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‘We consider stochastic matrices as restrictions of unital completely positive maps
to diagonal subalgebras. The corresponding extensions of a stochastic matrix are
classified by certain arrays of functionals and by positive definite kernels.

Introduction

The subject of extensions of completely positive maps given on operator
algebras to the algebra of all bounded operators on a Hilbert space was
first studied by Arveson !. For a survey see also the corresponding chapter
in Effros/Ruan 4. Recent work of Gohm 3¢ establishes some applications
in quantum probability and indicates a way to more concrete descriptions
by a duality with dilation theory.

Many interesting questions arise at this point, and in this paper we
provide some playground by explicitly describing the most elementary case,
namely that of stochastic matrices. This is also of interest for its own sake
because embeddings of classical Markov chains into noncommutative ones
are a natural topic for quantum probabilists.

Surprisingly it turns out that a sort of geometric reasoning is appropi-
ate here which has a natural starting point in Arveson’s notion of a metric
operator space 2. We review it in Section 1 and give an alternative for-
mulation by representing functionals. In Section 2 we define realizations of
stochastic matrices and show that realizations are representing functionals
which classify the extensions to normal unital completely positive maps
on all bounded operators. The geometric character becomes explicit by a
bijective correspondence with certain positive definite kernels.

In Section 3 we include measures and states into the extension proce-
dure. This is the setting of Gohm 5% and we show how the duality theory
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between extensions and dilations can be described very concretely in terms
of realizations. Again there is a geometric picture given by certain positive
definite kernels. A remarkable conclusion tells us that the extension set
essentially only depends on the pattern of zeroes of the stochastic matrix.
Details on that can be found in the remarks at the end of the paper.

The following notation will be used invariably throughout the pa-
per. P,G,H denote (complex, separable) Hilbert spaces with ONBs
{ex}é_,, {éjg Jy {J;H}?;l (the superscripts will be omitted from now on).
d,n, m may be finite or co. Operators are identified with matrices relative
to these ONBs. Inner products are linear in the second variable.

1. Metric operator spaces and their duals

We start with the objects given at the end of the introduction. Now as-
sume that {ax}¢_, C B(G,H) (bounded linear maps from G to ) satisfy
Zizl llaz€||* < oo for all ¢ € H and that the ay, are linearly independent.
(For d = 0o the sum Zizl Aray, for (\) € [2 is always strongly convergent
and linear independence means that in this situation 2221 Apar = 0 im-
plies Ay = 0 for all k. See Arveson 2, 9.1.) Then ¢; + a for k=1,...,d
extends to an injective linear map a : P — B(G,#H). The map a can be
used to transfer the inner product to a(P) C B(G,H), which in this way
becomes a metric operator space in the sense of Arveson. In fact, Arveson
2 considers G = H but his arguments apply also here.

In particular, from a metric operator space we can define a normal
completely positive map Z : B(G) — B(H) by Z(z) = ZZZI apzaj,
where the r.h.s. is called a minimal Kraus decomposition for Z. All
other minimal Kraus decompositions are unitarily equivalent, i.e., if also
Z(z) = Y0_, bywbl with {by}¢_, C B(G,?) and the by, are linearly inde-
pendent then b = au, where b: €, — by for all k and v € B(P) is unitary.
This yields a bijective correspondence between normal completely positive
maps Z : B(G) — B(#) and metric operator spaces in B(G,?). Unital
maps are characterized by Zizl llax&l|* = ||€]|* for all € or equivalently
Zizl agay, = 1 (weakly or strongly).

Let P* be the dual of P. Avoiding immediate identification with P will
give us some conceptual advantages. P* contains in particular the linear
functionals

a?:P 5 C, & (6i,a(€)d;).
When the inner product of P is transferred from P to P* the dual basis
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{e"}4_, of {ex}?_, becomes an ONB of P*. With a¥¥ := a (ex) = (i, a10;)
we get the formula

d

ij ij _k

av = E age".
k=1

For d = oo, note that -¢_, [laz€||?> < oo implies that (a¥)i_, € 12, ie.,
the sum above is convergent. The inner product {(@¥,a*? ) in P* is nothing
but the standard inner product of the vectors (ai )¢_, and (a}” )¢_, in C*

or [2.

The linear independence of the aj implies that the a¥ (i = 1,...,m and
j=1,...,n) are total in P*. In fact, if b = 2221 Bre® is orthogonal to all
a¥ then

d d d
(6, Brardy) = D Bl ards) = Y Bray = (b,a¥) = 0
k=1 k=1 k=1

ie., 2221 Brar = 0 and thus By = 0 for all k and finally b = 0.

The argument can be reversed. For d < oo we can start with a Hilbert
space P and any total array a¥ € P* (i =1,...,mand j = 1,...,n) and
construct backwards a metric operator space from that. For d = oo the
property ZZ=1 llaz&]|* < oo is an additional assumption. This motivates
the following

Definition 1.1. An array (a*); ; of vectors in a Hilbert space P* is said
to represent a metric operator space or the corresponding map if it is total
in P* and if for an ONB {e;} in the dual P the formula (d;, axd;) := a¥ (ex,)
defines operators {ax}¢_, C B(G,?H) such that ZZZI llaz€l|* < oo for all
EeH.

One can check that this does not depend on the choice of the ONB {¢;}
in P. A representing array always represents a normal completely positive
map Z : B(G) — B(H) via the corresponding minimal Kraus representation.

From the uniqueness result for the a; quoted above we conclude imme-
diately that two arrays (a*) and (b%/) represent the same normal completely
positive map Z : B(G) — B(#) if and only if there is a unitary u € B(P*)
such that b¥ = wa¥ for all i,5. If we say that a geometric property is
something that does not change under unitary transformations then an
interesting way to think about normal completely positive maps geometri-
cally consists in looking at a representing array (a*) in P*. This tool has
been used ad hoc and in special cases (n = m = 2) by Kiimmerer 8 and by
Gohm b and will be used more systematically in the following.
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2. Realizations of stochastic matrices

By a stochastic m X n—matrix we mean a matrix with nonnegative entries
with all row sums equal to one (convergent if n = o0). The following
definition prepares the study of extensions of stochastic matrices.

Definition 2.1. If an array (a¥) (i =1,...,m and j = 1,...,n) of vectors
in a Hilbert space P* satisfies

() Tyj = |la*]”
(b) ¥ L aiiifi#7

for all 4,7, then we say that (a¥) is a realization of the m x n—matrix
T = (T3)-

Realizations always exist. For example, we may choose all vectors a%/
orthogonal to each other with length according to (a). Note that if u
is unitary or antiunitary on P*, then (a¥) realizes the same matrix as
(wa¥). To classify realizations of a matrix T' geometrically we can proceed
as follows. Given a matrix T' with nonnegative entries let Q; (with j =
1,...,n) be a Hilbert space spanned by vectors &;; (i = 1,...,m) satisfying
Ti; = ||&;11? and &; L &; if i # i'. Note that the dimension of @; equals
the number of nonzero entries in the j—th column of T' and that also the
vectors &;; are determined by T' up to unitary equivalence.

To any realization (a¥) of T we associate a positive definite kernel K
with values K(r,s) € B(Qs, @), ie.,

n

> (& K(r,8)E) > 0

r,s=1

for all (&) with finite support. See for example Constantinescu 2 for details
on positive definite kernels. The properties of the &;; are chosen in such a
way that

(73 Qj — P*, fij — a¥

extends to an isometry and we define K(r,s) := v} vs. Then K is positive
definite and satisfies K(r,r) = 1 for all r. If u € B(P*) is unitary then
(ua¥) has the same associated kernel, i.e., we have indeed constructed a
geometric property. We call K the correlation kernel of the realization

(a¥).
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Theorem 2.1. Let T be a stochastic m X n—matriz. Every realization of
T represents a normal unital completely positive map. There is a bijective
correspondence between

(1) unitary equivalence classes of realizations of T

(2) normal unital completely positive maps Z : B(G) — B(H) which
map the diagonal into the diagonal such that the restricted map is
given by T

(8) positive definite kernels K with K (r, s) € B(Qs, @r) and K(r,r) =
T forr,s€{1,...,n}.

If (@%) is a realization of T, then Z is the map represented by it and K is

the associated correlation kernel.

Proof: Suppose that (a“: ) is a realization of T in P*. Choose an ONB
{ex}{_, of P and define a}’ = a%(ex). On & = Y1" N6 € H (with
(\i) € I? if m = oo) we can define bounded operators

ap MG, £ Y > Nals;
i=1 j=1

(in particular (8;, ard;) = aij ). In fact, we have

Dol =D 0D Maf o117 =D 1) xaaf P =D 10 Ma¥) ()
k k 0,5 k,j i ik i
= DU MaP =D IlPla ) =D I = 1€l
J i I i

Le., > llaréll* = |1€]|? for all £, which characterizes a metric operator space

corresponding to a normal unital completely positive map, see Section 1.
Let Z : B(G) — B(H) be a normal completely positive map, given by

Z(z) = 2221 arpzal with {a;}¢_, C B(G,H). We compute its action on a

diagonal matrix  with diagonal entries x1,...,Zy:
d
o . ..
* _ * _ 1 1.
(D avzar),, = (an)iz; (ap)w = Y (a7, a¥) z;.
k=1 kg J

Here we used the description of Z by the representing array (a*) in P*.
Thus (af'7,a*) = 0 for i # ¢’ is equivalent to the fact that Z maps diagonal
matrices into diagonal matrices. In this case the restricted map is given
by a matrix T with entries T;; = (a%,a") = ||a®||>. That different arrays
represent the same map Z iff they are unitarily equivalent has been noted
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in the previous section. We conclude that (1) and (2) are related by a
bijection.

Given (1), it has already been shown above how to associate the corre-
lation kernel K in (3) which only depends on the unitary equivalence class.
Conversely, given a positive definite kernel K as in (3), there is a mini-
mal Kolmogorov decomposition 2 for it, i.e., there exists a Hilbert space Q
and v; € B(Q;,Q) (for j = 1,...,n) such that K(r,s) := v} vs. Because
K(r,r) = 1 for all r the v; are isometries. Then putting a¥ := v;(;;) for
all 4,5 we can identify @ with P* and obtain a realization (a¥) of T with
correlation kernel K. A minimal Kolmogorov decomposition is unique up
to unitary equivalence which implies that two arrays (a) and (b¥) ob-
tained from the same kernel are unitarily equivalent. Thus we have also a
bijection between (1) and (3). O

Theorem 2.1 characterizes a certain set in three different ways. It shows
that realizations of stochastic matrices classify certain extensions of them
and that this can be mapped bijectively onto a well known set of kernels.
We mention two structures on this set which are now immediate. First,
with the natural affine structure from (2) or (3), it is a convex set. Sec-
ond, observe that antiunitary transformations on P* in general change the
unitary equivalence class in (1). Explicitly, if ¥ = Y7_, a/€* for an
ONB {€*} then @ = 3"¢_, @/¢* (complex conjugation) may be called a
conjugate realization of T'. Because two antiunitaries differ by a unitary,
the unitary equivalence class obtained in this way does not depend on the
choice of the ONB {e*} and thus we have a canonical antilinear inversion
on our convex set which we call conjugation. The conjugate extension Z is
given by Z(z) = Z(Z). where on the r.h.s. we have complex conjugation of
all matrix entries. Similarly we also have a conjugate kernel K.

3. Extension of states included

For probabilistic applications it is essential to include states into the ex-
tension procedure of the previous section, see Gohm ®. Assume now that
T is a stochastic m X n—matrix and let v = (v;)7_; and p = (u;)72; be
probability measures on {1,...,n} and {1,...,m} such that all v; and p;
are nonzero and we have yoT = v. Such probability measures can be found
iff T has at least one nonzero entry in each column. So this is an implicit
assumption on T from now on. We have a dual stochastic n X m—matrix
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T" = (T};) given by the equation
wi Ty = v; T}

i
Then voT' = gy and (T') =T.

We can think of the Hilbert spaces G and H as the GNS- Hilbert spaces
for the (commutative von Neumann) algebras A and B of bounded functions
on {1,...,n} and {1,...,m} for the states induced by v and p. Note that
T:A—Band T : B— A Let us write Q, € G and Q, € H for the
corresponding cyclic vectors. Explicitly, we have 1, = 2721 Vi d; and
Q, = Zzl VI 0;, where the basis vectors d;,d; in H,G are realized by
characteristic functions of single points which are also elements in B, .4 and
denoted as such in the same way. This should not cause confusion.

Now let (a¥) (i = 1,...,m and j = 1,...,n) be a realization of T
and let Z : B(G) — B(H) with Z(z) = ZZZI apzaj, be the corresponding
completely positive extension, according to Theorem 2.1.

for all 4, j.

Lemma 3.1. The following assertions are equivalent:

(1) (,,zQ,) = (Qu,Z(z)Q,) for all z € B(G)
(2) aj Q, =wr Qy for some wy,...,wg € C.
(8) There exists a unit vector * = ZZZI wy, €8 € P* satisfying

=3 /’Vi;'aif (for all 7).
i=1

Proof: These elementary equivalences are shown in a more general con-
text in Gohm 6, A.5. To relate it to our setting we prove the equality

d n i
E wr € = E Ll
" vj
k=1 i=1

for all j, where the wy, satisfy (2). In fact, from

@k Y758 =0k = 0 Qu =D (a5)jiv/i 0

j=1 i
we obtain
Dry/7j = Y (ah) i/
i
and hence

E_ if kE_ ij
,/VjE wg € = E ag \Jpi €’ = E w;a¥. 0O
k ik i
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For the following considerations it is convenient to introduce vectors
a;; € P by

(aij, &) = a(¢) forall¢ € P,

Le., aij = 3¢_ @7 ey Let us say that (a¥d) is a u—realization of T if the
conditions in Lemma 3.1 are satisfied. From now on we assume this. Then
we also have a unit vector 2 € P given by Q0 := "7 | ‘;—J aij.

Proposition 3.1. Let (a¥) be a u—realization of T. Then the map
J:B— AQ B(P),

8 »—>Z<S o lailesl Gy

llas;ll?

is a normal *—homomorphism such that
(Id4®(Q,- Q) oJ =

We have used von Neumann tensor products and Dirac notation for
rank one operators. In the language of Gohm 5:¢, Proposition 3.1 tells us
that J is a weak tensor dilation of T".

Proof: Because a’/ L ad for i # i', we find that |aﬁj><ﬁ;1| are one-
dimensional projections which are orthogonal for different ¢. Thus, writing
J(b) = 2?21 d; ® J;(b), we see that the J; are representations of B on P.
We conclude that J is a normal *—homomorphism. Further we get

(dgo@-0) o @) = 3 8 KBl

n
L S S 26 iy
= i = Vi
e, (Idg®(Q,-Q))oJ = T'. O
Proposition 3.1 is a concrete instance of a much more general phe-
nomenon revealed in Gohm 5%, compare also Gohm/Skeide 7. Namely,
whenever T' is a normal unital completely positive map between von Neu-
mann algebras A and B, there is a correspondence between extensions of
T respecting some previously fixed states and weak tensor dilations of the
dual map 7”. In our setting, where T is a stochastic matrix, starting from
the weak tensor dilation J above we can construct an associated isometry

ViR GRP, b, JB)(Q Q) (beB),
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explicitly: /i v(0;) = v(6: Q) = D51 75 0; ® /‘,f—] ai;, 1.e., we get the
simple formula

n
v:5i1—>25j®aij.

=1

With a;; = Zizl 6? €, this can be written as
.. .. d
V6= 608 e =) 8 0; @€ =Y a;p(6;) Dex,
Jik gk k=1

ie.vé= Zizl a;, () ® e, for all £ € H. Thus the corresponding extension
Z of T can be written as
d
Zx)y=v'zelv= Zakxaz,
k=1
and we have reconstructed the extension from the dilation.

Our emphasis here is on the fact that both extensions and dilations of
stochastic matrices are very conveniently described in terms of realizations.
With a suitable equivalence relation on weak tensor dilations discussed in
Gohm 8, 1.4, this correspondence between extensions of T' (respecting fixed
states) and (equivalence classes of) weak tensor dilations of 7" becomes a
bijection. It was noted in Gohm 59 that the set Z characterized in this
way is convex and closed in suitable topologies.

In our setting, with T a stochastic matrix, we can combine Theorem
2.1 and Lemma 3.1 to see that the set Z = Z(T,u) can be described
geometrically as the set of unitary equivalence classes of y—realizations of
T, i.e., realizations (a¥) of T in P* for which > ;- \/% a¥ (= Q*) does
not depend on j. We notice that on Z there is a canonical conjugation,
inherited from the one discussed in Section 2. A description of Z by kernels
can be obtained as follows.

We start with the Hilbert spaces @; (j = 1,...,n) defined in Section 2.
They are spanned by vectors &;; (i = 1,...,m) satisfying Tj; = ||&;]*> and
&; L & ;ifi#14'. Since T satisfies poT = v, there are unit vectors Q; € Q;
given by Q; := >0, \/% &;;. Because now (a¥) is a p—realization, the
isometries v; : Q; — P*, &; — a¥ map the Q; to Q* € P*. We define
Q) =Q;©CQ; and v} :=vjlge (j =1,...,n) and for all ,5 € {1,...,n}

K°(r,s) = (v;)"v; € B(Q3, Q7).
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Then K9 is a positive definite kernel with K°(r,r) = T for all » which we
call the restricted correlation kernel. If we take another y—realization (b¥/)
then because b = ua¥ for a unitary u € B(P*) the restricted correlation
kernel is not changed and it represents therefore a geometric property.

Proposition 3.2. There is a bijective correspondence between the set Z =
Z(T, 1) and the set of positive definite kernels K° with K°(r, s) € B(Q%, Q%)
and K°(r,r) = 1 for all r,s € {1,...,n}. It is given by the restricted
correlation kernel.

Proof: We only have to modify the proof of Theorem 2.1 in a suitable
way. We have already seen how to produce a restricted correlation kernel
KO from a p—realization corresponding to Z € Z. Conversely, given a
kernel K, we use it to agglutinate the spaces @; in such a way that all the
); become a single vector Q.

In detail, using a minimal Kolmogorov decomposition for the kernel
K°, we get a Hilbert space Q° and isometries v : B(Q%,Q°) such that
K%(r,s) = (v9)*0 for all 7,5 € {1,...,n}. We extend them to isometries
v; € B(Q;,Q° ® CQ*) by v,;Q; := Q* for all j, where Q* is a unit vector.
Then it is easily checked that a¥ := vj &; for all 4,5 and a corresponding
identification of Q° @ CQ* with P* defines a y—realization of T, and K© is
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the corresponding restricted correlation kernel. By the uniqueness property
of minimal Kolmogorov decompositions two u—realizations arising from the
same kernel are unitarily equivalent and belong to the same Z € Z. Hence
Z — KV is a bijection. O

Let us finish with some remarks which should help to put these results
into perspective.

To determine the kernels in Proposition 3.2 the only relevant informa-
tion about the spaces Q? is their dimension which equals the number of
nonzero entries in the j—th column of T' minus one. Of course, in the case
where this dimension is zero the corresponding entries of K° also have to
be zero.

There is always a distinguished solution given by a kernel K° with
K°(r,s) = 0 for r # s. When in T there are less than two columns with
two or more nonzero entries then this is the only solution. The fact that

Z is always nonempty has been observed in a more general context in
Gohm/Skeide 7.

The correspondence established in Proposition 3.2 yields the surprising
fact that the set Z depends only rather slightly on the details of T' and T".
More precisely, though obviously the extensions Z : B(G) — B(#) depend
on all entries T;; and on the measures g and v (or on T and T"'), we have
shown that whenever for two stochastic m x n—matrices 77 and Ty the
number of nonzero entries in the j—th column coincides for each j then
there is a canonical bijection between the extension sets Z; and Z,, via
the correspondence to kernels given in Proposition 3.2.

Interpreting Z as the set of (equivalence classes of) weak tensor dilations
of T, see Proposition 3.1, we can give the following interpretation of the
restricted correlation kernel. Using the notation introduced in Proposition
3.1 and its proof, we can consider the relative position of the commutative
algebras J;(B) in B(P) (j =1,...,n) by looking at the corresponding sub-
spaces J;(B)Q C P. The formula v : §; = 3%, d; ® aj; for the associated
isometry makes clear that it is this relative position that is described by
the (restricted) correlation kernel.

It is very instructive to check all these observations in the simple ex-
ample of 2 X 2—stochastic matrices with nonzero entries. Then n =m =2
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and the kernels K° are C—valued and parametrized by the off-diagonal
entry ¢ := K°(2,1), i.e., by a complex parameter ¢ with |¢| < 1. This
parametrization of Z has already been observed in Gohm ¢, where also the
corresponding extensions Z : My — M, and dilations J : C* = C* ® B(P)
are explicitly computed.
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