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Minimal contractive liftings

Let C be a contraction on a Hilbert space HC .

E =

(
C 0
B A

)
on the Hilbert space HE = HC ⊕HA is called a lifting of C .

The lifling E is called contractive if E is a contraction.

The lifting E is called minimal if HE is the smallest
E -invariant subspace containing HC .

Example: the minimal isometric dilation

Two liftings E and E ′ of C are called unitarily equivalent if
there is an intertwining unitary which restricts to the identity
on HC .

We give a classification of (unitary equivalence classes of)
minimal contractive liftings by characteristic functions.
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Main Theorem (for single contractions)

Given a contraction C on a Hilbert space HC .

Then we have a one-to-one correspondence between

I minimal contractive liftings E of C
(up to unitary equivalence)

I B(D,DC )-valued Schur functions Θ on the unit disk
(up to a unitary on D)
with the following injectivity property:
if 0 6= δ ∈ D then z 7→ Θ(z)δ is not the zero function

Here dimD is equal to the defect dimDE of E .

We call Θ the characteristic function of the lifting E .
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Instructive special case

Given a contraction C on a Hilbert space HC

with 1-dimensional defect.

Then we have a one-to-one correspondence between

I minimal contractive liftings E of C
with 1-dimensional defect
(up to unitary equivalence)

I non-zero (C-valued) Schur functions on the unit disk
(up to unimodular factor)
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Example

For the contraction C = 1
2 on HC = C

we have the minimal contractive liftings

Eα =


1

2
0

√
3

2
(1−|α|2)

1
2 α

 , |α| < 1

(all with 1-dimensional defect).

The corresponding characteristic functions are the
Möbius transformations

Θα(z) =
z − α

1− ᾱz
.
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Möbius transformations

Θα(z) =
z − α

1− ᾱz
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Main Theorem (for row contractions)

The result can be generalized to row contractions,
with Schur functions replaced by multi-analytic operators.
We state the result (but don’t explain the terminology).

Theorem:
Given: a row contraction C = (C1, . . .Cd)
on a Hilbert space HC

Then we have a one-to-one correspondence between

I minimal contractive liftings E = (E1, . . . ,Ed) of C
(up to unitary equivalence)

I multi-analytic operators with injective symbols
Θ : D → Γ⊗DC (where Γ is the full Fock space over Cd)
(up to a unitary on D)

Here dimD is equal to the defect dimDE of E .
In this case we call the multi-analytic operator or its symbol
the characteristic function of the lifting E .
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idea of proof(1): functional model

I Given: B(D,L)-valued Schur function Θ on the unit disk.

multiplication operator MΘ : H2(D)→ H2(L)

model space: HΘ := H2(L)⊕ clos[
√
I −M∗ΘMΘ H2(D)]

isometric embedding: WΘ : H2(D)→ HΘ

f 7→ MΘ f ⊕
√

I −M∗ΘMΘ f

By this construction we can realize the multiplication operator
MΘ as a restriction of a projection (to the first component).

I traditional use:
functional model for a contraction A (Sz.-Nagy, Foias)

V := Mz ⊕
√
I −M∗ΘMΘ Mz (isometry on HΘ)

invariant subspace WΘH
2(D)

co-invariant subspace HA := HΘ 	WΘH
2(D)

contraction A := PHA
V |HA

(completely non-coisometric)
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idea of proof(2): the map E : Schur functions to liftings

Given: a contraction C on a Hilbert space HC and
a B(D,DC )-valued Schur function Θ on the unit disk.

Hilbert space:
Ĥ := HC ⊕HΘ = HC ⊕H2(DC )⊕ clos[

√
I −M∗ΘMΘ H2(D)]

On HC⊕H2(DC ) we have the minimal isometric dilation of C .
On HΘ we have the isometry V from the functional model.
They fit together to form an isometry V̂ on Ĥ.

Ĥ = HC ⊕HΘ = HC ⊕HA ⊕WΘH
2(D) = HE ⊕WΘH

2(D)
with HE := HC ⊕HA

E = EC ,Θ := PHE
V̂ |HE

=

(
C 0
B A

)
is a contractive lifting of C .

I Given C , this provides a map E from B(D,DC )-valued Schur
functions Θ to contractive liftings E(Θ) := EC ,Θ of C .
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idea of proof(3): the mapM: liftings to Schur functions

Given: a contraction C on a Hilbert space HC

and a contractive lifting E of C .

Then the minimal isometric dilation of E ,
realized on HE ⊕ H2(DE ),
can be restricted to a minimal isometric dilation of C ,
unitarily equivalent to a realization on HC ⊕ H2(DC ).

The orthogonal projection onto H2(DC ) restricted to H2(DE )
gives us a multiplication operator MC ,E .
Its symbol is a B(DE ,DC )-valued Schur function ΘC ,E .

I Given C , this provides a map M from contractive liftings E of C
to multiplication operators M(E ) =MC ,E .



idea of proof(3): the mapM: liftings to Schur functions

Given: a contraction C on a Hilbert space HC

and a contractive lifting E of C .

Then the minimal isometric dilation of E ,
realized on HE ⊕ H2(DE ),
can be restricted to a minimal isometric dilation of C ,
unitarily equivalent to a realization on HC ⊕ H2(DC ).

The orthogonal projection onto H2(DC ) restricted to H2(DE )
gives us a multiplication operator MC ,E .
Its symbol is a B(DE ,DC )-valued Schur function ΘC ,E .

I Given C , this provides a map M from contractive liftings E of C
to multiplication operators M(E ) =MC ,E .



idea of proof(3): the mapM: liftings to Schur functions

Given: a contraction C on a Hilbert space HC

and a contractive lifting E of C .

Then the minimal isometric dilation of E ,
realized on HE ⊕ H2(DE ),
can be restricted to a minimal isometric dilation of C ,
unitarily equivalent to a realization on HC ⊕ H2(DC ).

The orthogonal projection onto H2(DC ) restricted to H2(DE )
gives us a multiplication operator MC ,E .
Its symbol is a B(DE ,DC )-valued Schur function ΘC ,E .

I Given C , this provides a map M from contractive liftings E of C
to multiplication operators M(E ) =MC ,E .



idea of proof(3): the mapM: liftings to Schur functions

Given: a contraction C on a Hilbert space HC

and a contractive lifting E of C .

Then the minimal isometric dilation of E ,
realized on HE ⊕ H2(DE ),
can be restricted to a minimal isometric dilation of C ,
unitarily equivalent to a realization on HC ⊕ H2(DC ).

The orthogonal projection onto H2(DC ) restricted to H2(DE )
gives us a multiplication operator MC ,E .
Its symbol is a B(DE ,DC )-valued Schur function ΘC ,E .

I Given C , this provides a map M from contractive liftings E of C
to multiplication operators M(E ) =MC ,E .



idea of proof(4): the correspondence

The proof is completed by the following observations:

I E(M) is always minimal.

I If E is a minimal contractive lifting
then M(E ) has an injective symbol Θ.

I If MΘ has an injective symbol Θ then M◦ E(MΘ) = MΘ.

In particular for each injective symbol Θ there is a minimal
contractive lifting E such that M(E ) has symbol Θ.

I Minimal contractive liftings E and E ′ are unitarily equivalent
if and only if M(E ) and M(E ′) are equivalent
(i.e., the same up to a unitary DE → DE ′).

I Conclusion: On (unitary) equivalence classes
the mappings E and M are well defined
and inverse to each other.

This proves the theorem. Everything is constructive!
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Characteristic function of lower right corner A

If MΘ : H2(D)→ H2(L) is also

I purely contractive: ‖PLMΘδ‖ < ‖δ‖ for all 0 6= δ ∈ D
I Szegö condition:

clos[(I −M∗ΘMΘ)
1
2H2(D)] = clos[(I −M∗ΘMΘ)

1
2 (H2(D)	D)]

then MΘ as a characteristic function of the lifting

(
C 0
B A

)
(if L = DC ) is also the characteristic function of the lower
right corner A in the sense of Sz.-Nagy and Foias
(or Popescu for row contractions).

But otherwise the two characteristic functions are different.



An application: factorization of liftings

The correspondence shown above allows us to investigate
minimal contractive liftings by looking at the symbols of their
characteristic functions. We finish with an example of such an
application.

For iterated liftings:

E =

(
C 0
B A

)
E ′ =

(
E 0
B ′ A′

)
we find a factorization of the characteristic functions:

MC ,E ′ = MC ,E ME ,E ′ .

Converse is also true: any factorization of MC ,E ′ into two
functions with injective symbols implies the existence of an
intermediate lifting E .
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