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Abstract. We give a non-commutative generalization of classical symbolic coding in

the presence of a synchronizing word. This is done by a scattering theoretical

approach. Classically, the existence of a synchronizing word turns out to be

equivalent to asymptotic completeness of the corresponding Markov process. A

criterion for asymptotic completeness in general is provided by the regularity of

an associated extended transition operator. Commutative and non-commutative

examples are analyzed.

Introduction

In the growing field of quantum information theory there is a part called quantum

coding, in which concepts of classical coding theory are transferred to a quantum

setting. The ideas in this paper are motivated by a subarea of classical coding

which so far has not received much attention in this respect, namely coding in

symbolic dynamics. A good introduction is [LiMa]. Symbolic coding proved to

be important both theoretically, for example by providing models for dynamical

systems, as well as practically, for example in computer science. Our non-

commutative generalization of symbolic coding is concerned with non-commutative

dynamical systems in an operator algebraic setting. An example applicable to

physics is given in the end.

This paper is situated on the borderline between symbolic dynamics, operator

algebras, and open quantum systems. We begin this introduction with some

remarks showing how ideas from these three areas come together in the present

paper. We then describe some of the mathematical background and give a more

detailed motivation of our investigations. Finally, we introduce the notation used

in the following and close with a brief outline of the contents.
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2 R. Gohm et al

Synchronizing words and scattering. A basic idea in this paper is relating two

apparently distant fields of mathematics and thereby opening new perspectives

for both of them. On the one side there is symbolic dynamics, in particular, the

investigation of certain topological Markov chains constructed from road coloured

graphs. On the other side there are certain open quantum systems interacting

with a heat bath, where the free dynamics of the heat bath is given by a discrete

time quantum white noise. The link between both fields is established by the

operator algebraic description of a quantum Markov process in coupling form. It

was introduced in [Kü1] and is described below.

The relation between quantum Markov processes in coupling form and open

quantum systems has been known for some time and is since the subject of

investigations (cf., e.g., [Kü3], [Kü4] and the references therein). On the other

hand the interpretation of such Markov processes as an operator algebraic version

of a dynamical system which is constructed from a road coloured graph is new and

established in the first part of the present paper.

As one of our basic observations we show in the second part of this paper (cf.

Proposition 2.3) that the existence of a synchronizing word of a road coloured graph

— a notion stemming from symbolic dynamics (cf. [LiMa]) — and asymptotic

completeness of an open system coupled to a white noise — a notion from the

operator algebraic description of open quantum systems (cf. [KüMa]) — amount

to the same thing.

Both of these notions have been studied before within their respective contexts:

On the one hand it is well known in symbolic dynamics that a synchronizing word

of a road coloured graph induces a code which establishes a conjugacy between the

Markovian dynamical system associated with this graph and the Bernoulli system

on the colours ([LiMa]). On the other hand the Markovian dynamics of an open

quantum system coupled to a white noise can be viewed as a local perturbation

of the free white noise dynamics. Here, ideas from Lax-Phillips-scattering theory

([LaPh]) can be brought into play as was done in [KüMa]. If such a system is

asymptotically complete then one of the Møller operators establishes a conjugacy

between the Markovian dynamics of the coupled system and the white noise

dynamics of the ‘heat bath’. In this paper we discuss such a situation in discrete

time where the white noise dynamics is given by a Bernoulli system. The conjugacy

is established in Theorem 2.1. It turns out that in the commutative situation of a

Markov process constructed from a road coloured graph, this conjugacy is identical

to the one induced by the synchronizing word (cf. our discussion following 2.2).

From a physical point of view asymptotic completeness is an important feature

of an open system coupled to white noise: It allows to prepare the quantum state of

the open system by preparing suitable states on the ‘incoming’ white noise, which

is easier to access by a physical preparation in some cases of physical interest as,

e.g., in the micro-maser. This application of asymptotic completeness has been

analyzed in some detail in [WBKM], cf. the discussions in [Kü3], [Kü4]. The

fact, that such a preparation is possible even without knowing the initial state of

the open system, is the quantum analogue of the feature of a synchronizing word:
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Non-commutative Symbolic Coding 3

when applied, it synchronizes all possible initial states to one and the same state.

Thus asymptotic completeness can be understood as an extension of the notion of

a synchronizing word to the quantum context. It still preserves essential features

of a synchronizing word.

Our treatment thus sheds new light on both areas: Synchronizing words and the

codings induced by them appear in the light of scattering theory, which conversely

earnes an interpretation in terms of coding theory. In particular, this connection

opens the way for carrying ideas from symbolic dynamics into the framework of non-

commutative operator algebras and quantum coding. As an example we mention

our discussion of the label product at the beginning of Section 5.

While in many cases proving the existence of a synchonizing word for a given

road coloured graph is just a matter of ‘looking closely’ at the graph, it can

be considerably more difficult to prove asymptotic completeness in the general

situation. An important part of the present paper is concerned with establishing a

more tractable condition, which is equivalent to asymptotic completeness. Indeed,

our characterization in terms of the extended transition operator in Theorem 4.3

turns out to be helpful in proving asymptotic completeness in the non-commutative

framework. As an application we prove asymptotic completeness for the cut-

off-version of the micro-maser in Section 6. As already mentioned it is used in

[WBKM] to propose a scheme for preparing quantum states in this system. The

underlying technique of extending completely positive operators is of interest on its

own. For more information about this topic and about its relevance for scattering

theory we refer to [Go3].

We use this opportunity to draw the reader’s attention to an interesting feature

of the present discussion: Although the existence of a synchronizing word is of a

purely graph theoretical or topological nature, the conjugacy induced by it is neither

continuous nor well-defined on the associated topological spaces. Instead one has

to introduce stationary measures. Only then, the conjugacy can be formulated in

a measure theoretical way. Nevertheless, this conjugacy does not really depend

on the particular choice of the stationary measure. Under the heading ‘almost

conjugacy’ such phenomena are discussed in Chapter 9 of [LiMa]. In our non-

commutative setting this feature is reflected by the fact that our discussion of

conjugacies requires weak closures and takes place within the framework of von

Neumann algebras, standing for ‘non-commutative measure theory’, while C*-

algebras would represent a topological framework. Again the conjugacy does not

really depend on the particular choice of the stationary state, cf. Proposition 4.4

and the remarks following 1.4 and 5.1.

Non-commutative stationary Markov chains. In order to cover all cases of interest

within a unified treatment we consistently discuss the case of one-sided Markov

processes, cf. [Go3] for a further development of this setting. In this formulation

the underlying ideas from scattering theory are not so easily visible. Therefore, we

briefly sketch the two-sided situation here, where the relation to scattering can be

seen more directly (cf. [KüMa]).
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Given a classical finite state space A and a transition matrix T . From an

initial distribution µ on A a Markov measure µ̂ on AN is constructed to obtain the

corresponding Markov process. If µ is stationary under T then µ̂ is stationary under

time translation. In this case T is regained by applying the conditional expectation

from L∞(AN, µ̂) onto the functions depending only on the first coordinate. When

trying to extend this construction of a stationary Markov process to the non-

commutative operator algebraic situation, functions on A should be replaced by

a non-commutative operator algebra, e.g., the algebra of all n × n-matrices. Now

one is faced with the problem that in this case a conditional expectation onto the

first coordinate exists only, if the state on the whole algebra factorizes into a tensor

product of a state on the first factor and a state on the other factors (cf., e.g.,

[Kü2]). Since a Markov measure µ̂ is not a product measure, whenever the process

is not a Bernoulli process, such an extension to the non-commutative situation

seems to be impossible.

However, a different approach turned out to be possible ([Kü1]): Suppose T is a

‘quantum transition matrix’, i.e., a completely positive identity preserving operator

on an operator algebra A, which, for simplicity, is assumed to be finite-dimensional.

As a first step try to find a further algebra C, a pair of states ϕ on A and ψ on C,

and an automorphism T1 of A⊗ C leaving the product state ϕ ⊗ ψ invariant, such

that the conditional expectation Pψ from A⊗ C onto A⊗ 1I with respect to ϕ ⊗ ψ

— it exists in this case — satisfies T (x) = Pψ(T1(x⊗1I)) (here we identified A with

A ⊗ 1I). It is easy to check that this construction is always possible if the algebra

A is commutative. In general, however, there are some restrictions (cf. [Kü1]).

From these ingredients a stationary dynamical system can be constructed as follows

([Kü1], cf. also [Kü3], [Kü4]): Define a von Neumann algebra Â with normal state

ϕ̂ as (Â, ϕ̂) := (A, ϕ) ⊗
⊗

Z
(C, ψ). The tensor right shift on

⊗

Z
(C, ψ) is trivially

extended to a stationary automorphism S of (Â, ϕ̂). Similarly, by identifying C
with the zeroth component in the infinite tensor product

⊗

Z
(C, ψ), T1 on (A⊗ C)

is trivially extended to an automorphism of (Â, ϕ̂), still denoted by T1. Now the

evolution T̂ can be defined as T̂ := T1 ◦ S. This stationary dynamical system has

a natural interpretation as a stationary Markov process ([Kü1]). Now it becomes

evident in which way the Markovian evolution appears as a coupling of A via T1

to
⊗

Z
(C, ψ), the latter being equipped with the free evolution S. The definition

of asymptotic completeness as formulated in [KüMa] essentially means that for

all x ∈ Â the limit limn→∞ S−n ◦ T̂n(x) exists (strongly) and lies in
⊗

Z
(C, ψ).

Then the limit defines one of the Møller operators of scattering theory.

In our one-sided treatment we use from T1 only the embedding J : A ∋ x 7→
T1(x⊗1I). We shall call it a ‘transition’ in 1.1. Similarly, an iterated version Jn can

be defined as Jn : A ∋ x 7→ T̂n(x ⊗ 1I). In 1.4 we define asymptotic completeness

for the one-sided version of Jn which is defined in 1.1. If J comes from a two-sided

Markov process then the one-sided version of asymptotic completeness in 1.4 is

equivalent to the two-sided version described above.
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Road coloured graphs and Markov chains. Let us now describe in more detail the

classical version of the situation treated in this paper. We consider a finite directed

graph G with edges E and vertices A together with two maps s : E → A and

t : E → A associating with each edge e its starting vertex s(e) and its target t(e).

In the following we concentrate on a special class of graphs: Let C be any finite

set (of colours or labels) and c : E → C a map (colouring). We call G a C-graph if

for each vertex a ∈ A the map c induces a bijection between the set s−1(a) of edges

starting in a ∈ A and the set C. In particular, there is the same number of edges

starting in each vertex a ∈ A. Such graphs are also called road coloured graphs (cf.

[LiMa]). Note that more than one edge between two vertices are allowed.

To any directed graph G there is canonically associated a shift space of finite

type

E− := {(. . . , e−n, . . . , e−1) ∈ E−N : t(ek−1) = s(ek) for all k}.

In our considerations of one-sided shifts it seems convenient to deal with left

infinite spaces (cf. [AMT]).

For a C-graph there is a canonical surjection η from E− to C− := C−N given by

η(. . . , e−n, . . . , e−1) := (. . . , c(e−n), . . . , c(e−1)) .

A finite sequence c1c2 . . . cn ∈ Cn of colours is called a synchronizing word if

there exists a vertex a ∈ A such that for any allowed sequence e1e2 . . . en with

c(e1) = c1, c(e2) = c2, . . . , c(en) = cn the target t(en) is always the same vertex a.

It follows that if in a sequence (. . . , c−n, . . . , c−1) ∈ C−N this synchronizing word

occurs infinitely often then η−1(. . . , c−n, . . . , c−1) has only one point.

In order to turn η into an isomorphism one needs to consider measures: Consider

a strictly positive probability distribution ν on C given by ν : C → R with ν(c) > 0

for c ∈ C and
∑

c∈C ν(c) = 1. It associates a probability for each edge and thus

induces transition probabilities from a point a ∈ A to another point b ∈ A given by

ta,b :=
∑

s(e)=a

t(e)=b

ν(c(e)) .

These transition probabilities form a stochastic matrix T on A. If the graph is

irreducible then so is T and by Perron-Frobenius theory there is a unique strictly

positive stationary probability distribution µ on A. From now on we will consider

only irreducible graphs.

For a C-graph the set E of edges can be canonically identified with the set A×C.

Therefore, the product distribution µ⊗ ν on A×C can be viewed as a probability

distribution on the edges E. It can be extended to a shift invariant Markov measure

µ− on E−: on the cylinder set {(ωn)n≤−1 ∈ E− : ω−n = e−n, . . . , ω−1 = e−1} it

is given by the product µ(s(e−n)) ν(c(e−n)) ν(c(e−n+1)) . . . ν(c(e−1)). On C− we

consider the infinite product measure ν− :=
⊗

−N
ν. If the C-graph admits a

synchronizing word then η extends to a measure-theoretical isomorphism between

the one-sided Markov chain on E− and the Bernoulli shift on C− (cf. [AMT],

[LiMa], [Kit], [Sch]).
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Non-commutative road coloured graphs: transitions. As our basic objects we need

to extend the notion of road coloured graphs or C-graphs to the non-commutative

setting.

The basic idea is the following: Given a C-graph with vertices A and colours C,

we already noticed that the set E of its edges can be identified with A × C such

that s(a, c) = a and c(a, c) = c for all (a, c) ∈ A × C = E. Thus a C-graph is

completely characterized by its (surjective) target map t : A×C → A. Conversely,

any surjective map t : A × C → A gives rise to such a C-graph.

This can be translated into an algebraic language: If A, resp. C, denotes the finite

dimensional algebra of complex valued functions on A, resp. C, (under pointwise

multiplication) then the algebra of functions on A × C can be identified with the

algebra A ⊗ C. Hence there is a biunique correspondence between surjections

t : A × C → A and identity preserving injective *-homomorphisms J : A → A⊗ C
such that (Jf)((a, c)) = f(t(a, c)) for f ∈ A, (a, c) ∈ A × C. Such a map will be

called a transition in the following.

Now we can allow the algebras to be non-commutative thus leading to a non-

commutative version of a C-graph. It is the purpose of the present paper to develop

the ideas sketched above also for the non-commutative context, thus creating a piece

of a non-commutative coding theory.

Contents. In Section 1 we define transitions and construct the associated non-

commutative Markov chains. Fundamental notions for transitions are irreducibility

and asymptotic completeness. The latter notion is borrowed from scattering theory

and in Section 2 we explain how an asymptotically complete transition leads to an

asymptotically complete scattering theory for Markov chains. The Møller operator

provides a conjugacy between the given Markov chain and a Bernoulli shift. In the

rest of Section 2 we show that in the commutative case this conjugacy is exactly

the map η−1 obtained above and thus asymptotic completeness corresponds to the

presence of a synchronizing word. In this sense we interpret the Møller operator as

a procedure of non-commutative symbolic coding.

On the way to get criteria also in the non-commutative setting we discuss in

the preparatory Section 3 the notion of regularity for positive maps. In Section

4 we introduce the (dual) extended transition operator associated to a transition.

We show that a transition is asymptotically complete if and only if the associated

extended transition operator is regular. This criterion turns out to be quite useful

and it yields some new aspects even in the commutative case. This is discussed

in Section 5 where we explain that on the level of C-graphs extended transition

corresponds to the consideration of label products. In Section 6 we study in detail

a non-commutative example which is derived from the Jaynes-Cummings model well

known in quantum optics. We determine for which parameters it is asymptotically

complete.
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1 Transitions 7

1. Transitions

For convenience we assume that A and C are finite dimensional C*-algebras.

1.1 Definition A transition is given by an identity preserving injective *-homo-

morphism J : A → A⊗ C.

For example, a target map t : A × C → A as in the introduction gives rise to

a transition on the corresponding algebra of functions, given by J(f) := f ◦ t. We

shall analyze this example in more detail in Sections 2 and 5.

For another example, take a unitary u ∈ A⊗C and then define J(a) := u∗ (a⊗1I)u

for all a ∈ A. An example of this type is discussed in Section 6.

Let us show how a transition J : A → A ⊗ C gives rise to a non-commutative

topological Markov chain. We construct a family (Jn)n∈N0
of identity preserving

injective *-homomorphisms by the following recursion

J0 = Id : A → A, a 7→ a

J1 = J : A → A⊗ C, a 7→
∑

i

ai ⊗ ci

. . .

Jn : A → A⊗
n

⊗

1

C, a 7→
∑

i

Jn−1(ai) ⊗ ci ∈
(

A⊗
n−1
⊗

1

C
)

⊗ C.

To handle these homomorphisms simultaneously, we form the infinite tensor product

C+ :=
⊗∞

1 C and A+ := A⊗ C+. By x 7→ x ⊗ 1I we have many natural inclusions

and we may write Jn : A → A+ (for all n). On C+ we have a right tensor shift S+,

i.e.,

S+(c1 ⊗ c2 ⊗ . . .) = 1 ⊗ c1 ⊗ c2 ⊗ . . .

It is not difficult to check that Jn(a) = (J+)n(a ⊗ 1I), where J+ : A+ → A+ is an

identity preserving injective *-homomorphism given for a ⊗ c ∈ A⊗ C+ by

J+(a ⊗ c) = J(a) ⊗ c ∈ (A⊗ C) ⊗
∞

⊗

2

C,

in shorthand notation: J+ = J ◦ (IdA ⊗ S+). We may think of J+ as a time

evolution producing the sequence (Jn)n∈N0
from J0 by J . This structure is typical

for non-commutative Markov chains and it is called a coupling to a shift, see

[Kü1, Kü2, KüMa, Go3] for variations of this theme.

In fact, to understand why it is called a Markov chain one must add a

probabilistic content to this structure by considering states. A state ψ on C gives

rise to a conditional expectation Pψ : A ⊗ C → A determined by a ⊗ c 7→ a · ψ(c).

The operator Pψ is completely positive and identity preserving (cf. [Tak], IV.4.25).

Now we can define the corresponding transition operator

Tψ : A → A : a 7→ Pψ(J(a)).

By its definition Tψ is an identity preserving completely positive map which

generalizes the stochastic matrix of transition probabilities in the introduction.
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Let φ be a state on A. Since φ(Tψ(a)) = φ(Pψ(J(a))) = φ⊗ψ(J(a)) (a ∈ A) the

following observation is evident: φ is invariant under Tψ, i.e. φ = φ◦Tψ, if and only

if φ = (φ⊗ψ) ◦J . We will use the notation J : (A, φ) → (A, φ)⊗ (C, ψ) for that. It

follows from the Markov-Kakutani fixed point theorem that for given ψ there is at

least one such state φ. In this paper we will always consider φ and ψ related in this

way which gives rise to stationary Markov chains. In fact, on C+ and A+ = A⊗C+

we consider the product states ψ+ :=
⊗∞

1 ψ and φ+ := φ⊗ψ+. Then it is easy to

check that φ+ ◦ J+ = φ+, i.e., φ+ is invariant for the time evolution.

The usual language of non-commutative probability theory applies. The Jn may

be regarded as non-commutative random variables in the sense of [AFL]. Similarly

as above we have a conditional expectation

Pψ+ : A+ → A, a ⊗ c 7→ a · ψ+(c)

and it is also not difficult to check that Pψ+ Jn = Tn
ψ for all n which is an analogue

of the classical Chapman-Kolmogorov equations for Markov chains. It is possible to

define explicitly a non-commutative Markov property which is valid in this setting.

Because we shall not need it here we refer to [Kü2] for a discussion of this topic.

Now we describe some properties of transitions which will be important for the

coding procedures to be defined later. Recall that a completely positive identity

preserving operator T : A → A is called irreducible if for a projection p ∈ A,

T (p) ≤ p implies p = 0 or p = 1I (cf. e.g., [EnWa], [EHK], [Gro]). Here and in

the following a projection is always self-adjoint. Similarly we say the transition J

is irreducible if for a projection p ∈ A, J(p) ≤ p ⊗ 1I implies p = 0 or p = 1I.

1.2 Proposition Let ψ be a faithful state on C. The following conditions are

equivalent:

(a) J is irreducible.

(b) Tψ is irreducible.

Proof. If J is not irreducible then there is a projection 0 6= p 6= 1I with

J(p) ≤ p ⊗ 1I, hence Tψ(p) = Pψ(J(p)) ≤ Pψ(p ⊗ 1I) = p. Conversely, suppose J is

irreducible, 0 6= p 6= 1I a projection. Because ψ is faithful (i.e., ψ(y∗y) = 0 ⇒ y = 0)

also Pψ is faithful. This follows easily from ([Tak], IV.5.12). Putting p⊥ := 1I − p

we obtain 0 6= Pψ(p⊥⊗ 1I ·J(p) ·p⊥⊗ 1I) = p⊥ ·Pψ(J(p)) ·p⊥ = p⊥ ·Tψ(p) ·p⊥. Here

we used the module property of a conditional expectation (cf. [Tak], III.3.4). 2

The following argument will be used repeatedly: If T : A → A is positive and

identity preserving and φ is a T -invariant state with support projection pφ, then

T (p⊥φ ) ≤ 1I and φ(T (p⊥φ )) = φ(p⊥φ ) = 0. Considering the spectral projections of

T (p⊥φ ), this implies T (p⊥φ ) ≤ p⊥φ . In particular, if T is irreducible, an invariant

state is necessarily faithful.
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1.3 Proposition If J : A → A⊗ C is an irreducible transition and ψ is a faithful

state on C then Tψ is irreducible and has a unique invariant state φ which is faithful.

Proof. All assertions are already proved except uniqueness. By ([KüNa], 2.4),

the fixed points of T form a subalgebra. Therefore, if Tψ is irreducible, the fixed

space of Tψ is one-dimensional. Since A is finite-dimensional, it follows that there

is at most one invariant state. 2

From now on we shall always assume that the states φ and ψ are faithful. Then

the product states φ+ and ψ+ are also faithful. On A+ we have a norm ‖ · ‖φ+

associated to the inner product 〈x, y〉 := φ+(y∗x). Similarly, on C+ we have the

norm ‖ · ‖ψ+ which is a restriction of the former. Now we define a fundamental

property of transitions whose study will occupy us for the rest of this paper.

1.4 Definition Let φ and ψ be faithful states and let Qφ : A+ → C+ ⊂ A+

be the conditional expectation determined by a ⊗ c 7→ φ(a) · c. A transition

J : (A, φ) → (A, φ) ⊗ (C, ψ) is called asymptotically complete if for all a ∈ A
‖Jn(a) − Qφ Jn(a)‖φ+ → 0 (n → ∞).

Remarks. It turns out that asymptotic completeness does not depend on the

choice of (faithful) states but only on the transition J : A → A ⊗ C. It is thus

legitimate to say that J is asymptotically complete. We postpone the proof of this

fact to Proposition 4.4 when we have better tools for it.

Asymptotic completeness is a concept from scattering theory. It will become clear

later (see Theorem 2.1) how a kind of scattering theory can be constructed from a

transition.

The following observation sometimes simplifies the check for asymptotic

completeness.

1.5 Lemma The following properties are equivalent:

(a) J is asymptotically complete.

(b) For all a ∈ A
‖Qφ Jn(a)‖ψ+ → ‖a‖φ (n → ∞).

Proof. With respect to the inner product, Qφ may be considered as an orthogonal

projection. Therefore

‖a‖2
φ − ‖Qφ Jn(a)‖2

ψ+ = ‖Jn(a)‖2
φ+ − ‖Qφ Jn(a)‖2

ψ+ = ‖Jn(a) − Qφ Jn(a)‖2
φ+ ,

from which the result follows. 2

1.6 Proposition If J : (A, φ) → (A, φ) ⊗ (C, ψ) is asymptotically complete then

for all a ∈ A
Tn

ψ (a) → φ(a)1I (n → ∞) .

We say that the transition operator Tψ is regular (see Definition 3.1). In particular

Tψ and J are irreducible.
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Proof. From Jn(a) − Qφ Jn(a) → 0 we conclude that also

Pψ+ Jn(a) − Pψ+ Qφ Jn(a) → 0 (in A).

The left part is Tn
ψ (a) while the right part is a multiple of 1I which by stationarity

must be φ(a)1I. It is evident that regularity implies irreducibility. 2

But it turns out that neither irreducibility nor regularity of the transition

operator Tψ is enough to imply asymptotic completeness for the transition J . This

will be clear as soon as the connection with synchronizing words is established, see

Section 2. The introduction of extended transition operators in Section 4 may be

considered as an approach to cure this shortcoming.

For the purpose of this paper it is convenient to consider finite dimensional

algebras A and C and we restricted ourselves to this case. When turning to infinite

dimensional algebras one should assume that A and C are von Neumann algebras

and A ⊗ C is their spatial tensor product. All states considered should be normal

as well as the transition J . Then Pψ and Tψ are automatically normal. Now all

definitions can be kept and all arguments remain true with the one exception, that

a state φ invariant under Tψ constructed by a fixed point theorem doesn’t need

to be normal. This should be an additional requirement. One can also give a

C*-algebraic version. In this case, irreducibility has to be formulated in terms of

invariant order ideals. We restrain ourselves to do so.

2. Møller Operators for Markov Chains

In this section we construct a non-commutative version of the conjugacy η−1 from

colours to edges which was mentioned in the introduction. As in Section 1, let

J : (A, φ) → (A, φ)⊗ (C, ψ) be a transition (where φ and ψ are faithful states). We

have a homomorphism J+ : (A+, φ+) → (A+, φ+). There is a standard procedure

to get an automorphism from that. First, construct the C∗-inductive limit given

by the inclusions

. . . ←− A⊗ C ⊗ C ⊗ C+ J⊗1I⊗1I←− A⊗ C ⊗ C+ J⊗1I←− A⊗ C+ = A+.

Using the natural identifications of . . .A⊗ (C⊗C⊗C+), A⊗ (C ⊗C+) with A⊗C+,

we can use J+ and φ+ to define homomorphisms and states on the larger algebras.

The norm closure then yields a C⋆−algebra with an automorphism and an invariant

state, extending the data we started with. The GNS-representation is faithful and

we can form weak closures to get a von Neumann algebra Â with an automorphism

Ĵ and an invariant normal state φ̂, all represented on the GNS-Hilbert space Ĥ.

See [Sak], 1.23, for more details on C∗-inductive limits.

We can proceed similarly for C+ with the tensor shift S+ and the state ψ+. We

get a second C∗-inductive limit and its weak closure Ĉ which is simply the two-sided

infinite tensor product with the two-sided tensor shift S and the two-sided infinite

product state ψ̂, all represented on the GNS-Hilbert space K̂. As a product state
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ψ̂ is a normal faithful state on Ĉ. This is not a priori clear for φ̂ on Â but we shall

prove faithfulness in the case of interest (see Theorem 2.1 below).

Observe that, because A+ = A⊗ C+, we have (C+, ψ+) as a common subobject

of (Â, φ̂) and (Ĉ, ψ̂) with a common (one-sided shift-)dynamics. We want to use this

intersection to compare the two dynamical systems with each other. The following

theorem shows that when the transition J is asymptotically complete then we can

construct a very specific conjugacy between them.

2.1 Theorem Let J : (A, φ) → (A, φ)⊗ (C, ψ) be a transition. Then the following

assertions are equivalent:

(a) J is asymptotically complete.

(b) There exists an isomorphism Φ : (Â, φ̂) → (Ĉ, ψ̂), which for x ∈ Ĵ−N (A+)

(N ∈ N) is given by

Φ(x) := lim
n→∞

S−n Qφ Ĵ n(x) (ultraweakly or w.r.t. ‖ · ‖
φ̂
).

(Recall that Qφ is the conditional expectation from A+ onto C+.)

In this case the state φ̂ is faithful on Â and we have the intertwining property

SΦ = ΦĴ , i.e., Ĵ and S are conjugate.

Proof: Let us first assume (b). Because ψ̂ is faithful on Ĉ the isomorphism Φ

forces φ̂ to be faithful on Â. Further it is easy to check that on uniformly bounded

sets the ultraweak topology and the topology given by the norm ‖ · ‖
φ̂

coincide and

therefore it does not matter which of these topologies we use in the limit formula.

Suppose that x ∈ Ĵ−N (A+). Note that S−n Qφ Ĵ n(x) is defined for n ≥ N , so the

limit n → ∞ in (b) makes sense. The intertwining property SΦ = ΦĴ follows from

the existence of the limit, just replace n by n + 1. Thus from (b) we immediately

get the additional properties stated in Theorem 2.1. Further for all a ∈ A we get

‖Qφ Ĵ n(a)‖2
ψ+ = ‖S−nQφ Ĵ n(a)‖2

ψ̂

n→∞−→ ‖Φ(a)‖2
ψ̂

= ‖a‖2
φ

which by Lemma 1.5 implies that J is asymptotically complete. Thus (b) implies

(a).

Now we assume (a), i.e., J is asymptotically complete. This means that

Ĵ n(x) − Qφ Ĵ n(x) → 0 w.r.t. the norm ‖ · ‖φ+ or, equivalently, w.r.t. the

ultraweak topology. Because Ĵ |C+ = S|C+ , we conclude that
(

S−n Qφ Ĵ n(x)
)

is a (ultraweak) Cauchy sequence and thus converges to an element Φ(x) ∈ Ĉ. Here

we use that Ĉ is a von Neumann algebra. ¿From Ĵ n(x) − Qφ Ĵ n(x) → 0 and

the homomorphism property of Ĵ and S we infer that Φ is a homomorphism on

Ĵ−N (A+). Note also that ψ̂ ◦Φ(x) = φ̂(x), since Φ is a limit of maps which respect

the states. If 0 6= x ∈ Ĵ−N (A+) then, because the GNS-representation is faithful,

there exists y ∈ Ĵ−N (A+) such that

0 6= φ̂(y⋆x⋆xy) = ψ̂(Φ(y⋆)Φ(x⋆)Φ(x)Φ(y)),

September 12, 2006



12 R. Gohm et al

in particular Φ(x) 6= 0. Thus Φ is injective on Ĵ−N (A+). By extension we obtain

Φ on the norm closure of the Ĵ−N (A+) for all N as an injective homomorphism,

i.e., a C∗-isomorphism from the first C∗-inductive limit onto its range which is

contained in Ĉ. If y ∈ S−NC+ then

Φ(Ĵ−NSNy) = lim
n→∞

S−nJn−NSNy = y.

We conclude that the range of Φ contains S−NC+ for all N ∈ N and thus the second

C∗-inductive limit. Because ψ̂ ◦ Φ(x) = φ̂(x), the C∗-algebraic isomorphism Φ can

be unitarily implemented on the GNS-spaces and extends to the weak closures, i.e.,

we have a normal isomorphism from Â onto Ĉ. This proves (b). 2

Remarks. As described in the introduction the idea of constructing intertwiners

in this way appears in the work of B.Kümmerer and H.Maassen, cf. [KüMa], and

has its roots in a structural analogy between certain two-sided Markov processes

and the situation analyzed in the scattering theory developed by P.D.Lax and R.S.

Phillips, cf. [LaPh]. Motivated by this point of view we call the intertwiner Φ a

Møller operator. For further modifications of Theorem 2.1. see [Lan].

It is easy to check that the Møller operator satisfies Φ|C+ = Id|C+ . This leads to

the result that the conjugacy considered here is essentially one-sided. In fact, with

A− :=

0
∨

n=−∞

Ĵ nA, C− :=

−1
∨

n=−∞

SnC,

J− := Ĵ−1|A− , S− := S−1|C− , Φ− := Φ|A−

2.2 Corollary Φ− is a one-sided conjugacy, i.e.,

Φ−(A−) = C−

S−Φ− = Φ−J−

Proof. It is enough to check the first assertion. From the limit formula clearly

Φ(A) ⊂ C−. Then the intertwining property yields Φ−(A−) ⊂ C−. Further

Ĉ = Φ(Â) = Φ(A− ∨ C+) = Φ−(A−) ∨ C+.

Because Ĉ is the tensor product of C− and C+, we conclude that Φ−(A−) = C−. 2

Now we want to explain how in the commutative case the one-sided conjugacy

Φ− corresponds to the conjugacy η−1 mentioned in the introduction. Assume that

J = Jγ for a target map γ : A × C → A. The results above can be applied to

the von Neumann algebras of essentially bounded functions on the corresponding

probability spaces, for example A = L∞(A), C = L∞(C),

C+ = CN0 , C+ = L∞(C+), C− = C−N, C− = L∞(C−),

A+ = A × C+, A+ = L∞(A+), etc.
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The measures are always faithful product measures. For f ∈ A = L∞(A) we have

Jf = f ◦γ. Let us write J ∼ γ for such a correspondence. Then for J+ : A+ → A+

we get J+ ∼ γ+ with γ+ : A+ → A+ given by

γ+ : (a, c0, c1, c2, . . .) 7→ (γ(a, c0), c1, c2, . . .),

which may be interpreted as a one-sided edge shift. The inductive limit above

corresponds here to a so-called natural extension, which is a well known device

to produce invertible measure preserving transformations from not necessarily

invertible ones, cf. [Pet]. In our situation this is nothing but the two-sided edge

shift. Similarly, we have S ∼ σ where σ is the two-sided left shift on Ĉ := CZ.

To establish a connection we assume that there is a synchronizing word with

target a ∈ A for γ. Almost all c ∈ C− contain this synchronizing word infinitely

often. In the following we shall always neglect the complement which has measure

zero. Then if c−(M+m), . . . , c−(M+1) is an occurrence of the synchronizing word

inside c we can compute

a0 := γ(. . . γ(γ(a, c−M ), c−M+1), . . . , c−1) ∈ A,

and the map

η−1 : C− → C− × A, c 7→ (c, a0)

is well defined. Intuitively, a0 is the final target after having passed the colour

sequence c ∈ C−. We can identify η−1(C−) ⊂ C− × A with the shift space E− in

the introduction and clearly η−1 coincides with η−1 : C− → E− described there.

We define A− := L∞(E−) and check that this is consistent with the notation used

earlier in this section. In fact, define further Â := η−1(C−) × C+ ⊂ C− × A × C+

and γ̂ : Â → Â by

γ̂(. . . , c−n, . . . , c−1, a0, c0, . . . , cn, . . .) = (. . . , c−n, . . . , c−1, c0, γ(a0, c0), c1, . . . , cn, . . .).

Then γ̂ is the natural extension of γ+ and thus Ĵ ∼ γ̂ and our notation is consistent.

Denote by ib : Ĉ → C− × A × C+ the operation which inserts b ∈ A between

the two halves. Then if f ∈ Â = L∞(Â) is a function not depending on c−n for all

n > N (and some N ∈ N), the limit

(Φf)(c) = lim
n→∞

(S−nQφĴ nf)(c) = lim
n→∞

f(γ̂nib σ−n(c))

exists for (almost) all c ∈ Ĉ. In fact, note that the conditional expectation Qφ

computes an average of values of f indexed by b ∈ A, but in the limit the value

is the same for all b and thus the result depends neither on b nor on φ. We do

not really need a limit n → ∞ in this commutative case, we only have to choose

n large enough (dependent on c) to find an occurrence of the synchronizing word.

Explicitly, for all n large enough,

γ̂nib σ−n(c) = γ̂n(. . . , c−(n+1), b, c−n, . . .) = (. . . , c−1, a0, c0, . . .),

independent of b.
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If f ∈ A−, i.e., f does not depend on c0, c1, . . ., then we see that Φf ∈ C− and

(Φ−f)(c) = f(η−1(. . . , c−n, . . . , c−1)). But this means that Φ− ∼ η−1, as claimed.

Using dominated convergence the defining limit for the Møller operator Φ also

exists in the topologies considered in Theorem 2.1. Thus we have proved one

direction of

2.3 Proposition The following assertions are equivalent:

(a) Jγ is asymptotically complete.

(b) γ admits a synchronizing word.

The other direction may also be explained in the setting above. We omit the

details because we will obtain a complete proof for Proposition 2.3 in Section 5 (see

Theorem 5.1), by other means.

Here we emphasize the fact that our scattering approach gives a non-

commutative generalization of the type of conjugacies considered in [LiMa],

Chapter 9, or [AMT], which are based on synchronizing words. It may thus be

interpreted as non-commutative coding. See also the corresponding discussion in

the introduction. Looking for criteria for asymptotic completeness thus means

looking for non-commutative analogues of synchronizing words. The following

sections take this direction.

3. Regularity

This is a preparatory section. We discuss a property of positive maps which we call

regularity. Terminology is not standardized here, sometimes such maps are called

asymptotically stable or they are said to have an absorbing state. Our terminology

is borrowed from the case of stochastic matrices, see Definition 3.4. We will need

this concept when we look for criteria for asymptotic completeness in the following

sections.

3.1 Definition Let M be a von Neumann algebra, S : M → M positive and

identity preserving. Then S is called regular if it is ultraweakly continuous and if

there exists a normal state ω such that for all x ∈ M

Sn(x) → ω(x)1I ultraweakly if n → ∞.

If S∗ : M∗ → M∗ denotes the preadjoint of S, then regularity means that for

all normal states ρ:

Sn
∗ (ρ) → ω weakly if n → ∞.

It follows that ω is the unique S-invariant state. We deliberately do not assume

that S is irreducible, so ω need not be faithful.

We are especially interested in M = B(H), where H is a Hilbert space.
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3 Regularity 15

3.2 Proposition Let S : B(H) → B(H) be a positive identity preserving operator,

Ω ∈ H a unit vector such that the induced vector state φΩ : B(H) ∋ x 7→ 〈xΩ,Ω〉 ∈ C

is S−invariant, i.e., φΩ ◦ S = φΩ.

The following assertions are equivalent:

(a) S is regular with invariant state φΩ.

(b) The fixed space of S is one-dimensional, hence consists of multiples of 1I.

(c) limn→∞ Sn(q) = 0 strongly (or weakly), where q is the orthogonal projection

onto Ω⊥.

Proof. (a)⇒(b) is immediate from the definition of regularity.

(b)⇒(c). Since S(q) ≤ q (compare the argument preceding Proposition 1.3), the

limit limn→∞ Sn(q) exists strongly, hence is 0 by (b). Note also that for monotone

convergence of positive operators strong and weak convergence are equivalent.

(c)⇒(a). With p := q⊥ (so that p is the orthogonal projection onto CΩ), decompose

any x ∈ B(H) as

x = pxp + pxq + qxp + qxq.

If x ∈ B(H) is positive then 0 ≤ qxq ≤ λq for some number λ. Thus assumption (c)

implies limn→∞ Sn(qxq) = 0 strongly for positive and hence for arbitrary x ∈ B(H).

By the Kadison-Schwarz inequality (cf. [Tak], IV.3.8), we see that

Sn(pxq)⋆ Sn(pxq) ≤ Sn(qxpxq) → 0 strongly for n → ∞.

Therefore,

lim
n→∞

Sn(x) = lim
n→∞

Sn(pxp)

= lim
n→∞

Sn(p φΩ(x))

= φΩ(x) lim
n→∞

Sn(p) = φΩ(x)1I strongly.

2

3.3 Proposition If H is finite-dimensional and S and Ω are as in 3.2 with S(x) =
∑k

i=1 a⋆
i x ai for some elements ai ∈ B(H), then S is regular if and only if Ω is cyclic

for {a⋆
i : 1 ≤ i ≤ k}, i.e., the vectors {a⋆

i1
. . . a⋆

in
Ω : n ∈ N, 1 ≤ i1, . . . , in ≤ k} span

H.

Proof. Again let p be the orthogonal projection onto CΩ and q := p⊥. If

a⋆Ω 6= 0 for some a ∈ B(H) then the orthogonal projection onto Ca⋆Ω is

the support projection of a⋆p a. Therefore, the support projection of Sn(p) =
∑k

i1,...,in=1 a⋆
i1

. . . a⋆
in

p ain
. . . ai1 is the orthogonal projection onto the linear span

of {a⋆
i1

. . . a⋆
in

Ω : 1 ≤ i1, . . . , in ≤ k}.
Since H is finite dimensional, Ω is cyclic for {a⋆

i : 1 ≤ i ≤ k} if and only if Sn(p)

is strictly positive for some n ∈ N, hence if and only if Sn(q) ≤ λq for some number

λ < 1. Since Sn(q) is monotonically decreasing in n this is in turn equivalent to

limn→∞ Sn(q) = 0, hence to the regularity of S. 2
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Remarks: The linear span of {a⋆
i1

. . . a⋆
in

Ω : 1 ≤ i1, . . . , in ≤ k} is increasing in

n. This follows from S(p) ≥ p. More directly, since φΩ ◦ S = φΩ, Ω is a common

eigenvector for the ai, i.e., aiΩ = λiΩ for some λi ∈ C, hence

Ω = 1IΩ =
∑

i

a⋆
i aiΩ =

∑

i

a⋆
i λi Ω =

∑

i

λia
⋆
i Ω etc.

Note that S(x) =
∑k

i=1 a⋆
i x ai means that S is a completely positive map, given

in a so-called Kraus decomposition. In this case, Proposition 3.3 provides a useful

tool for checking regularity, compare Section 6.

If M is finite dimensional and commutative, i.e., M = C
n for some n, then a

positive identity preserving map S is nothing but a (row) stochastic matrix. For

stochastic matrices there is the following definition of regularity by Seneta ([Sen],

Def. 4.7):

3.4 Definition [Sen]

A stochastic matrix is regular if its essential indices form a single essential class

which is aperiodic.

This refers to a well known classification of indices, i.e., of states of the associated

Markov chain: An index is called essential if there is at least one path to another

one and for all such paths there also exist paths in the backward direction (with

nonvanishing probability). Indices related in this way form an essential class. See

[Sen], Chapter 1.2, for more details. Note that regularity of a stochastic matrix

only depends on its pattern of zeros, or, in other words, on the associated directed

graph.

The definitions of regularity are compatible:

3.5 Proposition For a stochastic matrix L the following assertions are equivalent:

(a) L is regular in the sense of Seneta (Definition 3.4).

(b) There is a unique invariant probability vector µ for L, and the rows of Lk

converge to µ for k → ∞.

(c) L is regular according to Definition 3.1.

Proof. (a)⇒(b) is the content of Theorem 4.7 in [Sen].

The converse is also true: If there is more than one essential class for L then the

uniqueness of µ is lost, and if there is a nontrivial period then the convergence of

Lk fails. Compare the discussion in [Sen], Chapter 4.2 and 1.2.

Regularity according to Definition 3.1 means that for any probability vector ν we

have limk→∞ νLk = µ. Choosing point measures for ν shows that this is equivalent

to (b). 2
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4. Extended Transition Operators

We look for a more direct criterion for asymptotic completeness of a transition J ,

as provided in the commutative case by synchronizing words. This goal can be

achieved by considering extended transition operators.

Let J : (A, φ) → (A, φ) ⊗ (C, ψ) be a transition. As usual we assume that A
and C are finite dimensional and that the states φ and ψ are faithful. Then by the

GNS-construction we obtain Hilbert spaces H and K with A ⊂ B(H) and C ⊂ B(K)

and cyclic unit vectors Ωϕ ∈ H and Ωψ ∈ K such that φ(a) = 〈aΩϕ,Ωϕ〉 for a ∈ A
and ψ(c) = 〈cΩψ,Ωψ〉 for c ∈ C. The following formula defines an isometry:

v : H → H⊗K, vaΩϕ := J(a)Ωϕ ⊗ Ωψ (a ∈ A).

In fact, for a, b ∈ A

〈v aΩϕ, v bΩϕ〉 = 〈J(a)Ωϕ ⊗ Ωψ, J(b)Ωϕ ⊗ Ωψ〉 = 〈Ωϕ ⊗ Ωψ, J(a∗b)Ωϕ ⊗ Ωψ〉
= φ ⊗ ψ (J(a∗b)) = φ(a∗b) = 〈aΩϕ, bΩϕ〉.

4.1 Definition The operator

Z ′ : B(H) → B(H), x 7→ v⋆ (x ⊗ 1IK) v

is called the dual extended transition operator associated to the transition J :

(A, φ) → (A, φ) ⊗ (C, ψ).

Remarks. It is easy to check that Z ′ is a completely positive identity preserving

map with invariant vector state 〈·Ωϕ,Ωϕ〉. The defining formula provides a

Stinespring representation, cf. [Tak], IV.3.6. If we choose an orthonormal basis

(ǫi) of K, then there are linear maps ai ∈ B(H) with

v(ξ) =
∑

i

ai(ξ) ⊗ ǫi for all ξ ∈ H.

From this we find

Z ′(x) =
∑

i

a⋆
i x ai for all x ∈ B(H).

This is often called a Kraus decomposition.

The following result 4.2(a) shows that Z ′ extends the dual T ′ of the transition

operator T corresponding to J . This explains our terminology. By duality we mean

here the consideration of commutants. Extended transition operators have been

introduced by R. Gohm in [Go1, Go2, Go3] where much additional information

about them can be found.

4.2 Proposition (Extension properties of Z ′)

(a) Let A′ be the commutant of A in B(H). Then Z ′(A′) ⊂ A′ and Z ′|A′ = T ′,

where

T ′ : A′ → A′, 〈T ′(a′) aΩϕ,Ωϕ〉 = 〈a′ T (a)Ωϕ,Ωϕ〉 (a ∈ A, a′ ∈ A′).
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(b) Suppose that there is a conditional expectation P : A ⊗ C → J(A), which

leaves the state φ ⊗ ψ invariant. Then Z ′(A) ⊂ A and Z ′|A = T+, where

T+ : A → A, 〈T+(a)Ωϕ, bΩϕ〉 = 〈aΩϕ, T (b)Ωϕ〉, (a, b ∈ A).

Proof: If a′ ∈ A′ then a′ ⊗ 1I ∈ (A⊗ C)′. With a, b, c ∈ A we get

〈Z ′(a′) abΩϕ, cΩϕ〉 = 〈 v∗ (a′ ⊗ 1I) v abΩϕ, cΩϕ〉
= 〈 (a′ ⊗ 1I)J(ab)Ωϕ ⊗ Ωψ, J(c)Ωϕ ⊗ Ωψ〉
= 〈J(a) (a′ ⊗ 1I)J(b)Ωϕ ⊗ Ωψ, J(c)Ωϕ ⊗ Ωψ〉
= 〈 (a′ ⊗ 1I) vbΩϕ, va∗cΩϕ〉
= 〈 av∗ (a′ ⊗ 1I) vbΩϕ, cΩϕ〉
= 〈 aZ ′(a′) bΩϕ, cΩϕ〉, i.e. Z ′(a′) ∈ A′.

With b = c = 1I it follows that

〈Z ′(a′) aΩϕ,Ωϕ〉 = 〈 (a′ ⊗ 1I)Ωϕ ⊗ Ωψ, J(a∗)Ωϕ ⊗ Ωψ〉
= 〈 a′ Ωϕ, T (a∗)Ωϕ〉 = 〈a′ T (a)Ωϕ,Ωϕ〉.

This proves (a).

To prove (b) we associate to each a ∈ A the element ã ∈ A so that P (a ⊗ 1I) =

J(ã). Then

〈Z ′(a) bΩϕ, cΩϕ〉 = 〈 v∗ (a ⊗ 1I) v bΩϕ, cΩϕ〉
= 〈 (a ⊗ 1I)J(b)Ωϕ ⊗ Ωψ, J(c)Ωϕ ⊗ Ωψ〉
= 〈P (a ⊗ 1I)J(b)Ωϕ ⊗ Ωψ, J(c)Ωϕ ⊗ Ωψ〉
= 〈J(ãb)Ωϕ ⊗ Ωψ, J(c)Ωϕ ⊗ Ωψ〉
= 〈 ãbΩϕ, cΩϕ〉, i.e. Z ′(a) = ã ∈ A.

In the step where P is inserted we used the module property of conditional

expectations (cf. [Tak], III.3.4). With b = 1I it follows that

〈Z ′(a)Ωϕ, cΩϕ〉 = 〈 (a ⊗ 1I)Ωϕ ⊗ Ωψ, J(c)Ωϕ ⊗ Ωψ〉
= 〈 aΩϕ, T (c)Ωϕ〉.

This proves (b). 2

Our main result about the dual extended transition operator Z ′ is the following

4.3 Theorem The following assertions are equivalent:

(a) The transition J : (A, φ) → (A, φ) ⊗ (C, ψ) is asymptotically complete.

(b) The dual extended transition operator Z ′ (associated to J) is regular.

Proof. The GNS-construction for (A+ = A ⊗ C+, φ+ = φ ⊗ ψ+) and for the

Markovian time evolution J+ = J ◦ (IdA ⊗ S+) (using shorthand notation as in
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Section 1) gives us a Hilbert space H⊗K+ and an isometry v+ = v ◦ (1IH⊗s). Note

that K+ is the infinite tensor product of the GNS-spaces arising from the copies

of (C, ψ). (Cf. [KaRi], 11.5.29, for the definition of an infinite tensor product of

Hilbert spaces along a given sequence of unit vectors.) Thus s is a tensor shift on

K+ which maps a vector η+ ∈ K+ to the vector Ωψ ⊗ η+. If ξ is a unit vector in

H⊗K+ and x ∈ B(H), then we get

〈 (x ⊗ 1I) v+ξ, v+ξ 〉 = 〈 (x ⊗ 1I) v ◦ (1I ⊗ s)ξ, v ◦ (1I ⊗ s) ξ〉 = 〈 (Z ′(x) ⊗ 1I) ξ, ξ 〉.

Iterating this formula shows that

∀n ≥ 0 〈 (x ⊗ 1I) vn
+ ξ, vn

+ ξ 〉 = 〈 (Z ′n(x) ⊗ 1I) ξ, ξ 〉.

The conditional expectation Qφ from A ⊗ C+ onto 1I ⊗ C+ ≃ C+ determined

by x ⊗ y 7→ φ(x) y induces an orthogonal projection p ⊗ 1I from H ⊗ K+ onto

Ωϕ ⊗K+ ≃ K+. Inserting x = p ∈ B(H) into the previous formula gives

〈 (p ⊗ 1I) vn
+ ξ, vn

+ ξ 〉 = 〈 (Z ′n(p) ⊗ 1I) ξ, ξ 〉.

The state 〈·Ωϕ,Ωϕ〉 is invariant for Z ′. Assuming (b), i.e. Z ′ is regular, we find

Z ′n(p) → 〈 pΩϕ,Ωϕ 〉1I = 1I (n → ∞).

Because ξ and vn
+ξ are unit vectors we conclude that ‖(p ⊗ 1I)vn

+ ξ‖ → 1 and

‖vn
+ξ − (p ⊗ 1I)vn

+ ξ‖ → 0 which is a way to state asymptotic completeness for J .

In the other direction, i.e. assuming (a), we may reverse the arguments above

to get

〈 (Z ′n(p) ⊗ 1I) ξ, ξ 〉 = 〈 (p ⊗ 1I)vn
+ ξ, vn

+ ξ 〉 → 1.

Choose now ξ = η ⊗ η+ with unit vectors η ∈ H and η+ ∈ K+. Then we get

〈Z ′n(p)η, η 〉 = 〈 (Z ′n(p) ⊗ 1I) ξ, ξ 〉 → 1 (n → ∞).

We conclude that Z ′n(p⊥) → 0 weakly. Thus Z ′ is regular by Proposition 3.2(c).

2

We refer to [Go2] for some modifications of this result which on the one hand

use more directly the setting of [KüMa] and on the other hand reveal some

interesting connections with the physical concept of (state) entanglement. Further

related results are in [Go3], Chapter 2. For us Theorem 4.3 first of all provides

an interesting criterion for asymptotic completeness. The problem is reduced to

checking regularity for an operator on a finite dimensional space (if A is finite

dimensional). In fact, the reader may check that 4.2 and 4.3 are also valid for

infinite dimensional von Neumann algebras.

We can now give a proof of an assertion already stated in Section 1, namely,

independence of asymptotic completeness from the choice of (faithful) states.
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4.4 Proposition Let J : A → A ⊗ C be a transition. If J : (A, φ1) →
(A, φ1)⊗(C, ψ1) is asymptotically complete then also J : (A, φ2) → (A, φ2)⊗(C, ψ2)

is asymptotically complete. Here φ1, φ2, ψ1, ψ2 are faithful states.

Proof. Let us use subscripts 1 and 2 also for associated objects and define

Γ : H1 → H2, aΩφ1
7→ aΩφ2

(a ∈ A),

Λ : K1 → K2, cΩψ1
7→ cΩψ2

(c ∈ C).

The maps Γ and Λ are bijections (recall our assumption of finite dimensionality).

However, if the states are different they are not unitary. We first show that

v2 Γ = (Γ ⊗ Λ) v1.

In fact, if J(a) =
∑

i ai ⊗ ci then

v2 Γ aΩφ1
= v2 aΩφ2

= J(a) Ωφ2
⊗Ωψ2

=
∑

i

ai Ωφ2
⊗ ci Ωψ2

= (Γ ⊗ Λ) J(a) Ωφ1
⊗Ωψ1

= (Γ ⊗ Λ) v1 aΩφ1
.

From that we infer that for all x ∈ B(H1)

Z ′
2 (ΓxΓ−1) = ΓZ ′

1(x) Γ−1.

In fact, for all a, b ∈ A

〈Z ′
2 (ΓxΓ−1) aΩφ2

, bΩφ2
〉 = 〈 (ΓxΓ−1 ⊗ 1I) v2 aΩφ2

, v2 bΩφ2
〉

= 〈 (ΓxΓ−1 ⊗ 1I) v2 ΓaΩφ1
, v2 ΓbΩφ1

〉
= 〈 (Γ ⊗ Λ)−1 (ΓxΓ−1 ⊗ 1I) (Γ ⊗ Λ)v1 aΩφ1

, v1 bΩφ1
〉

= 〈 (x ⊗ 1I) v1 aΩφ1
, v1 bΩφ1

〉 = 〈Z ′
1(x) aΩφ1

, bΩφ1
〉

= 〈ΓZ ′
1(x) Γ−1 aΩφ2

, bΩφ2
〉.

From this formula it is evident that Z ′
1 is regular if and only if Z ′

2 is regular: use

for example Proposition 3.2(b). Now the assertion in Proposition 4.4 follows by

applying Theorem 4.3. 2

5. Extended Transition in the Commutative Case

In this section we shall examine the dual extended transition operator for a

transition acting between commutative algebras. This leads to a very transparent

method for checking asymptotic completeness in this case.

Let γ : {1, ..., n} × {1, ...,m} → {1, ..., n} be a surjective map and let Jγ be the

associated transition. We may assume that Jγ is irreducible. The Hilbert spaces

H resp. K are identified with C
n resp. C

m with the usual scalar product and with

canonical ONB’s (δi)
n
i=1 resp. (ǫk)m

k=1. We have cyclic vectors Ωϕ =
∑n

i=1

√
φi δi

resp. Ωψ =
∑m

k=1

√
ψk ǫk,

∑n
i=1 φi =

∑m
k=1 ψk = 1. Then we find

Jγ : C
n −→ C

n ⊗ C
m

δj 7→ ∑

γ(i,k)=j δi ⊗ ǫk .
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5 Extended Transition in the Commutative Case 21

For γ(i, k) = j we also write i
k−→ j. For the isometry v extending Jγ we get

v(
√

ϕj δj) =
∑

i
k

−→j

√
ϕi δi ⊗

√
ψk ǫk, i.e.,

v(δj) =
∑

i
k

−→j

√

ϕiψk

ϕj

δi ⊗ ǫk .

In the representation v(ξ) =
∑

i
k

−→j
ak(ξ)⊗ǫk (compare the remarks after Definition

4.1) the operators ak therefore take the form

ak(δj) =
∑

i
k

−→j

√

ϕiψk

ϕj

δi

or as a n×n-matrix with respect to the canonical base

(ak)ij =

{ √

ϕiψk

ϕj
if i

k−→ j

0 else .

Remember that the transition Jγ may be represented by a C-graph Gγ , where

C = {1, ...,m}. We call the matrix above the normalized adjacency matrix for the

label k ∈ C of the graph Gγ . This is consistent with the definitions in [LiMa],

§2.2, §3.1, up to our normalizing factors
√

ϕiψk

ϕj
.

Example: Consider the following C-graph Gγ :

A B C

1 1

2 2

12

With φ = ( 1
3 , 1

3 , 1
3 ) and ψ = ( 1

2 , 1
2 ) we get

a1 =
1√
2

(

0 1 0
0 0 1
0 0 1

)

, a2 =
1√
2

(

1 0 0
1 0 0
0 1 0

)

.

Back to the general case, note that we already have a Kraus decomposition
∑m

k=1 a∗
k • ak of the dual extended transition operator Z ′ : Mn → Mn, where

Mn = B(Cn) are the n × n−matrices. There is an interesting way to avoid non-

commutativity in the regularity check for Z ′. Consider the preadjoint Z ′
∗ which

is given by Z ′
∗(ρ) =

∑m
k=1 ak ρ a∗

k. Let (eij)
n
i,j=1 be the n×n-matrix units and

ẽij :=
√

ϕiϕj eij . Now

ak ẽrs a∗
k =

∑

i
k

−→r

j
k

−→s

√

ϕiψk

ϕr

√
ϕrϕs

√

ϕjψk

ϕs

eij

=
∑

i
k

−→r

j
k

−→s

ψk ẽij .
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We also write (i, j)
k−→ (r, s) for i

k−→ r and j
k−→ s. Using (ẽij) as a basis we get

a n2×n2-matrix Lk with

(Lk)ij,rs =

{

ψk if (i, j)
k−→ (r, s)

0 else.

For this matrix we can also give an interpretation in terms of C-graphs. If we are

given two C-graphs G and H, then we may form their label product G∗H ([LiMa],

Def.3.4.8): the set of vertices is given by the cartesian product of the sets of vertices

of G and H, and there is a k-labeled edge from one pair to another if and only if

there are k-labeled edges for both components. Obviously G ∗H is a C-graph. We

now see that Lk may be interpreted as the normalized adjacency matrix for the

label k ∈ C of the graph Gγ ∗ Gγ , the label product of Gγ with itself.

The label product of irreducible graphs may be reducible in general. In our

example, Gγ ∗ Gγ looks as follows:

2

1 1

1

2 AA AB AC

BA BB BC

CA CB CC

2 1

1

2

2
1

1

1

1

2

2

2

2

and

L1 =
1

2









0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0









, L2 =
1

2









1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0









,

where the ordering of basis elements is AA, BB, CC, AB, BC, AC, BA, CB, CA.

For the preadjoint Z ′ of the extended transition operator we get the n2×n2-

matrix L =
∑m

k=1 Lk, i.e.,

Lij,rs =
∑

(i,j)
k

−→(r,s)

ψk .

L may be called the (full) normalized adjacency matrix of the label product Gγ ∗Gγ .

The normalization is done in such a way that L is a (row) stochastic matrix, and the

equation L1I = 1I corresponds to Z ′
∗p = p, where p :=

∑n
i,j=1 ẽij is the orthogonal

projection onto CΩϕ.
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In our example we have

L =





















1
2

1
2 0 0 0 0 0 0 0

1
2 0 1

2 0 0 0 0 0 0

0 1
2

1
2 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0

0 0 1
2

1
2 0 0 0 0 0

0 0 0 1
2

1
2 0 0 0 0

1
2 0 0 0 0 0 0 1

2 0

0 0 1
2 0 0 0 1

2 0 0

0 0 0 0 0 0 1
2

1
2 0





















.

In accordance with Proposition 4.2 we have in the left upper corner a stochastic

3×3-matrix representing the transition operator T associated with the transition J .

This phenomenon can also be seen in the label product Gγ ∗Gγ where the graph Gγ

is reproduced in the diagonal and thus there can be no edge leaving the diagonal.

Note in addition that Gγ ∗ Gγ is symmetric with respect to the diagonal.

Let us now turn to regularity. Having represented Z ′
∗ by a stochastic matrix L,

we can now use regularity for stochastic matrices, as discussed in Section 3.

We call a C-graph regular if its (suitably normalized) adjacency matrix is regular.

Recall that this only depends on the position of zeros in the matrix and that there is

a direct description in terms of the graph: A C-graph is regular if there is a subset of

vertices which together with its connecting edges form an irreducible and aperiodic

C-graph (the essential class), while every vertex not in this subset is inessential but

connected to the essential class by a path.

We want to emphasize that a regularity check for C-graphs is quite elementary.

We illustrate the (self-explaining) algorithm given in [Sen], Chapter 1.2, for the

graph Gγ ∗ Gγ of our example (depicted above):

AA
ր

AA AA
ց ր

BB CC
ց ր

CC
ց

BB

AA
ր

AB AB
ց ր

BC
ց

CC

AB
ր

AC
ց

BC

This shows that in our example the label product Gγ ∗ Gγ , while not being

irreducible any more, is still regular.

We can prove a general statement in this direction which relates these

considerations to previous sections.

5.1 Theorem Let the (irreducible) transition Jγ be given with C-graph Gγ ,

extended transition operator Z ′ and with the stochastic matrix L associated to Z ′
∗.

The following assertions are equivalent:

(a) Jγ is asymptotically complete.

(b) Z ′ is regular.

(c) L is regular.

(d) Gγ ∗ Gγ is regular.
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(e) There is a synchronizing word for Gγ ∗ Gγ .

(f) There is a synchronizing word for Gγ .

Remarks:

By (a)⇔(c), asymptotic completeness of Jγ depends only on the zero pattern

of L. This is a commutative version of Proposition 4.4.

If L is regular then the unique essential class must be the diagonal of Gγ ∗Gγ .

The restriction of L is the transition operator T associated to Jγ . Thus the

invariant probability distribution µ̃ is given by µ̃ = (µ, 0), where µ is the

invariant probability distribution for T (compare our introduction).

An irreducible C-graph with a synchronizing word is aperiodic, cf. [LiMa],

Chapter 5.

Proof. (a)⇔(b) follows from Theorem 4.3.

(b)⇔(c) is not quite immediate because the matrix L corresponds to Z ′
∗ (not to

Z ′ itself). Consider an element ρ ∈ Mn on which Z ′
∗ acts. With respect to the

basis (ẽij) we get a vector of length n2 on which L acts and which we also denote

by ρ. We have already noted above that p, the orthogonal projection onto CΩϕ,

corresponds to the constant vector 1I. Now regularity of L means that for any ρ the

sequence Lkρ converges to a scalar multiple of 1I. This means that (Z ′
∗)

kρ converges

to a scalar multiple of pΩϕ
. But this is equivalent to the regularity of Z ′. (b)⇔(c)

is proved.

(c)⇔(d) follows because L is the adjacency matrix of Gγ ∗ Gγ .

The remaining equivalences are given by the following

5.2 Lemma Let G be any irreducible C-graph. The following assertions are

equivalent:

(a) There is a synchronizing word for G.

(b) There is a synchronizing word for G ∗ G.

(c) G ∗ G is regular.

Proof. (a)⇒(b): A synchronizing word w for G also does the job for G ∗ G.

(b)⇒(c): Any C-graph has at least one essential class (cf. [Sen], Lemma 1.1).

The existence of the synchronizing word w implies that there is at most one essential

class, and this class contains the target of w. It is aperiodic and all other vertices

are connected to it by a path (e.g. the one labeled by w).

(c)⇒(a): First note that the C-graph G is reproduced in the diagonal of the C-

graph G∗G. Thus the essential class of the regular graph G∗G must be a subset of

the diagonal, indeed the whole diagonal because of the irreducibility of G. Because

any vertex of G ∗G is connected to the essential class by a path, for any pair (x, y)

of vertices of G there is a word wx,y labeling a path from (x, y) to (x0, x0), where

x0 is a fixed vertex of G destined to be the target of the synchronizing word to be

constructed.
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6 A Non-Commutative Example 25

We proceed by induction and show that for k vertices x1, ..., xk of G there is a

word wk labeling paths from xl to x0 for all 1 6 l 6 k simultaneously: For k = 1

take w1 = wx0,x1
. For k + 1 take wk+1 = wkwx0,x′

k+1
, where x′

k+1 is the target of

the path labeled wk starting at xk+1. Since our graphs are finite we are done. 2

6. A Non-Commutative Example

The following class of examples is motivated from the Jaynes-Cummings model

in physics where a quantum harmonic oscillator interacts with a two level atom

[WBKM, MeSa].

Denote by Md the algebra of d× d−matrices with complex entries. A transition

J : Md → Md ⊗ M2 (d ≥ 2) will be implemented by a unitary u ∈ Md ⊗ M2 such

that J(x) = u⋆ (x⊗1I)u.

It is convenient to identify Md⊗M2 with M2(Md), the algebra of 2×2−matrices

with entries from Md, such that x⊗1I2 is identified with

(

x 0

0 x

)

(x ∈ Md), while

1Id ⊗
(

y11 y12

y21 y22

)

corresponds to

(

y111Id y121Id
y211Id y221Id

)

(yij ∈ C).

Denote by {ei : 1 ≤ i ≤ d} the canonical orthonormal basis of C
d and by

{eij : 1 ≤ i, j ≤ d} the corresponding canonical matrix units of Md characterized

by eijek = δjkei.

Let α1, . . . , αd be real numbers with 0 ≤ αk ≤ 1, α1 := 1, and put βk :=

i
√

1 − α2
k so that

(

αk βk

βk αk

)

is a unitary 2 × 2−matrix (1 ≤ k ≤ d). On the

cost of additional notation the following considerations can easily be extended to

the case where

(

αk βk

βk αk

)

is replaced by any unitary 2× 2−matrix

(

αk βk

γk δk

)

for 2 ≤ k ≤ d.

Now define the d × d−matrices

a :=











1

α2

. . .

αd











, a+ :=











α2

. . .

αd

1











,

b :=











0

β2

. . .

βd











, s :=













0

1
. . .

. . .
. . .

1 0













.

Finally, define

u :=

(

a+ s⋆b

bs a

)

∈ M2(Md).
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For the computations to come the following elementary relations are useful:

ab = ba, a⋆ = a, b⋆ = −b

a2 + b⋆b = 1Id = a2
+ + s⋆b⋆bs

as = sa+, a+s⋆ = s⋆a, b = ss⋆b = bss⋆.

In particular, it follows that u is unitary, hence a transition J is defined by

J : Md → Md ⊗ M2, x 7→ u⋆ (x⊗1I)u.

Explicitly, one gets

J(x) =

(

a+ s⋆b⋆

b⋆s a

)(

x 0

0 x

)(

a+ s⋆b

bs a

)

=

(

T1(x) T2(x)

T3(x) T4(x)

)

with

T1(x) = a+x a+ + s⋆ b⋆ x b s

T2(x) = a+ x s⋆ b + s⋆ b⋆ x a

T3(x) = b⋆ s x a+ + a x b s

T4(x) = b⋆ s x s⋆ b + a x a.

For the following considerations it is convenient to equip Md and M2 with tracial

states denoted by τ . In view of Proposition 4.4 this is no loss of generality.

The set {
√

2 eij : 1 ≤ i, j ≤ 2} forms an orthonormal basis of the corresponding

Hilbert space M2, further Ω := 1Id is a unit vector in the Hilbert space Md, and the

dual extended transition operator Z ′ : B(Md) → B(Md) according to Definition 4.1

is given by

Z ′ =
4

∑

i=1

a⋆
i • ai with ai :=

1√
2
Ti.

6.1 Theorem The following conditions are equivalent:

(a) αi 6= 1 for 2 ≤ i ≤ d

(b) Ω is cyclic for {a⋆
1, . . . , a

⋆
4}, i.e., J is asymptotically complete.

Proof. Assume (a). The adjoint of T1 satisfies

〈T ⋆
1 (x), y〉 = 〈x, T1(y)〉 = τ(T1(y)⋆x)

= τ((a+y⋆a+ + s⋆b⋆y⋆bs)x)

= τ(y⋆(a+xa+ + bsxs⋆b⋆))

= 〈a+xa+ + bsxs⋆b⋆, y〉

(x, y ∈ Md), hence

T ⋆
1 (x) = a+xa+ + bsxs⋆b⋆
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Similarly,

T ⋆
2 (x) = s⋆bxa+ + axs⋆b⋆

T ⋆
3 (x) = a+xb⋆s + bsxa

T ⋆
4 (x) = s⋆bxb⋆s + axa

Obviously, Ω := 1Id is cyclic for {a⋆
1, . . . , a

⋆
4} iff 1Id is cyclic for {T ⋆

1 , . . . , T ⋆
4 }. We

denote by M1I ⊂ Md the generated cyclic subspace. Hence we have to show that

M1I = Md. Asymptotic completeness of J is equivalent to that by Proposition 3.3.

Step 1

In a first step we show that there is a polynomial P such that P (T ⋆
4 )(1I) = e11 and

hence e11 ∈ M1I.

Denote by D the commutative subalgebra of Md of all diagonal matrices. Then

T ⋆
4 (D) ⊂ D, and as a map from D to D T ⋆

4 is given by the d × d−matrix

t⋆4 :=













1 |β2|2

α2
2

. . .

. . . |βd|2
α2

d













When denoting by Hk the linear span of the canonical basis vectors {e1, . . . , ek},
1 ≤ k ≤ d, then

(t⋆4 − α2
k)Hk ⊂ Hk−1 for k ≥ 2.

Hence

r := (t⋆4 − α2
2) . . . (t⋆4 − α2

d)

maps H = Hd inro H1 = C e1. In particular, r(1I) = λ e11 for some λ.

Since t⋆4 is the adjoint of a Markov matrix, i.e. t4(1I) = 1I, we obtain

〈 1I, r(1I)〉 = 〈 r⋆(1I), 1I 〉 = 〈 (1 − α2
d) . . . (1 − α2

2)1I, 1I 〉 6= 0,

since by assumption α2
i 6= 1 for 2 ≤ i ≤ d. Therefore, λ 6= 0 and we may put

P (x) :=
1

λ
(1 − α2

2) . . . (1 − α2
d).

Step 2 From

T ⋆
2 (e1i) = s⋆b e1i a+ + a e1i s⋆b⋆ = 0 + βi+1e1,i+1 (1 ≤ i ≤ d − 1)

we conclude e1i ∈ M1I, too, for 2 ≤ i ≤ d, since βi+1 6= 0 for 1 ≤ i ≤ d − 1.

Similarly,

T ⋆
3 (ei1) = a+ei1 b⋆s + b s ei1 a = 0 + βi+1ei+1,1 (1 ≤ i ≤ d − 1)

implies ei1 ∈ M1I for 2 ≤ i ≤ d.

Finally, for 1 ≤ i, j ≤ d − 1,

T ⋆
1 (eij) = a+eij a+ + b s eijs

⋆b⋆ = αi+1 αj+1 eij + βi+1 βj+1 ei+1,j+1,
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hence all the other matrix units, too, are in M1I, i.e., M1I = Md which proves (b).

Conversely, if αi = 1, hence βi = 0 for some i, 2 ≤ i ≤ d, then b s ei−1 = 0,

hence b sHi−1 ⊂ Hi−1. Since b sH⊥
i−1 ⊂ H⊥

i−1, bs commutes with the orthogonal

projection pi−1 onto Hi−1. It follows easily that the operators T ⋆
1 , T ⋆

2 , T ⋆
3 , T ⋆

4 leave

the subspaces

pi−1 Md pi−1, p⊥i−1 Md pi−1, pi−1 Md p⊥i−1, p⊥i−1 Md p⊥i−1

all invariant. In particular,

1I ∈ pi−1 Md pi−1 ⊕ p⊥i−1 Md p⊥i−1

is not cyclic. 2

Acknowledgement: We would like to thank the referee for remarks leading us to

give more informative motivations and descriptions of our main results.
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