Repeated Interactions: Operator Theory meets Quantum Physics

Dr Rolf Gohm

from Quantum Structures, Information and Control at IMAPS Aberystwyth

November 14, 2012

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

An operator ${\mathcal T}$ on a Hilbert space ${\mathcal H}$ is selfadjoint if

$$\langle Ty, x \rangle = \langle y, Tx \rangle.$$

The spectrum $\sigma(T)$ of a selfadjoint operator is contained in \mathbb{R} .

For $A \subset \sigma(T)$ there exists a **spectral projection** $E_A(T)$. Spectral projections $E_A(T)$ and $E_B(T)$ are orthogonal to each other if A and B are disjoint and they sum up to the identity operator if the whole spectrum $\sigma(T)$ is covered.

In finite dimension they correspond to (sums of) eigenspaces.

A quantum system is described by a Hilbert space \mathcal{H} and any unit vector $\psi \in \mathcal{H}$ describes a **state** of the system.

A selfadjoint operator ${\mathcal T}$ on ${\mathcal H}$ is interpreted as an observable quantity: The number

$$\langle \psi, E_A(T) \psi \rangle$$

is interpreted as the **probability** to get a value inside the set A if the system is in the state ψ and the observable quantity T is observed.

Evolutions in time are described by **unitaries** *U*:

 $\psi\mapsto U\psi$

Combined systems are described by a **tensor product** of Hilbert spaces

 $\mathcal{H}\otimes\mathcal{K}$.

So to describe the evolution of a combined system we need to specify a unitary U on $\mathcal{H}\otimes\mathcal{K}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

In this case U is also called an **interaction**.

Repeated Interactions

Very interesting problems (mathematical and physical!) arise if we let the system \mathcal{H} successively interact with many independent copies of the system \mathcal{K} :

$$\mathcal{K}_1, \mathcal{K}_2, \mathcal{K}_3, \ldots, \mathcal{K}_n$$

by using copies $U_1, U_2, U_3, \ldots, U_n$ of the interaction U. After *n* steps we have a **dynamics**

$$U_n \dots U_2 U_1 : \mathcal{H} \otimes \mathcal{K}_1 \otimes \dots \otimes \mathcal{K}_n \to \mathcal{H} \otimes \mathcal{K}_1 \otimes \dots \otimes \mathcal{K}_n$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Let the interactions take place! Good questions to ask:

Filtering Problem: By systematically measuring observables on the copies \mathcal{K}_i after the interactions, can we use the results to predict the outcomes of further measurements? What can we conclude from such results about the system \mathcal{H} ?

Preparability Problem: Can we prepare a specified state on \mathcal{H} by repeated interactions if we start with known states on the \mathcal{K}_i ?

How does all this depend on the unitary U?

Quantum Control is considered to be a major component of future technologies. Our setting considered here is a nice playground for mathematicians (**operator theory**) and physicists (**quantum theory**) to come together.

An Experiment. Nobel Prize 2012: S. Haroche

Figure:

Real-time quantum feedback prepares and stabilizes photon number states. Nature 477, 73-77 (2011)