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Abstract

We discuss a class of endomorphisms of the hyperfinite II1−factor

which are adapted in a certain way to a tower IC 1 ⊂ ICp
⊂ Mp ⊂

Mp ⊗ ICp
⊂ . . . so that for p = 2 we get Bogoljubov transformations of

a Clifford algebra. Results are given about surjectivity, innerness, Jones

index and the shift property.

0 Introduction

Related to the interest in towers of algebras there is growing interest in endo-

morphisms which are in some way adapted to such towers. Some examples are

given by V. Jones in [Jo]; see also the book [JS] of V. Jones and V.S. Sunder for

some background. In these references the question is raised how global prop-

erties of these endomorphisms can be obtained from information restricted to

various stages of the tower.

The starting point for this paper has been the observation that there is a

certain class of endomorphisms of the hyperfinite II1−factor which allow more
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detailed answers to these questions than are available in general. They are

adapted to a tower

E−1 ⊂ E0 ⊂ E[0,1] ⊂ E[0,2] ⊂ . . . ≃ IC 1 ⊂ ICp ⊂ Mp ⊂ Mp ⊗ ICp ⊂ . . .

in the sense that α(E[0,n−1]) ⊂ E[0,n] for all n and that some additional commuta-

tion relations are fulfilled (see section 1 for details). For p = 2 we get Bogoljubov

transformations of a Clifford algebra (cf R.J. Plymen, P.L. Robinson [PR] to get

an introduction for that). For p > 2 there is no functor, but from known results

on Bogoljubov transformations we guess natural hypotheses about the general

case, some of which are verified in this paper.

In section 1 we introduce from various points of view the class of endomor-

phisms to be discussed, introduce notation and give elementary properties to

be needed later. The main results are in sections 2-4.

In section 2 we analyze this structure from the point of view of noncommuta-

tive stochastic processes (cf B. Kümmerer [Kü] for basic definitions). We believe

that adaptedness properties with respect to a given tower add many useful pos-

sibilities to introduce and to calculate stochastic quantities. Here we calculate

prediction errors (as they would be called in classical probability) and use this

to determine when the endomorphism is surjective, i.e. an automorphism.

In section 3 we go further in this direction and determine when this auto-

morphism is even inner. For Bogoljubov transformations this has been answered

by a theorem of Blattner [Bl]. Not using the Clifford functor, we feel that our

approach sheds some new light even on this classical situation.

In section 4 we discuss the non-surjective case. We calculate the Jones index

[A : αA] and give a sufficient condition for the endomorphism α to be a shift

in the sense of Powers. In this part some work remains to be done to obtain a

more complete understanding.

Special features used throughout and not always present in more general

towers are commutation relations, the independence of certain subalgebras and

2



grading. Nevertheless, one might hope that it is possible to use the experi-

ences made in analyzing these special endomorphisms for the study of more

complicated cases.

1 A class of endomorphisms

It is convenient to start with a setting introduced by D. Bures and H-S. Yin

in [BY-1]: Given a discrete abelian group G, a shift s in G and an s-invariant 2-

cocycle w of G (with values in the circle group Π), we can form the twisted group

von Neumann algebra W ∗(G,w) generated by unitaries {Lg : g ∈ G} satisfying

LgLh = w(g, h)Lg+h (equivalently, LgLh = b(g, h)LhLg, where b(g, h) = w(g,h)
w(h,g)

is an antisymmetric bicharacter of G) and an endomorphism σ of W ∗(G,w)

satisfying σ(Lg) = Ls(g), called a group shift.

Lemma 1.1 (Bures,Yin [BY-1]) Let H be a subgroup of G. Then

W ∗(H,w)′ ∩ W ∗(G,w) = W ∗({g ∈ G : b(g, h) = 1 for all h ∈ H}, w).

If w is nondegenerate (i.e. {g ∈ G : b(g, h) = 1 for all h ∈ G} = {0}) and G is

countable, then W ∗(G,w) is the hyperfinite II1−factor.

Lemma 1.2 Let H,K be subgroups of G and H ∩ K = {0}, w nondegenerate

(see above) and normalized (i.e. w(g,−g) = 1 for all g ∈ G). Then W ∗(H,w)

and W ∗(K,w) are independent in the sense that tr(xy) = tr(x) tr(y) for all

x ∈ W ∗(H,w), y ∈ W ∗(K,w) (where tr is the unique trace on W ∗(G,w), see

[BY-1], Prop.1.5).

Remark: In this paper we shall always use this notion of independence (cf

[Kü]), which coincides with ’orthogonality with respect to the trace’ in [Po].

Proof of Lemma 1.2: It suffices to prove the assertion for sums x =
∑

λhLh, h ∈ H,

resp. y =
∑

γkLk, k ∈ K, having only finitely many summands. Then

tr(
∑

λhLh) = λ0, tr(
∑

γkLk) = γ0 and (because h + k = 0 ⇔ h = k = 0)
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tr(
∑

λhLh · ∑ γkLk) = tr(
∑

λhγkw(h, k)Lh+k) = λ0γ0. 2

Let the cyclic group ZZp be given by {0, . . . , p − 1} and addition mod p. If

G := ⊕∞
n=0ZZ

(n)
p , the group shift corresponding to the canonical shift in G is

called a p-shift in [BY-1]. The simplest example is the following:

Denoting 1 ∈ ZZ(n)
p by δn, we use the antisymmetric bicharacter b determined by

b(δm, δn) = exp(2πi/p) =: ω for m < n. Setting en := Lδn
we get the relations

ep
n = 1, emen = ω enem for m < n, and {en}∞n=0 span a von Neumann algebra A

isomorphic to the hyperfinite II1−factor. Denote by EJ the von Neumann alge-

bra spanned by {en : n ∈ J} (in particular we use J = [0, n] := {0, 1, . . . , n} and

other selfexplaining expressions; also E−1 := IC1). Infer from Lemma 1.2 that

EI and EJ are independent if I ∩ J = ∅. Using the terminology of B. Kümmerer

[Kü] this means that {EJ : J ⊂ IN0} is a (discrete) white noise and that the

p-shift σ : en 7→ en+1 (for all n) is a (generalized) Bernoulli shift. Using this

point of view σ has also been examined by C. Rupp [Ru], where it is called a

Gauß shift.

In this paper we want to consider a more general class of endomorphisms

(containing σ).

Definition 1.3 An endomorphism α of A is called adapted with respect to the

discrete white noise {EJ : J ⊂ IN0} if it can be written in the form limN→∞
∏N

n=1 AdUn

(pointwise weak∗), where for all n ≥ 1 Un ∈ A is a unitary

(a) normalizing E[0,n], i.e. AdUn(E[0,n]) = E[0,n] and

(b) Un ∈ (E[0,n−2]∪[n+1,∞))
′, i.e. AdUn fixes E[0,n−2]∪[n+1,∞) pointwise.

Remarks:

• From Definition 1.3 we get immediately (for all n ≥ 1) that α|E[0,n−1]
=

Ad(U1 . . . Un)|E[0,n−1]
and α(E[0,n−1]) ⊂ E[0,n]. This property may be called

adaptedness with respect to the tower {E[0,n]}n∈IN0
, and it is introduced

for very general towers by V. Jones and V.S. Sunder in [JS], Example 5.1.6.
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Compare also [Jo] for further examples and results. The presence of a

discrete white noise allows us to define a more restricted class of endo-

morphisms, and we shall show in the sequel that this simplifies the task

of proving results.

• The tower E−1 ⊂ E0 ⊂ E[0,1] ⊂ E[0,2] ⊂ E[0,3] ⊂ E[0,4] . . . is isomorphic to

IC 1 ⊂ ICp ⊂ Mp ⊂ Mp ⊗ ICp ⊂ Mp ⊗ Mp ⊂ Mp ⊗ Mp ⊗ ICp . . . where Mp

denotes the algebra of p × p-matrices. In this paper the number p will

always be used in this meaning.

• The AdUn are in a certain way localized with respect to the noise, interact-

ing like cog-wheels. It is natural to try to understand the endomorphism

α in terms of its factors.

• It is also instructive to look at Definition 1.3 as a generalization of actions

of ’infinite tensor product type’ (cf Y. Kawahigashi [Ka]), which appear if

we choose Un = 1 for all even n.

The mechanism of an adapted endomorphism (always with respect to the noise

above) can be described very explicitely. Define µ :=







exp(πi/p) if p is even

1 if p is odd

and un := µ e∗n−1en for all n ≥ 1 (the factor µ ensures that up
n = 1). lin denotes

linear hull.

Proposition 1.4 (E[0,n−2]∪[n+1,∞))
′ ∩ A = lin{uk

n}p−1
k=0 ≃ ICp.

Remark: In particular (E[0,n−2]∪[n+1,∞))
′ ∩ A ⊂ E[0,n], which means that (a)

in Definition 1.3 already follows from (b).

Proof: Obviously un ∈ (E[0,n−2]∪[n+1,∞))
′. To prove the other direction note

that (by Lemma 1.2) (E[0,n−2]∪[n+1,∞))
′ ∩A is spanned by unitaries Lg, where

b(g, δj) = 1 if j ∈ [0, n − 2] ∪ [n + 1,∞). If g =
∑

g(j), g(j) ∈ ZZ(j)
p and

j1 := min{j : g(j) 6= 0}, j2 := max{j : g(j) 6= 0}, then we find b(g, δj2) 6=
b(g, δj) if j2 < j, but b(g, δj) = 1 if j ≥ n + 1 and thus j2 < n + 1, also
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b(g, δj1) 6= b(g, δn+1) = 1 and thus j1 > n− 2. Conclude that g = g(n−1) + g(n),

i.e. Lg = const. · ek1
n−1e

k2
n with k1, k2 ∈ {0, . . . , p − 1}. To satisfy the required

commutation relations we must also have k2 = −k1 =: k, which implies that Lg

differs from uk
n only by a scalar factor. 2

Remark: We have unun+1 = ωun+1un and [um, un] = 0 if |n − m| ≥ 2. The

restriction of σ to lin{un : n ≥ 1}, σ : un 7→ un+1, also defines a p-shift which

is treated as a derivation of σ in [BY-2].

To discuss this structure in more detail fix any n ≥ 1 and set e := en−1, f := en

and u := un = µ e∗n−1en. We have the (commutation) relations

ep = fp = up = 1, ef = ωfe, eu = ωue, fu = ωuf.

The algebra spanned by e and f is isomorphic to the matrix algebra Mp where

we may give the following realization:

e =













1

1

1

1

1













, f =













µω

µω2

. . .

µωp−1

µ













, u =













1

ω

ω2

. . .

ωp−1













.

By Proposition 1.4 any element U := Un arising in the presentation of an

adapted endomorphism has the form

U =
1√
p

p−1
∑

k=0

ĉ(k)uk

with complex coefficients {ĉ(k)}p−1
k=0. These are the discrete Fourier transform

of the eigenvalues {c(j)}p−1
j=0 of U, i.e. ĉ(k) = 1√

p

∑p−1
j=0 c(j)ωjk. Indeed, using

the realization above we find

U =













c(0)

c(1)

c(2)

. . .

c(p − 1)













.

So {ĉ(k)}p−1
k=0 can be chosen to be the Fourier transform of any unimodular

function on {0, . . . , p− 1}. Note that c or ĉ is specified by the action AdU only

up to an unimodular constant, which can be suitably chosen in applications.
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Proposition 1.5 AdU(ejfk) =
∑p−1

s=0 γj+k,s ej−sfk+s ωskω
1
2 s(s−1)µs,

where γab = 1
p

∑p−1
m=0 ĉ(m)ĉ(m − b) ωma = ωab

p

∑p−1
m=0 c(m)c(m + a) ωmb.

Proof: Straightforward computation using the commutation relations. 2

In particular we have AdU(ej) =
∑p−1

s=0 γ̃js ej−sfs where |γ̃js| = |γjs|. If

we want to emphasize the index n of Un in these formulas we shall write

c(n)(j), ĉ(n)(k), γ
(n)
ab etc.

Lemma 1.6 Some properties of γab, a, b ∈ ZZp ≃ {0, . . . , p − 1} :

(a) γ0b = δ0b for all b.

(b)
∑

b |γab|2 = 1 for all a.

(c) γ−a,−b = γab ωab.

(d) Let γ
(∗)
ab be associated to U∗ = 1√

p

∑p−1
k=0 ĉ(k)u−k. Then γ

(∗)
ab = γa,−b.

Proof: (a) reflects AdU(1) = 1 and (b) follows from the fact that AdU is

an isometry of L2(A, tr). (c) and (d) are straightforward from Proposition

1.5. 2

Examples:

• If ĉ(j) :=







exp[πi(j + 1)2] if p is even

exp[πi(j + 1
2 )2] if p is odd

then a short computation

yields γjk =







δjk ωk− k2

2 if p is even

δjk ω
1
2 (k−k2) if p is odd

and AdU(e) = f . Using the

corresponding unitary U for all n ≥ 1 we get an adapted presentation of

the Gauß shift σ introduced above. The occurrence of Gaussian sums in

dealing with the discrete Fourier transforms has been the reason for the

terminus ’Gauß shift’ in [Ru].

• Ad e0 = limN→∞
∏N

n=1 AdUn where Un = 1 for n odd and Un = u∗
n for n

even.
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• The automorphism γ defined by γ(en) = ωen (for all n) is called the grad-

ing automorphism. We have an adapted presentation γ = limN→∞
∏N

n=1 AdUn

where Un = u∗
n for n odd and Un = 1 for n even. Note that by an argu-

ment analogous to that presented by P. de la Harpe and R.J. Plymen in

[HP], Lemma 1, one can show that γ is an outer automorphism of A.

We shall need some facts about the grading naturally associated to our way

of generating A: for r ∈ {0, . . . , p − 1} define Ar := {x ∈ A : γ(x) = ωrx},
the space of homogeneous elements of degree r. For example er1

j1
. . . erk

jk
∈ Ar

if and only if r1 + . . . + rk = r. An endomorphism α of A is called graded if

α(Ar) ⊂ Ar for all r or, equivalently, if α commutes with γ. If α = AdU is

graded then for all x ∈ A we get γ(U)xγ(U)∗ = γ(Uγp−1(x)U∗) = γαγp−1(x) =

αγp(x) = α(x) = UxU∗, which implies γ(U) = cU for some constant c. We

infer that U is homogeneous, and we may classify graded inner automorphisms

by the degree of U. From Proposition 1.5 it is further evident that an adapted

endomorphism is graded, so all the considerations above are applicable. All

this is more well known in the case p = 2: cf R.J. Plymen, P.L. Robinson [PR],

where the ZZ2-grading of Clifford algebras and some applications for Bogoljubov

transformations are discussed. We show next that our setting may indeed be

viewed as a generalization of Bogoljubov transformations:

Proposition 1.7 Assume p = 2. Then an endomorphism is adapted if and only

if it is a Bogoljubov transformation αT induced by an orthogonal transformation

T of the real Hilbert space linIR{ej}∞j=0 (with scalar product < x, y >:= tr(y∗x))

with the property T (linIR{ej}n−1
j=0 ) ⊂ linIR{ej}n

j=0 for all n ≥ 1.

Proof: Using en−1, en, un as above (now realized by the Pauli matrices σx, σy, σz)

consider the rotation Tn by an angle φn in the real (two-dimensional) plane,

where en−1 resp. en have to be interpreted as unit vectors pointing in the
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direction of the x- resp. y-axis:

Tn =





cos φn − sin φn

sinφn cos φn



 on linIR{en−1, en}.

The corresponding Bogoljubov transformation is most easily computed by writ-

ing Tn as a product of two reflections: first at the x-axis, then at an axis which

is rotated by φn

2 . So we find αTn
= AdUn, where

Un = (cos
φn

2
en−1 + sin

φn

2
en) en−1 = cos

φn

2
1 − i sin

φn

2
un.

But this is exactly the formula Un = 1√
p

∑p−1
k=0 ĉ(n)(k)uk

n above in the special

case p = 2 (with an appropiate unimodular constant). So Proposition 1.7 re-

duces to the fact that any orthogonal transformation T with T (linIR{ej}n−1
j=0 ) ⊂

linIR{ej}n
j=0 for all n ≥ 1 may be written as a product T = stop−limN→∞

∏N
n=1 Tn.

But this is a well known fact in Hilbert space theory (although we only know

references where this is proved for complex Hilbert spaces; the arguments given

e.g. by C. Foias and A.E. Frazho in [FF], chapter XV.2, may be easily modified

to apply here). 2

Remarks:

• Note further that any orthogonal transformation of a separable real Hilbert

space may be put in such a form by starting with a unit vector and then

applying the Gram-Schmidt-procedure to its orbit (and repeating this if

the vector has not been cyclic).

• If p > 2 then (in general) linIR{ej}∞j=0 is not invariant for an adapted

endomorphism.

2 The stochastic process (A, α,A0)

Let us study adapted endomorphisms α = limN→∞
∏N

n=1 AdUn in more detail.

There is a second tower associated to α, namely A−1 := IC 1, A0 := E0 and AJ

is generated by {αjA0}j∈J .
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Theorem 2.1 Assume maxj=1,...,p−1 |γ(n)
j0 | < 1 for 1 ≤ n < N .

Then A[0,N−1] = E[0,N−1] for 1 ≤ n < N .

If maxj=1,...,p−1 |γ(N)
j0 | = 1 then A[0,∞) = A[0,N ] = A[0,N−1].

If maxj=1,...,p−1 |γ(n)
j0 | < 1 for all n ∈ IN then A[0,∞) = A.

For p prime, one may replace maxj=1,...,p−1 |γ(n)
j0 | by |γ(n)

10 | in the statements

above.

Remarks:

• In the first case A[0,∞) is finite dimensional, while in the second case

(using the terminology of [Kü]) the noncommutative stochastic process

(A, α,A0) is minimal.

• Note that γj0 = 1
p

∑p−1
m=0 c(m)c(m + j), j = 1, . . . , p − 1, may be inter-

preted as autocorrelations of the eigenvalues of U.

• The assertions about {maxj=1,...,p−1 |γ(n)
j0 |}

n∈IN are similar to the rela-

tions between choice sequences and Hilbert space isometries (compare

[FF], chapter XV).

Proof: Suppressing the index n the nontrivial part consists in showing that if

maxj=1,...,p−1 |γj0| < 1 anf if D is the maximal commutative subalgebra gener-

ated by e of the matrix algebra Mp generated by e and f, then D and UDU∗

together generate Mp.

Assume they do not. Then D ∩ UDU∗ 6= IC 1, i.e. there exists x ∈ D \ IC1

with AdU(x) ∈ D. If p is prime then for any j ∈ {1, . . . , p − 1} there is some

r ∈ {1, . . . , p − 1} with e = ejr, and if |γ10| < 1 (i.e. AdU(e) /∈ D) then also

|γj0| < 1 (i.e. AdU(ej) /∈ D) for all j ∈ {1, . . . , p−1}. If p is not prime we have

AdU(ej) /∈ D for all j ∈ {1, . . . , p − 1} by assumption.

Expanding x in powers of e and taking the grading into account leads to a con-

tradiction to the properties of x given above. This proves the assertion. 2
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Now consider the following problem: When do we get A[0,∞) = A[1,∞), i.e.

when is α surjective on A[0,∞) or, in probabilistic language, when is the process

(A, α,A0) deterministic ? We shall need the Hilbert space L2(A, tr), the norm

of which is denoted by ‖ · ‖2. Call PJ the projection onto AJ . Related to the

problem above are the ’prediction errors’

fn(x) := ‖(1 − P[0,n−1])α
n(x)‖2 for x ∈ A0, n ∈ IN.

Note that also ‖(1 − P[0,n−1])Ad(Un . . . U1)(x)‖2 = fn(x).

To A0 ∋ x =
∑p−1

j=0 xje
j
0 associate a vector v0 := (|xj |2)p−1

j=1 ∈ ( ICp−1, ‖ · ‖1). Let

us further define the (substochastic) (p − 1) × (p − 1)-matrices

Dn := (|γ(n)
jk |2)p−1

j,k=1, n ∈ IN.

Proposition 2.2 If x ∈ A0 then fN (x)2 = ‖v0

∏N
n=1 Dn‖1.

Remarks:

• This states that for a unit vector x ⊥ 1 in (A0, ‖·‖2) the squared prediction

errors are convex combinations of row sums of
∏N

n=1 Dn. In particular:

fN := max{fn(x) : x ∈ A0, ‖x‖2 = 1} = ‖
N
∏

n=1

Dn‖
1
2 ,

where ‖·‖ denotes the maximum of row sums. Note that one may also say

that Proposition 2.2 describes the squared prediction errors as transition

probabilities of a (non-stationary) Markov chain with p states, one of

which is absorbing (corresponding to 1 ∈ A).

• For p = 2 the matrices Dn are scalars, and Proposition 2.2 reduces to

a well known formula of linear prediction theory (see [FF], chapter II.5,

II.6).

Proof: For some n we may write αn(x) =
∑p−1

j=0 x
(n−1)
j ej

n where x
(n−1)
j ∈

E[0,n−1]. If we associate the vector vn := (‖x(n−1)
j ‖2

2)
p−1
j=1 ∈ ICp−1, then using the
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independence of E[0,n−1] and En we find that fn(x)2 = ‖vn‖1.

From the computation

αn+1(x) = α(αn(x)) =

p−1
∑

j=0

Ad(U1 . . . Un)[x
(n−1)
j · Ad(Un+1)(e

j
n)]

=

p−1
∑

j=0

Ad(U1 . . . Un)[x
(n−1)
j ·

p−1
∑

k=0

γ
(n+1)
jk ej−k

n ek
n+1]

=

p−1
∑

k=0

[Ad(U1 . . . Un)(

p−1
∑

j=0

γ
(n+1)
jk x

(n−1)
j ej−k

n )] · ek
n+1

we infer that x
(n)
k = Ad(U1 . . . Un)(

∑p−1
j=0 γ

(n+1)
jk x

(n−1)
j ej−k

n ). Note that because

of γ0k = δ0k we may for k 6= 0 only sum from j = 1 to p − 1. So for k 6= 0 we

get

‖x(n)
k ‖2

2 = ‖
p−1
∑

j=1

γ
(n+1)
jk x

(n−1)
j ej−k

n ‖2
2 =

p−1
∑

j=1

|γ(n+1)
jk |2‖x(n−1)

j ‖2
2

(use the grading and independence). We have found a recursion: vn · Dn+1 =

vn+1, valid for all n ≥ 0. So finally

fN (x)2 = ‖vN‖1 = ‖v0

N
∏

n=1

Dn‖1. 2

Lemma 2.3 If α(∗) := limN→∞
∏N

n=1 AdU∗
n and f

(∗)
n (x) is a corresponding

prediction error then f
(∗)
n (x) = fn(x).

Proof: Combine Proposition 2.2 and γ
(∗)
jk = γj,−k (Lemma 1.6(d)). 2

Theorem 2.4 For an adapted endomorphism α = limN→∞
∏N

n=1 AdUn the

following assertions are equivalent:

(1) A[0,∞) = A[1,∞).

(2) limN→∞
∏N

n=1 Dn = 0.

Proof:

α|E[0,N−1)
= Ad(U1 . . . UN )|E[0,N−1)

implies that

P[1,N ] = Ad(U1 . . . UN )P[0,N−1]Ad(U∗
N . . . U∗

1 ).
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Using Lemma 2.3 we find for x ∈ A0

‖P[1,N ]x‖2
2 = ‖P[0,N−1]Ad(U∗

N . . . U∗
1 )(x)‖2

2 = ‖x‖2
2 − f (∗)

n (x)2 = ‖x‖2
2 − fn(x)2.

Now use Proposition 2.2 to show that (2) is satisfied if and only if for all x ∈ A0

‖P[1,∞)x‖2 = lim
N→∞

‖P[1,N ]x‖2 = ‖x‖2, i.e. x ∈ A[1,∞).

But A0 ⊂ A[1,∞) if and only if (1) is satisfied. 2

Proposition 2.5 If p is prime and A[0,∞) 6= A[1,∞) then limN→∞ fN (x) > 0

for all x ∈ A0 \ IC 1 (i.e. all row sums of {∏N
n=1 Dn}N have a strict positive

limit for N → ∞).

Proof: A[0,∞) 6= A[1,∞) implies that the maximal row sums (say of the j-th row)

of {∏N
n=1 Dn}N have a strict positive limit. Because p is prime, ej

0 /∈ A[1,∞)

implies ek
0 /∈ A[1,∞) for all k ∈ {1, . . . , p−1}. This gives the result for all powers

of e0. For general x now apply Proposition 2.2. 2

Example: If p = 3 then Dn =

(

an bn

bn an

)

, where 0 ≤ an, bn and an + bn ≤ 1.

Thus in this case the matrices Dn commute for different n, and we can state

Theorem 2.4 using the maximal eigenvalues an + bn = 1−|γ(n)
10 |2. The following

statements are equivalent:

(1) A[0,∞) = A[1,∞).

(2) limN→∞
∏N

n=1(an + bn) = 0.

(3) |γ(N)
10 | = 1 for some N or

∑∞
n=1 |γ

(n)
10 |2 = ∞.

3 The deterministic case and Blattner’s theo-

rem

In this section we want to consider the question: When is an adapted endo-

morphism α = limN→∞
∏N

n=1 AdUn actually an inner automorphism of A ? If
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(A, α,A0) is a minimal and deterministic process as characterized in the second

section, this gives an additional refinement of the classification. If p = 2 then

our question has been answered by a theorem of Blattner [Bl]. We shall return

to this later.

Theorem 3.1 Let α = limN→∞
∏N

n=1 AdUn be an adapted endomorphism and

tr Un ≥ 0 for all n ≥ 1.

The following assertions are equivalent:

(1) α = AdU, U ∈ A0.

(2) stop − limN→∞
∏N

n=1 Un = U .

(3) 2
∑∞

n=1(1 − tr Un) =
∑∞

n=1 ‖Un − 1‖2
2 < ∞.

Remark: tr Un ≥ 0 may always be achieved by multiplying Un with an uni-

modular constant. This does not change α.

Proof: We shall use the fact that on bounded subsets the stop-topology coin-

cides with the ‖ · ‖2-topology and other related facts as presented e.g. in [HP],

Lemma 4.

(2) ⇔ (3):

First note that for n > m

‖
n

∏

k=1

Uk−
m
∏

k=1

Uk‖2
2 = ‖Um+1 . . . Un−1‖2

2 = tr((Um+1 . . . Un−1)∗(Um+1 . . . Un−1))

= 2 − tr(U∗
n . . . U∗

m+1 + Um+1 . . . Un) = 2 − 2

n
∏

k=m+1

tr Uk,

where for the last equality we used independence (which follows from Lemma

1.2). We conclude that {∏N
n=1 Un}N is stop-convergent if and only if {∏N

n=1 tr Un}N

converges, i.e. if and only if
∑∞

n=1(1 − tr Un) < ∞. Further note that

‖Un − 1‖2
2 = tr((U∗

n − 1)(Un − 1)) = 2(1 − tr Un). This part of the proof uses

only independence.
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(2) ⇒ (1):

Using the fact that the involution of A is an isometry of L2(A, tr) we infer from

(2) that for all x ∈ A we have ‖·‖2− limN→∞(U1 . . . UN )x(U1 . . . UN )∗ = UxU∗,

but also limN→∞ Ad(U1 . . . UN ) = α and therefore α = AdU . Because Un ∈ A0

for all n we also get U ∈ A0.

To prove (1) ⇒ (2) we need some lemmas:

Lemma 3.2 If v is a unitary in a finite factor B and tr v ≥ 0 then

1

2
‖v − 1‖2 ≤ sup

‖x‖=1

‖Ad(v)(x) − x‖2 ≤ 2‖v − 1‖2

This is more or less implicit in Dixmier [Di], chapter 7, but for convenience we

give a proof: The second inequality follows from

‖Ad(v)(x) − x‖2 = ‖ [v, x] ‖2 = ‖ [v − 1, x] ‖2 ≤ 2‖v − 1‖2 ‖x‖.

To get the first inequality note that the closed convex hull K := conv{uvu∗, u ∈ B
unitary} in L2(B, tr) contains (tr v) 1 (which is the unique element y ∈ K with

‖y‖2 minimal; by uniqueness y ∈ B ∩ B′ = IC 1).

Choose
∑N

n=1 λnunvu∗
n ∈ K with ‖∑N

n=1 λnunvu∗
n − (tr v) 1‖2 < δ. Then

‖v −
N

∑

n=1

λnunvu∗
n‖2 ≤

N
∑

n=1

λn‖ [v, un] ‖2 ≤ sup
‖x‖=1

‖Ad(v)(x) − x‖2

and (using |tr v − 1| ≤ ‖v − (tr v) 1‖2) finally

‖v − 1‖2 ≤ ‖v − (tr v) 1‖2 + |tr v − 1| ≤ 2( sup
‖x‖=1

‖Ad(v)(x) − x‖2 + δ). 2

Lemma 3.3 If β = limN→∞
∏N

n=1 AdU ′
n is an adapted endomorphism,

limn→∞ ‖U ′
n − 1‖2 = 0, tr U ′

n ≥ 0 for all n and {∏N
n=1 U ′

n}N is not stop-

convergent, then there exists ǫ > 0 and for all m ∈ IN an element xm ∈
E[m,∞), ‖xm‖ = 1, so that ‖β(xm) − xm‖2 > ǫ.

Proof: Because {∏N
n=1 U ′

n}N is not stop-convergent there is δ > 0 and for all

m ∈ IN a number n > m so that δ < ‖∏n
k=m+1 U ′

n − 1‖2. Applying Lemma
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3.2 for v :=
∏n

k=m+1 U ′
k (note that tr v =

∏n
k=m+1 tr U ′

k ≥ 0 by independence)

we find an element xm ∈ B := {um+1, . . . , un}′′ ⊂ E[m,∞), ‖xm‖ = 1 so that

‖Ad(
∏n

k=m+1 U ′
k)(xm) − xm‖2 > δ

2 . But (as xm commutes with U ′
1, . . . , U

′
m−1)

‖β(xm) − xm‖2 = ‖Ad(U ′
1 . . . U ′

m−1)[Ad(U ′
m(U ′

m+1 . . . U ′
n)U ′

n+1)(xm) − xm]‖2

≥ ‖Ad(U ′
m+1 . . . U ′

n)(xm) − xm‖2 − 2(‖U ′
m − 1‖2 + ‖U ′

n+1 − 1‖2)

(again using Lemma 3.2).

If m is large enough so that ‖U ′
k − 1‖2 < δ

16 for all k ≥ m then we have

‖β(xm) − xm‖2 >
δ

2
− 2(

δ

16
+

δ

16
) =

δ

4
=: ǫ. 2

Lemma 3.4 Assume (1) of Theorem 3.1.

(a) limn→∞ ‖α(xn) − xn‖2 = 0 if xn ∈ E[n,∞), ‖xn‖ = 1 for all n.

(b) limn→∞ minj=1,...,p−1 |γ(n)
j0 | = 1.

(c) There is q ∈ ZZp(≃ {0, . . . , p−1}) with limn→∞ ‖const.(n)·Un−u
(−1)nq
n ‖2 = 0,

where const.(n) is unimodular and const.(n) ≡ 1 may be chosen if q = 0.

Proof: For (a) check that A0 = {uk, k ∈ IN}′′ ⊂ (
⋃

k∈IN lin{u1, . . . , uk})−‖·‖2 .

From U ∈ A0 and [uk, xn] = 0 if k < n infer that 0 = limn→∞ ‖ [U, xn] ‖2 =

limn→∞ ‖α(xn) − xn‖2. Note the similarity with arguments using central se-

quences.

(b) follows from
∑p−1

k=1 |γ
(n+1)
jk |2 ≤ ‖α(ej

n) − ej
n‖2

2 → 0 by (a).

To prove (c) note that since γ
(n)
10 = 1

p

∑p−1
m=0 |ĉ(n)(m)|2 ωm and 1

p

∑p−1
m=0 |ĉ(n)(m)|2 =

1
p

∑p−1
m=0 |c(n)(m)|2 = 1, for all ǫ > 0 there is δ > 0 so that if |γ(n)

10 | ≥ 1 − δ the

function ĉ(n) is almost concentrated to a single point in the sense that there is

qn ∈ {0, . . . , p − 1} so that (when const.(n) · ĉ(n)(qn) is chosen to be positive)

we have ‖const.(n) · Un − uqn
n ‖2 ≤ ǫ.

Given ǫ > 0 then by using (a), (b) and Lemma 3.2 we find that for all large

enough n

ǫ ≥ ‖α(en) − en‖2 = ‖Ad(UnUn+1)(en) − en‖2 ≥ ‖ω(qn+qn+1)en − en‖2 − 4ǫ,
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i.e. |ω(qn+qn+1) − 1 | ≤ 5ǫ.

If ǫ > 0 is small enough this implies qn+1 = −qn. We can then define q := qn

for n even. The additional assertion for q = 0 reflects that tr Un ≥ 0 for all

n. 2

Proof of (1)⇒(2) in Theorem 3.1 completed:

Consider the adapted automorphisms γ−q◦Ad eq
0 = limN→∞

∏N
n=1 Adu

(−1)n+1q
n ,

where q is from Lemma 3.4(c) and where γ is the grading automorphism,

and β := γ−q ◦ Ad eq
0 ◦ α = limN→∞

∏N
n=1 AdU ′

n, where

N
∏

n=1

AdU ′
n = Ad(uq

1u
−q
2 . . . u

(−1)N q

N+1 U1 . . . UN ).

Use uk
n+1Un = uk

n+1

∑p−1
j=0 ĉ(n)(j)uj

n = (
∑p−1

j=0 ĉ(n)(j)ωjkuj
n)uk

n+1 and Lemma

3.4(c) to conclude that (after suitably choosing unimodular constants)

limn→∞ ‖U ′
n − 1‖2 = 0 and tr U ′

n ≥ 0 for all n. Now β|E[1,∞)
= α|E[1,∞)

, so

by using Lemma 3.4(a) we find that also limN→∞ ‖β(xn) − xn‖2 = 0 if xn ∈
E[n,∞), ‖xn‖ = 1 for all n. Applying Lemma 3.3 we conclude that {∏N

n=1 U ′
n}N

is stop-convergent. We infer that β is inner (see (2)⇒(1)), while α is inner

(by assumption) and γ is outer. This is compatible only for q = 0. Therefore

U ′
n = Un, and indeed {∏N

n=1 Un}N is stop-convergent. 2

Corollary 3.5 An adapted endomorphism β = limN→∞
∏N

n=1 AdWn is inner

if and only if there is some r ∈ {0, . . . , p − 1} so that one of the following

equivalent conditions is valid:

(1) β = AdW, W ∈ Ar.

(2) β = Ad er
0 ◦ α, where α is as in Theorem 3.1.

(3) Setting Un := const.(n) · ur
nWn for n even and Un := const.(n) ·Wn for n

odd with const.(n) unimodular so that tr Un ≥ 0, we have

2
∑∞

n=1(1 − tr Un) =
∑∞

n=1 ‖Un − 1‖2
2 < ∞.

Remark: Recall the following theorem of Blattner [Bl]: A Bogoljubov trans-

formation αT induced by an orthogonal transformation T of a separable real
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Hilbert space is inner and even (i.e. p = 2 and αT = AdU with U ∈ A0 in

our terminology) if and only if Ker(T + I) is even- or infinite-dimensional and

T − I is Hilbert-Schmidt. It is inner and odd if and only if Ker(T − I) is

odd-dimensional and T + I is Hilbert-Schmidt. We indicate briefly how this is

related to Theorem 3.1 and Corollary 3.5: Write T = stop − limN→∞
∏N

n=1 Tn

with Tn =





cos φn − sin φn

sinφn cos φn



 as in the proof of Proposition 1.7. Computing

the diagonal of the corresponding infinite matrix for T gives

T∓1Hilbert−Schmidt ⇔ Spur(1∓T ) = (1∓cos φ1)+
∞
∑

n=1

(1∓cos φn cos φn+1) < ∞.

Form αTn
= AdUn with tr Un = cos φn

2 . Because cos x ∼ 1 − x2

2 for x → 0, our

results above translate into

α is inner and even ⇔ T − 1 is Hilbert-Schmidt and limn→∞ cos φn = 1,

α is inner and odd ⇔ T + 1 is Hilbert-Schmidt and







limn→∞ cos φ2n = −1

limn→∞ cos φ2n+1 = 1.

This already implies that the spectral theorem for compact operators may be

applied. Thus if one wants to complete a proof of Blattner’s original formulation,

one is left with the more elementary part of the presentation given by P. de la

Harpe and R.J. Plymen in [HP].

4 The indeterministic case

We want to examine in more detail an adapted endomorphism α = limN→∞
∏N

n=1 AdUn

which is not surjective on A[0,∞). By Theorem 2.4 this is characterized by

limN→∞ ‖D1D2 . . . DN‖ > 0. A convenient sufficient condition for that is given

by

(Γ) max
j=1,...,p−1

|γ(n)
j0 | < 1 for all n and

∞
∑

n=1

( max
j=1,...,p−1

|γ(n)
j0 |2) < ∞.

Indeed, this means that the product of minimal row sums of D1,D2, . . . ,DN

converges to a strict positive limit for N → ∞, and if A,B are any matrices with
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nonnegative real entries then

min{row sums of AB} ≥ min{row sums of A} · min{row sums of B}.

Note that for p = 2 and p = 3 condition (Γ) is also necessary. It is an interesting

fact that in this case the Jones index only depends on p:

Theorem 4.1 If condition (Γ) is satisfied then [A[0,∞) : A[1,∞)] = p.

Proof: General facts about towers of algebras applied to the tower

IC 1 ⊂ ICp ⊂ Mp ⊂ . . . used here, show that [A[0,∞) : A[1,∞)] ≤ p

(cf V. Jones, V.S. Sunder [JS], chapter 5, in particular Proposition 5.1.5 and

Example 5.1.6). For the converse inequality we use a result of Pimsner and

Popa ([PP],Theorem 2.2), which applied to our problem asserts that

[A[0,∞) : A[1,∞)] = sup
0<x∈A

‖x‖2
2

‖P[1,∞)(x)‖2
2

.

Setting ξm := Ad(
∏m

k=1 Uk)(em) we have for n > m

‖P[1,n]ξ
j
m‖2 = ‖P[0,n−1]U

∗
n . . . U∗

1 ξj
m‖2 = ‖P[0,n−1]U

∗
n . . . U∗

m+1e
j
m‖2 for all j.

From (Γ) we infer that limn>m→∞ inf {row sums of Dm+1 . . . Dn} = 1. Now

apply Proposition 2.2 and Lemma 2.3 (for limN→∞
∏N

n=m+1 AdUn) to find that

limn>m→∞ ‖P[1,n]ξ
j
m‖2 = 0 for all j ∈ {1, . . . , p − 1}.

Choosing xm := 1
p

∑p−1
j=0 ξj

m (which is a projection with ‖xm‖2 = 1√
p
) we have

lim
m→∞

‖P[1,∞)xm‖2 = lim
n>m→∞

‖P[1,n]xm‖2 =
1

p
.

Inserting the xm’s into the formula of Pimsner and Popa shows that

[A[0,∞) : A[1,∞)] > p − ǫ for all ǫ > 0. 2

Finally we shall derive a sufficient condition for an adapted endomorphism α to

be a shift in the sense of Powers, i.e.
⋂

n≥0 αnA = IC 1.

If on the unit circle Π with some finite measure µ one considers the multipli-

cation Mz on L2(Π, µ), then there is an interesting sufficient condition for the

nonexistence of a unitary part of Mz: a strictly positive angle between past and
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future (see H. Helson, G. Szegö [HS] for details). To apply a similar reasoning

to our problem above we first study a general setting of adaptedness in the

framework of Hilbert spaces.

Consider a tower of Hilbert spaces

{0} = H−1 ⊂ H0 ⊂ H[0,1] ⊂ . . . ⊂ H[0,n] ⊂ . . . ⊂ H = lin{H[0,n], n ∈ IN}

(the notation is chosen to fit with the applications to adapted endomorphisms).

Define Hm,n := H[0,n] ⊖ H[0,m] and write P[0,n] resp. Pm,n for orthogonal

projections onto corresponding spaces.

If {Vn}∞n=1 is a family of unitaries on H, where Vn fixes H[0,n−2] pointwise and
∏N

n=1 Vn leaves H[0,N ] (globally) invariant, then V := stop − limN→∞
∏N

n=1 Vn

defines an isometry on H which may be called adapted to the tower above (cf

[Go] for a more detailed discussion of this concept). Here we only need the

following

Lemma 4.2 Let V be adapted. From the assumptions that for all n ≥ 1

(0) H[0,n] is finite dimensional

(a) if x ∈ Hn−2,n−1 then Pn−1,nVn x 6= 0

(b) there is another sequence {V ′
n}∞n=1 as above with the additional property

V ′
nHn−2,n−1 ⊂ Hn−1,n and

(c)
∑∞

n=0(
∑2n+1

k=n+1 ‖Vk − V ′
k‖)2 < ∞

it follows that for the operators Sn := P[0,n−1]V
n|H[0,n−1]

there is some ǫ > 0 so

that ‖Sn‖ ≤ 1 − ǫ for all n ≥ 1.

This further implies that V has no unitary part.

Remarks:

• Sufficient for (c) is
∑∞

k=0 k‖Vk − V ′
k‖ < ∞. Indeed:

(n + 1)
∑2n+1

k=n+1 ‖Vk − V ′
k‖ ≤ ∑∞

k=n+1 k‖Vk − V ′
k‖ < C and

∑∞
n=0(

∑2n+1
k=n+1 ‖Vk − V ′

k‖)2 ≤ ∑∞
n=0(

C
n+1 )2 < ∞.
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• If V is extended to a unitary on a larger Hilbert space then ‖Sn‖ ≤ 1 − ǫ

for all n ≥ 1 means that there is a positive angle between

past lin{V nH0, n ≤ 0} and future lin{V nH0, n ≥ 1}.

Theorem 4.3 Let α = limN→∞
∏N

n=1 AdUn be an adapted endomorphism.

Assume for all n ≥ 1

(a) maxj=1,...,p−1 |γ(n)
j0 | < 1

(b) there is another adapted endomorphism α′ = limN→∞
∏N

n=1 AdU ′
n with

AdU ′
n(En−1) ⊂ En (e.g. α′ = σ, the Gauß shift) and

(c)
∑∞

n=0(
∑2n+1

k=n+1 ‖Uk − U ′
k‖)2 < ∞.

Then α is a shift with index p.

Proof of Theorem 4.3:

Check that the isometry V on {1}⊥ ⊂ L2(A, tr) which is induced by α fulfils

the assumptions of Lemma 4.2. For (c) note that if AdUn is viewed as a unitary

on L2(A, tr) then ‖AdUn − AdU ′
n‖ ≤ 2‖Un − U ′

n‖ (by an argument similar to

that in Lemma 3.2). Also note that (c) implies (Γ) of Theorem 4.1 which shows

that [A[0,∞) : A[1,∞)] = p. 2

Remarks:

• Any cyclic isometry with one-dimensional corange on a Hilbert space is

already a shift operator, as can be shown with the use of spectral theory

(cf Y.A. Rozanov [Ro], chapter II.5). This shows that for p = 2 much more

is true and indicates that there might be improvements of the results of

this section also for p > 2.

• On the other hand, Lemma 4.2 is quite general and can be applied to

other towers and corresponding adapted endomorphisms.

Proof of Lemma 4.2:

Using (0) and (a) it is easy to see that for all n ≥ 1 there is some ǫn > 0 so that
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‖Sn‖ ≤ 1 − ǫn. We have to show there is some ǫ > 0 for all n simultaneously.

Set δn := ‖Vn − V ′
n‖. Assume that N is large enough so that for all n ≥ N we

have

1 −
2n+1
∏

k=n+1

(1 − δ2
k) <

4

3

2n+1
∑

k=n+1

δ2
k ≤ ∆n+1 :=

4

3
(

2n+1
∑

k=n+1

δk)2 <
1

3
;

to see that this is possible we have to apply (c) and (for the first inequality)

limx→0
1
x

ln(1−x) = −1 and ex > 1+x.. This will be used at appropiate places

without further mentioning.

Let us write ‖ · ‖2 for the norm in H and assume n ≥ N .

If H[0,n] ∋ x = y ⊕ z, y ∈ H[0,n−1], z ∈ Hn−1,n, then we get

‖Sn y‖2
2 =: σn‖y‖2

2, σn ≤ (1 − ǫn)2,

V n+1y = V Sny ⊕ V Pn−1,2n−1V
ny,

‖P[0,n]V Pn−1,2n−1V
ny‖2 = ‖P[0,n]Vn+1 . . . V2nPn−1,2n−1V

ny‖2

(because H[0,n] is invariant for V1 . . . Vn)

= ‖P[0,n](Vn+1 . . . V2n − V ′
n+1 . . . V ′

2n)Pn−1,2n−1V
ny‖2 [using (b)]

≤ (
2n
∑

k=n+1

δk)‖Pn−1,2n−1V
ny‖2 = (

2n
∑

k=n+1

δk)(1 − σn)
1
2 ‖y‖2.

We conclude that

‖Sn+1y‖2
2 = ‖V Sny ⊕ P[0,n]V Pn−1,2n−1V

ny‖2
2 =: σ̃n+1‖y‖2

2

where σ̃n+1 ≤ σn + (
∑2n

k=n+1 δk)2(1 − σn) (*).

Further we have

‖P[0,n]Vn+1z‖2 = ‖P[0,n](Vn+1 − V ′
n+1)z‖2 ≤ δn+1‖z‖2,

‖P2n,2n+1V
n+1z‖2

2 = ‖P2n,2n+1V2n+1 . . . Vn+1z‖2
2 ≥

2n+1
∏

k=n+1

(1 − δ2
k) ‖z‖2

2,

‖P[0,2n]V
n+1z‖2

2 ≤ (1 −
2n+1
∏

k=n+1

(1 − δ2
k)) ‖z‖2

2 ≤ ∆n+1‖z‖2
2
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Putting all this together we find

‖Sn+1x‖2
2 = ‖Sn+1y+Sn+1z‖2

2 ≤ ‖Sn+1y‖2
2+‖Sn+1z‖2

2+2 | < Sn+1y, Sn+1z > |

where ‖Sn+1y‖2
2 = σ̃n+1‖y‖2

2, ‖Sn+1z‖2
2 ≤ ∆n+1‖z‖2

2 and

< Sn+1y, Sn+1z > + < Pn,2nV n+1y, Pn,2nV n+1z >=< V n+1y, V n+1z >=< y, z >= 0.

Since

2 | < Sn+1y, Sn+1z > | ≤ 2 ‖Pn,2nV n+1y‖2 ‖Pn,2nV n+1z‖2 ≤ 2(1−σ̃n+1)
1
2 ‖y‖2 ∆

1
2
n+1‖z‖2

= 3 · 2 ‖(1 − σ̃n+1)
1
2 ∆

1
2
n+1y‖2 ‖

1

3
z‖2 ≤ 3(1 − σ̃n+1)∆n+1‖y‖2

2 +
1

3
‖z‖2

2

(just use 2ab ≤ a2 + b2), we get

‖Sn+1x‖2
2 ≤ (σ̃n+1 + (1 − σ̃n+1) 3∆n+1) ‖y‖2

2 +
2

3
‖z‖2

2 =: σn+1‖x‖2
2,

where σn+1 ≤ max{σ̃n+1 + (1 − σ̃n+1)3∆n+1,
2
3} (**).

σn+1 is related to σn by the two recursions (*) and (**). Therefore our asser-

tion ‖Sn‖ ≤ 1 − ǫ for all n follows from (c) by an application of the following

elementary

Lemma: Assume 0 < rN < 1 and (for all n ≥ N) rn+1 ≤ rn + (1 − rn)an+1

with 0 ≤ an < 1,
∑∞

n=N+1 an < ∞.

Then there is some ǫ > 0 so that rn ≤ 1 − ǫ for all n ≥ N .

For this just notice that

1 − rn+1 ≥ (1 − rn)(1 − an+1) ≥ (1 − rN )

n
∏

k=N

(1 − ak+1),

which by assumption has a strict positive limit for n → ∞.

We still have to show that V has no unitary part. First note that also ‖P[0,n−1]V
n‖ ≤

1 − ǫ for all n ≥ 1: indeed if y ∈ H[0,m−1] for some m > n then

‖P[0,n−1]V
ny‖2 = ‖P[0,m−1]V

m−nP[0,n−1]V
ny‖2 ≤ ‖P[0,m−1]V

my‖2 = ‖Smy‖2.

Now assume x ∈ ⋂

n≥0 V nH. For any δ > 0 we find some n so that x′ ∈
H[0,n−1], ‖x − x′‖2 < δ and some m so that x′′ ∈ H[0,m−1], ‖x − V nx′′‖2 < δ.
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But we have shown above that there is a positive angle between x′ and V nx′′

not decreasing to 0 for δ → 0. This is possible only for x = 0. 2
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