
1

2
(αa − βb)2 +

1

2
(γc − δd)2

)

Proof. This is a lengthy but straightforward computation with 4 × 4-
matrices. We omit writing it down but indicate what has to be done and
explain the specific features of the solution: We have to put the Pauli ma-
trices σi into the formula Ẑ(X) = Q0 β−1(X⊗Id) β obtained in Corollary
3.3. Explicitly:

Ẑ(X)σi = Q0 U∗ [X⊗Id(U σi ⊗ 1I U∗)] U.

By its special form U is an even transformation with respect to the Z2−grading
of C

2 ⊗ C
2 which is given with the canonical unit vectors {δ0, δ1} as

C
2 ⊗ C

2 = span{δ0 ⊗ δ0, δ1 ⊗ δ1} ⊕ span{δ0 ⊗ δ1, δ1 ⊗ δ0}.

This prevents Ẑ(X) from mixing up σ1 with σ2, σ3. Because the entries of
U are real numbers, Ẑ(X) also does not mix up σ2 and σ3 and thus has the
same eigenvectors as X. To obtain the formulas above it is finally necessary
to insert the orthogonality relations for the entries of U . 2

Lemma 6.2 Given a unitary U ∈ M2⊗M2, let Z♯ be the extended transition
operator belonging to the automorphism β♯ = AdU ♯, where U ♯ = flip ◦ U∗
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(compare Remark 5.3). Suppose that X : M2 → M2 is a unital completely
positive map with Xσi = λiσi, i = 0, 1, 2, 3. Then in the following two cases
we have Ẑ♯(X)σi = λ

♯
i σi so that









λ
♯
0

λ
♯
1

λ
♯
2

λ
♯
3









= A♯









λ0

λ1

λ2

λ3









with a stochastic matrix A♯:

I) For U =









c1 0 0 s1

0 s2 c2 0
0 −c2 s2 0
s1 0 0 −c1









or U =









c1 0 0 s1

0 s2 c2 0
0 c2 −s2 0

−s1 0 0 c1









we have A♯ =









1 0 0 0
c2
− c2

+ s2
+ s2

−

0 s2
12 c2

12 0
0 s2

21 0 c2
21









.

II) For U =









c1 0 0 s1

0 s2 c2 0
0 −c2 s2 0

−s1 0 0 c1









or U =









c1 0 0 s1

0 s2 c2 0
0 c2 −s2 0
s1 0 0 −c1









we have A♯ =









1 0 0 0
c2
− c2

+ s2
+ s2

−

s2
21 0 c2

21 0
s2
12 0 0 c2

12









.

Here we have used the following notation: Take angles φ1, φ2 in the interval
(−π

2
, +π

2
] and ci := cos φi, si := sin φi for i = 1, 2 and

c12 := cos(φ1 + φ2), s12 := sin(φ1 + φ2),

c21 := cos(φ1 − φ2), s21 := sin(φ1 − φ2),

c+ :=
1

2

[

cos(2φ1) + cos(2φ2)
]

, s+ :=
1

2

[

sin(2φ1) + sin(2φ2)
]

,

c− :=
1

2

[

cos(2φ1) − cos(2φ2)
]

, s− :=
1

2

[

sin(2φ1) − sin(2φ2)
]

.

Proof. Forming U ♯ from U means transposition followed by an exchange of
the second and third row. Now we can apply Lemma 6.1 for U ♯ instead of U .
With some elementary trigonometry we get the formulas above, and we have
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taken the opportunity to present A♯ in a more readable way by distinguishing
two cases. 2

Theorem 6.3 Consider the homogeneous adapted endomorphism αU with U

as in cases I and II of Lemma 6.2, φ1, φ2 ∈ (−π
2
, +π

2
].

If φ1 6= ±φ2 then αU is an automorphism (i.e. [R : αUR] = 1). Suppose that
φ1 = ±φ2. Then in case I we always have [R : αUR] = 4. In case II we have
[R : αUR] = 4 if φ1 = φ2 = 0 or φ1 = φ2 = π

2
and we have [R : αUR] = 2

otherwise.

Remark 6.4 Note that because only AdU (= Ad(−U)) is relevant for αU ,
choosing angles φ1, φ2 ∈ (−π

2
, +π

2
] in cases I and II covers all homogeneous

adapted endomorphisms which are defined by an orthogonal matrix U of the
form given in Lemma 6.1. The following pictures summarize the content
of Theorem 6.3: For the two cases I and II the dashed lines enclose the
φ1, φ2−square [−π

2
, +π

2
]2. We leave it white when the index equals 1, thin

colouring indicates that the index equals 2 and thick colouring that the index
equals 4.

I II

¡
¡

¡
¡

¡
¡@

@
@

@
@

@¡
¡

¡
¡

¡
¡@

@
@

@
@

@

r

r

r

r

r

r

r

r

r

r

Proof. By Theorem 5.1 (and Remark 5.3) we have [R : αR] = π(Xα) with

Xα = lim
N→∞

(Ẑ♯)N(P0) : M2 → M2.

Using Lemma 6.2, we start with λ0 = 1, λ1 = λ2 = λ3 = 0 correspond-
ing to P0 and conclude that the Pauli matrices are eigenvectors of Xα with
eigenvalues









λα
0

λα
1

λα
2

λα
3









= lim
N→∞

(A♯)N









1
0
0
0









.

Finally we can use Proposition 4.8 to get the value of π(Xα) from the λα
i .
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With the notation in Lemma 6.2 we can check that for φ1, φ2 ∈ (−π
2
, +π

2
]

c− = 0 ⇔ cos(2φ1) = cos(2φ2) ⇔ φ1 = ±φ2

s12 = 0 ⇔ sin(φ1 + φ2) = 0 ⇔ φ1 = φ2 =
π

2
or φ1 = −φ2

s21 = 0 ⇔ sin(φ1 − φ2) = 0 ⇔ φ1 = φ2.

Thus if φ1 6= ±φ2 then c−, s12, s21 6= 0. Looking at the Markov chain
associated to the stochastic matrix A♯, we then observe that in both cases I

and II we have paths of nonvanishing probability connecting any state to the
absorbing state belonging to row 0. Then it is well known (see for example
[Se]) that

lim
N→∞

(A♯)N









1
0
0
0









=









1
1
1
1









.

This means that Xα = Id and π(Xα) = 1.
Now assume that φ1 = ±φ2. This can be analyzed in a similar way. We

have c− = 0 which for case I immediately implies that

lim
N→∞

(A♯)N









1
0
0
0









=









1
0
0
0









,

which means that π(Xα) = 4. Now consider case II. If φ1 = φ2 = 0 or
φ1 = φ2 = π

2
then c− = s21 = s12 = 0 and

lim
N→∞

(A♯)N









1
0
0
0









=









1
0
0
0









, i.e. π(Xα) = 4.

For other angles we have c− = 0 and either s21 6= 0, s12 = 0 or s21 = 0, s12 6=
0. Then either

lim
N→∞

(A♯)N









1
0
0
0









=









1
∗
1
0









or lim
N→∞

(A♯)N









1
0
0
0









=









1
∗
0
1









,

which by Proposition 4.8 always yields π(Xα) = 2. 2
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Remark 6.5 For case II with φ1 = φ2 = π
4

the value 2 of the index has
been computed by R. Conti and F. Fidaleo in [CF], 4.2, using the theory of
sectors. It is an example of a braided endomorphism.

Remark 6.6 Similar as in the proof of Theorem 6.3 we can also use Propo-
sition 4.8 and Lemma 6.2 together with Theorem 5.1 to determine index val-
ues for inhomogeneous adapted endomorphisms α = limN→∞ Ad(U1 . . . UN)
where the Un are orthogonal matrices of the form given in Lemma 6.1 or 6.2.
Then the problem can be reduced to the study of asymptotics for inhomoge-
neous Markov chains, see [Se].
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