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A Duality between Extension and Dilation

Rolf Gohm

Abstract. For normal unital completely positive maps on von Neumann al-
gebras respecting distinguished states, we consider the problem to find normal

unital completely positive extensions acting on all bounded operators on the

GNS-spaces and respecting the corresponding cyclic vectors. We show that
there exists a duality relating this problem to a certain dilation problem on

the commutants. Some explicit computations for low dimensions are presented.

Introduction

The following considerations concern normal unital completely positive maps on
von Neumann algebras. The algebras are represented on Hilbert spaces where the
relevant states are represented by vectors. We refer to [Sa] and [Ta] for terminology
and standard results about these objects.

While much is known about extensions of such maps on the one hand and di-
lations of them on the other hand, we develop a specific connection between these
fields of study. We formulate our extension problem in section 2 and our dilation
problem in section 3. Both involve in addition to the maps certain distinguished
states. Our main result is then presented in section 4, and it tells us that dila-
tions/extensions of the map on the algebra correspond to extensions/dilations of
the dual map on the commutant. For standard representations we have a bijec-
tive correspondence if we introduce a suitable equivalence relation on the dilations.
The final form is given in Theorem 4.4. We close by reconsidering the elementary
example of section 1 to illustrate the theory.

We think that these results have some intrinsic interest for the theory of com-
pletely positive maps and this is the point of view from which they are developed
here. But let us remark that the starting point of our investigations which led
eventually to the condensed version presented here are some questions in non-
commutative probability. Due to lack of space we cannot show these applications
here and only give the following hints: In non-commutative probability normal
unital completely positive maps represent transition operators of non-commutative
Markov processes. The dilation problem is related to the construction of the Markov
processes and to their structural properties, see [BP, KM], while the extension
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problem is related to extension of Markov processes to larger ones. The dual-
ity shown in this paper has proved to be useful in particular for the Kümmerer-
Maassen scattering theory of Markov processes, see [KM]. More details can be
found in [Go].

1. An Extension Problem (Example)

Here we present the extension problem to be considered in the most elementary

nontrivial case. Consider a stochastic matrix 1
2

(
1 1
1 1

)
. We think of it as an

operator

S : C2 → C2,

(
x1

x2

)
7→ 1

2

(
x1 + x2

x1 + x2

)
.

There is an invariant probability measure
(

1
2 ,

1
2 ), giving rise to an invariant state φ

in the sense that φ ◦ S = φ.
We can apply the GNS-construction for the algebra A = C2 with respect to

the state φ, and we get the Hilbert space H = C2 (with canonical scalar product)

and the unit vector Ω = 1√
2

(
1
1

)
. Now the state φ is realized as a vector state,

i.e. φ

(
x1

x2

)
=< Ω,

(
x1 0
0 x2

)
Ω >. Identifying A = C2 with the diagonal

subalgebra of B(H) = M2 we have

S : x =
(
x1 0
0 x2

)
7→ 1

2

(
x1 + x2 0

0 x1 + x2

)
and < Ω, xΩ >=< Ω, S(x)Ω >. We shall now ask for completely positive maps
Z : M2 → M2 which extend S and satisfy < Ω, xΩ > = < Ω, Z(x)Ω > for all
x ∈M2.

Let us try a direct approach. Any completely positive map Z : M2 → M2 can
be written in the form Z(x) =

∑d
k=1 ak x a

∗
k with ak ∈M2. Introduce four vectors

aij ∈ Cd, i, j = 1, 2, whose k-th entry is the ij-entry of ak. With the canonical
scalar product and euclidean norm on Cd we get by direct computation:

Z

(
x1 0
0 x2

)
=

(
‖a11‖2 x1 + ‖a12‖2 x2 <a21, a11> x1+ <a22, a12> x2

<a11, a21> x1+ <a12, a22> x2 ‖a21‖2 x1 + ‖a22‖2 x2

)
If Z is an extension of S we conclude that

‖a11‖2 = ‖a12‖2 = ‖a21‖2 = ‖a22‖2 =
1
2
,

< a11, a21 > = < a12, a22 > = 0.
Now <Ω, xΩ>=<Ω, Z(x)Ω> for all x ∈M2 means that Ω is a common eigenvector
for all a∗k, i.e. a∗k Ω = ωk Ω for k = 1, . . . , d. This follows from Lemma 2.4 below.

Inserting Ω = 1√
2

(
1
1

)
shows that the vector ΩP =

 ω1

...
ωd

 ∈ P := Cd is

a unit vector satisfying ΩP = a11 + a21 = a12 + a22. The operator Z is not
changed if we apply a unitary in B(P) to the four vectors a11, a12, a21, a22. This
follows from the corresponding and well-known non-uniqueness of the operators
{ak} in the representation of Z. Thus we can fix an arbitrary two-dimensional plane
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and realize the vectors ΩP , a11, a21 there as a right-angled and isosceles triangle.
The vectors ΩP , a12, a22 give another such triangle and in general we need a third
dimension to represent the relative position of the two triangles properly. Thus
without restriction of generality we can choose d = 3 and

ΩP =

 1
0
0

 , a11 =
1
2

 1
1
0

 , a12 =
1
2

 1
c√

1− |c |2

 ,

a21 =
1
2

 1
−1
0

 , a22 =
1
2

 1
−c

−
√

1− |c |2


with a parameter c ∈ C, |c |≤ 1. Thus we have

a1 =
1
2

(
1 1
1 1

)
, a2 =

1
2

(
1 c
−1 −c

)
, a3 =

1
2

(
0

√
1− |c |2

0 −
√

1− |c |2

)
.

Then the entries of Zc(x) =
∑3
k=1 ak x a

∗
k with parameter c ∈ C, | c |≤ 1 can be

computed. We have shown the following result:

Proposition 1.1. For the stochastic matrix 1
2

(
1 1
1 1

)
the set of completely

positive extensions Z : M2 →M2 with < Ω, xΩ >=< Ω, Z(x)Ω > for all x ∈M2 is

parametrized by c ∈ C, |c |≤ 1. Explicitly: For x =
(
x11 x12

x21 x22

)
we get Zc(x) =

1
4

(
2(x11 + x22) + (1 + c)x12 + (1 + c)x21 (1− c)x12 + (1− c)x21

(1− c)x12 + (1− c)x21 2(x11 + x22) + (1 + c)x12 + (1 + c)x21

)
.

Remark 1.2. The Zc for | c |≤ 1 are all different from each other. Note that
Zc1+c2 = Zc1+Zc2 , showing that the convex set of extensions is (affinely) isomorphic
to {c ∈ C : | c |≤ 1}. Looking for the minimal number of ak necessary to represent
Zc, we see that for extremal points (|c |= 1) it is 2, otherwise it is 3.

Remark 1.3. The reader may also check that for a matrix
(

1− λ λ
µ 1− µ

)
with 0 < λ, µ < 1 one can use a similar argument and also gets a parametrization
by the unit disc.

2. An Extension Problem (General Case)

Let us define a general setting for the extension problem which has been dis-
cussed in section 1 by an example. Suppose A ⊂ B(G) and B ⊂ B(H) are repre-
sented von Neumann algebras with cyclic vectors ΩG ∈ G and ΩH ∈ H. Restricting
the corresponding vector states to A and B we get normal states φA and φB.
Then consider a normal unital completely positive map S : (A, φA) → (B, φB), i.e.
S : A → B and φB ◦ S = φA.
We are interested in the following set

Definition 2.1.
Z(S, φB) := {Z : B(G) → B(H) normal unital completely positive and Z|A = S

and < ΩG , xΩG >=< ΩH, Z(x)ΩH > for all x ∈ B(G)}.



4 ROLF GOHM

Remark 2.2. Note that in section 1 we have computed the set Z(S, φ) for S
given by a stochastic 2× 2-matrix with an invariant state φ.

Remark 2.3. Z is convex and closed in suitable topologies. For example we
can use the topology of pointwise weak∗-convergence. It is well known (and easy
to check by a Banach-Alaoglu type of argument) that the set of normal unital
completely positive maps is compact in this topology (see [Ar], 1.2). Thus Z is the
closed convex hull of its extremal points by the Krein-Milman theorem.

Let us note some immediate observations. Using the Stinespring representa-
tion ([Ta], IV.3.6) and the amplification-induction-theorem ([Ta], IV.5.5), we get
a representation for S : B(G) ⊃ A → B ⊂ B(H) of the form S(a) = v∗ a ⊗ 1 v,
where a ∈ A, v : H → G ⊗ P is an isometry, P another Hilbert space. Writing
v ξ =

∑d
k=1 a

∗
k(ξ)⊗ εk for an ONB {εk} of P we have a corresponding decomposi-

tion S(a) =
∑d
k=1 ak a a

∗
k for a ∈ A, ak ∈ B(G,H), d = dimP. The sum should be

interpreted in the strong operator topology if d = ∞. Then we have the ansatz

Z(x) = v∗ x⊗ 1 v =
d∑
k=1

ak x a
∗
k

for all x ∈ B(G). This is a normal unital completely positive map extending S.
Concerning the states we note:

Lemma 2.4. The following assertions are equivalent:

(1) < ΩG , xΩG > = < ΩH, Z(x)ΩH > for all x ∈ B(G).
(2) There is a unit vector ΩP ∈ P such that vΩH = ΩG ⊗ ΩP .
(3) There is a function ω : {1, . . . , d} → C, k 7→ ωk such that a∗k ΩH = ωk ΩG

for all k.

If G = H and ΩG = ΩH =: Ω, then (3) means that Ω is a common eigenvector for
all a∗k.

Proof. (2) ⇔ (3) follows by inserting ξ = ΩH into v ξ =
∑d
k=1 a

∗
k(ξ)⊗ εk and

observing that ΩP =
∑d
k=1 ωk εk. Further (1) can be written as

< ΩG , xΩG > = < vΩH, x⊗ 1 vΩH > for all x ∈ B(H).

Thus (2) ⇒ (1) is immediate. For the converse assume that vΩH has not the form
given in (2). Then inserting x = pΩG , the projection onto CΩG , yields

|< vΩH, pΩG ⊗ 1 vΩG >| < 1 = < ΩG , pΩGΩG >,

contradicting (1). �

Thus in an informal language we can restate our extension problem as follows:
Can we find Stinespring representations of S such that these additional properties
are satisfied? And how many different Z can we construct in this way?

3. A Dilation Problem

We want to relate the extension problem considered in the previous sections to
a dilation problem. We start by defining the latter.
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Definition 3.1. LetA,B, C be von Neumann algebras. A normal ∗−homomor-
phism j : A → B⊗C (not necessarily unital) is called a weak tensor dilation (of first
order) for a normal unital completely positive map S : A → B if there is a normal
state ψ of C such that S = Pψj. Here Pψ : B ⊗ C → B denotes the conditional
expectation determined by Pψ(b⊗ c) = b ψ(c).

Remark 3.2. Let us give some comments on this definition. Of course the
same definition is possible for C∗−algebras (dropping normality), but our main
results concern von Neumann algebras. ‘Weak’ refers to the fact that the dilation
is not assumed to be unital, similar to other weak dilation theories, see [BP]. The
dilation is called ‘tensor’ because the conditional expectation used is of tensor type.
‘First order’ means that higher powers of S are not considered.

Remark 3.3. If B = B(L) for a Hilbert space L, then it is easy to construct
weak tensor dilations using the Stinespring representation of S. The point of our
definition is the inclusion of a tensor product structure into the concept. See the
equivalence relation below which makes explicit use of it.

Applying the GNS-construction to (C, ψ) we get a representation of C on a
Hilbert space K and a cyclic unit vector ΩK ∈ K representing the state ψ. Therefore
we do not loose much if in the definition of weak tensor dilations above we replace
(C, ψ) by (B(K),ΩK).

Suppose now that A ⊂ B(G) and B ⊂ B(H) with cyclic vectors ΩG ∈ G and
ΩH ∈ H yielding states φA and φB, so that S : (A, φA) → (B, φB). For a weak
tensor dilation j of S we can then define an isometry v associated to j (together
with φB):

v : G → H⊗K
aΩG 7→ j(a) ΩH ⊗ ΩK.

The isometric property of v can be seen by the following computation:

‖j(a) ΩH ⊗ ΩK‖2 =< ΩH ⊗ ΩH, j(a∗a)ΩH ⊗ ΩH >

= < ΩH, S(a∗a)ΩH > =< ΩG , a∗aΩG > = ‖aΩG‖2.
We can use associated isometries in order to define a natural equivalence relation
on weak tensor dilations:

Definition 3.4. Let φB be faithful. Then we say that two weak tensor dilations
j1, j2 of S are equivalent if there is a partial isometry w : K1 → K2 such that
v2 = (1⊗ w)v1. Here associated objects are given the corresponding subscript.

Remark 3.5. If B has a separable predual then faithful normal states exist
(see [Sa], 2.1.9) and Definition 3.4 is applicable. It can be shown that equivalence
does not depend on the choice of the faithful state φB, see [Go],1.4. Since we do
not explicitly need this fact, we omit the proof.

4. Duality

The extension problem and the dilation problem are closely related. Again
suppose that S : (A, φA) → (B, φB) is a normal unital completely positive map and
A ⊂ B(G) and B ⊂ B(H) with cyclic vectors ΩG ∈ G and ΩH ∈ H implementing the
states φA and φB. By restriction of the vector states we also get normal states φA′

and φB′ on the commutants A′ ⊂ B(G) and B′ ⊂ B(H). Recall that there exists a
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unique normal unital completely positive map S′ : (B′, φB′) → (A′, φA′) such that
< ΩH, S(a) b′ ΩH > = < ΩG , a S′(b′) ΩG > for all a ∈ A, b′ ∈ B′ (e.g., use the
argument in [Sa], 1.21.10). Let us call S′ the dual map.

Now let j : A → B ⊗ B(K) be a weak tensor dilation of S, with associated
isometry v : G → H⊗K. Define an operator

Z ′ : B(H) → B(G), x 7→ v∗ x⊗ 1 v.

Proposition 4.1.
Z ′ ∈ Z(S′, φA′).

Proof. Z ′ is given in a Stinespring representation, i.e. it is a normal unital
completely positive map. The associated isometry v : aΩG 7→ j(a) ΩH⊗ΩK satisfies
vΩG = ΩH ⊗ ΩK which by Lemma 2.4 implies < ΩH, xΩH > = < ΩG , Z ′(x)ΩG >
for all x ∈ B(H). For all a1, a2 ∈ A and b′ ∈ B′ we get

< a1ΩG , v∗ b′ ⊗ 1 va2ΩG > = < j(a1)ΩH ⊗ ΩK, b′ ⊗ 1 j(a2) ΩH ⊗ ΩK >

= < ΩH ⊗ ΩK, j(a∗1a2)(b′ΩH)⊗ ΩK > = < ΩH, Pψ j(a∗1a2) b′ΩH >

=< ΩH, S(a∗1a2)b′ΩH > = < ΩG , S′(b′)a∗1a2ΩG >

=< a1ΩG , S′(b′)a2ΩG >, i.e. v∗ b′ ⊗ 1 v = S′(b′).

�

Let us look for a kind of converse for the preceding result.

Proposition 4.2. Given Z : B(G) → B(H) with Z ∈ Z(S, φB). Then there
exists a weak tensor dilation j′ : B′ → A′ ⊗ B(P) of S′ with associated isometry
v′ : H → G ⊗ P such that Z(x) = (v′)∗x⊗ 1 v′ for all x ∈ B(G).

Remark 4.3. Note that j′ and v′ are not commutants of other objects, but ′

denotes the connection to the dual map S′.

Proof. By the Stinespring representation theorem we find an isometry v′ :
H → G ⊗ P such that Z(x) = (v′)∗ x ⊗ 1 v′. Because S = Z|A we also have
S(a) = (v′)∗ a ⊗ 1 v′ for a ∈ A. Let p′ be the projection from G ⊗ P onto
the minimal part of the Stinespring representation of S, i.e. onto the closure of
(A⊗ 1) v′H.

We want to use a result of Arveson ([Ar], 1.3, see also [Ta], 3.6) on the lifting
of commutants. The following version of it is adapted to our needs: If H1, H2 are
Hilbert spaces, v : H1 → H2 an isometry, E ⊂ B(H2) a selfadjoint algebra with
EvH1 = H2, then there exists an isomorphism j from {v∗Ev}′ onto E ′ ∩ {vv∗}′
satisfying j(·)v = v· (with · representing elements of {v∗Ev}′). Note that the last
condition determines j uniquely: For ξ ∈ H1 and ε ∈ E we have

j(·)εvξ = εj(·)vξ = εv · ξ
In fact, if we define j in this way, then it is possible to check the properties stated
above. This is done in [Ar].

We apply this forH1 = H, H2 = p′(G⊗P) and v = v′. Define E := p′A⊗1 p′ =
A⊗ 1 p′. Then because p′(G ⊗ P) ⊃ v′H we get

{(v′)∗Ev′}′ = {(v′)∗A⊗ 1 v′}′ = S(A)′ ⊃ B′

and now Arveson’s result yields a (normal *-) homomorphism

j′ : B′ → {A⊗ 1 p′}c,
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where we have introduced the notation c to denote the commutant on H2. For any
projection e in a von Neumann algebra M which is represented on a Hilbert space
it is always true that on the range of e the commutant of eMe equals M′e (see
[Ta], 3.10). Here this means that {p′A′ ⊗ B(P)p′}c = (A⊗ 1)p′ and thus

{(A⊗ 1)p′}c = (p′A′ ⊗ B(P) p′)cc = p′A′ ⊗ B(P) p′ ⊂ A′ ⊗ B(P).

We conclude that j′ : B′ → A′ ⊗B(P) and j′(1) ≤ p′. Applying j′(·)v′ = v′· to ΩH
gives for b′ ∈ B′

v′b′ΩH = j′(b′)v′ΩH
Because <ΩG , xΩG> = <ΩH, Z(x)ΩH> for all x ∈ B(G) it follows by Lemma 2.4
that there is a unit vector ΩP ∈ P such that v′ΩH = ΩG ⊗ ΩP . Thus

v′b′ΩH = j′(b′) ΩG ⊗ ΩP ,

which expresses the fact that v′ is the isometry associated to j′. It remains to prove
that if ψ is the vector state given by ΩP then Pψj′ = S′.
For a1, a2 ∈ A and b′ ∈ B′ we get

< a1ΩG , Pψj′(b′)a2ΩG > = < (a1 ⊗ 1) ΩG ⊗ ΩP , (a2 ⊗ 1)j′(b′) ΩG ⊗ ΩP >

= < a1 ⊗ 1 v′ΩH, a2 ⊗ 1 v′b′ΩH > = < ΩH, (v′)∗a∗1a2 ⊗ 1 v′b′ΩH >

= < ΩH, S(a∗1a2)b′ΩH > = < ΩG , a∗1a2S
′(b′)ΩG >

= < a1ΩG , S′(b′)a2ΩG >, i.e. Pψj′ = S′.

�

The duality between extension and dilation worked out so far takes an especially
nice form if we assume that the cyclic vectors ΩG and ΩH are not only cyclic but
also separating, i.e. if we consider standard representations. In this case we write

T : (A, φA) → (B, φB), T ′ : (B′, φB′) → (A′, φA′)

instead of S, S′. It is easy to check that (T ′)′ = T , and there is a duality in all
statements about algebras and commutants. The distinguished vector states are
cyclic for algebras and commutants and we can apply our results with S = T and
with S = T ′.

Theorem 4.4. There is a bijective correspondence between
• weak tensor dilations of T modulo equivalence
• elements of Z(T ′, φA′)

and similar with the roles of T and T ′ interchanged.

Proof. We get the correspondence by applying Proposition 4.1 to S = T
and Proposition 4.2 to S = T ′. To see that the correspondence is one-to-one
consider the Stinespring representation Z ′ : B(H) → B(G), x 7→ v∗ x⊗ 1 v for an
extension of T ′. Such a representation is determined up to unitary equivalence and
this corresponds exactly to the equivalence relation in Definition 3.4 for the weak
tensor dilation of T obtained from it. �

To illustrate this result we write down the weak tensor dilations corresponding

to the extensions of the stochastic matrix 1
2

(
1 1
1 1

)
determined in section 1.

Note that in this case we have A = A′ = B = B′ and it is easy to check that
also T = T ′. These dilations may be computed using Arveson’s lifting as shown
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in the proof of Proposition 4.2 or they may be guessed from the considerations of
section 1. We shorten this process by defining the dilations directly and then we
verify the required properties.

Recall from section 1 the vectors a11, a12, a21, a22 ∈ C3, where a12 and a22

depend on a parameter c ∈ C, | c |≤ 1. Let pij ∈ M3 be the one-dimensional
projection onto C aij (complex conjugation in all components). Now we define

jc : C2 → C2 ⊗M3

b 7→
(

1
0

)
⊗ j(1)(b) +

(
0
1

)
⊗ j(2)(b),

with homomorphisms j(1), j(2) : C2 →M3 determined by

j(1)
(

1
0

)
= p11, j(2)

(
1
0

)
= p12,

j(1)
(

0
1

)
= p21, j(2)

(
0
1

)
= p22.

From <a11, a21> = <a12, a22> = 0 it follows that j(1) and j(2) are embeddings
of C2 into M3. Note that only the second of these depends on the parameter c.
We denote by ε1, ε2, ε3 the canonical unit vectors in K = C3, in particular we fix

ΩK := ε1 =

 1
0
0

. For all i, j = 1, 2 we find that pijΩK = aij =
∑3
k=1(a

∗
k)ji εk.

Using this we can verify immediately that for all c the homomorphism jc together
with the vector state given by ΩK provides us with a weak tensor dilation for the

map T corresponding to the stochastic matrix. Further for b =
(
b1
b2

)
∈ C2

vc bΩ := jc(b) Ω⊗ ΩK =
1√
2

((
1
0

)
⊗ j(1)(b) ΩK +

(
0
1

)
⊗ j(2)(b) ΩK

)

=
1√
2

((
1
0

)
⊗ (b1p11 + b2p21) ΩK +

(
0
1

)
⊗ (b1p12 + b2p22) ΩK

)

=
3∑
k=1

1√
2

(
(a∗k)11

(
b1
0

)
+ (a∗k)12

(
b2
0

)
+ (a∗k)21

(
0
b1

)
+ (a∗k)22

(
0
b2

))
⊗εk

=
3∑
k=1

a∗k(bΩ)⊗ εk.

We conclude that

vcξ =
3∑
k=1

a∗k(ξ)⊗ εk for all ξ ∈ C2,

which shows that the isometry vc associated to jc is also the isometry occurring in
the Stinespring representation of Zc =

∑3
k=1 ak · a∗k. Therefore the dilations jc and

the extensions Zc from section 1 correspond to each other in the way described by
Theorem 4.4.
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