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Plan of the talk

Abstract: Repeated interactions of an open quantum system
with copies of another system can be interpreted as a quantum
Markov process. The scattering theory concept of asymptotic
completeness is closely related to the preparability of states
and hence to the controllability of the open system. We state
and explain the main results and examples (micromaser) in

R. Gohm, F.Haag, B.Kümmerer, Universal Preparability and
Asymptotic Completeness, CMP 352(1) (2017), 59-94

We discuss the operator algebraic techniques developed for
the proofs and reflect about their potential.



Repeated Interactions

I A, C von Neumann algebras,
describing observables of physical systems

J : A → A⊗ C normal ∗-homomorphism, called a transition,
describing an interaction between the two systems
(for example J(a) = u∗ a⊗ 1l u with a unitary u ∈ A⊗ C
specifying a quantum Schrödinger dynamics of the combined
system)

I We want to study an interaction of A with a sequence of
copies C(1), C(2), . . . of C. After n steps

Jn : A → A⊗
n⊗

i=1

C(i), Jn = J(1)J(2) . . . J(n)

with J(i) : A → A⊗ C(i) a copy of J : A → A⊗ C.
(for example a sequence of atoms interacting with an
electromagnetic field in micromaser experiments, see later)



State preparation by repeated interactions

I We consider the transition J as given and we want, by
arranging the C(i) suitably, influence the system A. This
produces natural questions of a control theoretic flavour.

I Let σ, ρ be normal states of A. We define

ρ is J-preparable from σ if there exists (nk) ⊂ N
and normal states θk of

⊗nk
i=1 C(i) such that

(σ ⊗ θk)Jnk (a) converges to ρ(a) for all a ∈ A.

In words: If we are able to prepare the states θk then, by
running the interaction J repeatedly, we are able to
change the state of A from σ to ρ, to any precision
required.

I We say that ρ is universally J-preparable if we can find (θk)
which work simultaneously for all initial states σ.
This is a very attractive situation because we don’t need to
know the initial state and we are still able to prepare ρ.



A time reversal argument

I The following argument shows that universal preparability is
not so uncommon than one might think at first sight.

Suppose J(a) = α(a⊗ 1l) with a ∗-automorphism of A⊗ C.
Then we have a time reversed version J r (a) = α−1(a⊗ 1l) and

Theorem.
Suppose J : B(H)→ B(H)⊗ C. If there exists a vector state
ωξ which is both J- and J r -universally preparable then all
normal states are universally J-preparable.

I Main idea: Given ρ to be prepared, check that if a vector state
ωξ is J r -preparable from ρ then ρ is J-preparable from ωξ.
Hence from an arbitrary initial state we first prepare ωξ (using
universal J-preparability) and from there we prepare ρ (using
universal J r -preparability and the argument above).



Example: Generalized Micromaser

A = B(`2(N0)) one mode of a field

C = B(C2) = M2 two-level-atom

Bases |0〉, |1〉, |2〉, . . . resp. |0〉, |1〉, J(a) = u∗ a⊗ 1l u with

u |00〉 = |00〉, and for n ≥ 1

u |n − 1, 1〉 = α+
n |n − 1, 1〉+ βn |n, 0〉

u |n, 0〉 = β+n |n − 1, 1〉+ αn |n, 0〉

with unitary 2× 2-matrices

(
α+
n β+n
βn αn

)
.

I Hence if the total energy is n > 0 then one quantum of energy
is exchanged with probability |βn|2 = |β+n |2 (or not with prob.
|αn|2 = |α+

n |2). With specific coefficients this can be obtained
by discretization of the Jaynes-Cummings model in
quantum optics. We call it a generalized micromaser.



Generalized Micromaser: Results

I Theorem. In the generalized micromaser all normal states are
universally J-preparable iff
for all n ≥ 1 βn 6= 0 (no trapping states).

I Idea of proof: We apply the previous result for the vector
state |0〉〈0| (ground state of the field). It is intuitively
plausible and can be checked that this ground state is both J-
and J r -universally preparable by sending in sufficiently many
atoms in their ground state which suck out more and more
energy from the field.

I Simulations seem to indicate that this procedure often is also
the most efficient one. I am not aware of any rigorous proofs
in this direction.



Noncommutative Markov processes, Stationarity

I The general question: Which interactions provide universal
preparability of states?

I We discuss this in the following setting. Suppose there are
faithful normal states ϕ on A and ψ on C such that

(ϕ⊗ ψ) ◦ J = ϕ .

We can think of this as a stationary noncommutative
Markov process. Think of Tψ = PψJ : A → A, with
conditional expectation Pψ(a⊗ c) = aψ(c), as the transition
operator of this noncommutative Markov process.

In fact (Tψ)n = P⊗n
1 ψ

Jn, which is the typical semigroup
property of the transition operator of a Markov process. Then
the condition above translates into ϕ ◦ Tψ = ϕ, i.e., ϕ is a
stationary faithful normal state.



Asymptotic Completeness

I For stationary Markov processes recall the notion of
asymptotic completeness, first introduced in:
B. Kümmerer, H. Maassen, A Scattering Theory for Markov
Chains. IDAQP 3 (2000), 161-176

TFAE:

1. J is asymptotically complete.
2. There exists a vNA-isomorphism A⊗

⊗∞
1 C →

⊗∞
1 C which

intertwines the J-induced dynamics and the tensor shift.
(the isomorphism is the Møller operator of this scattering
theory)

3. ‖QnJn(a)− Jn(a)‖ϕ⊗⊗n
1 ψ
→ 0 for all a ∈ A,

with conditional expectation Qn(a⊗ cn) = ϕ(a) 1l⊗ cn



Connection to Preparability

I Roughly, asymptotic completeness means that, in the
Heisenberg picture, the observables

a ∈ A ' a⊗ 1l ∈ A⊗
∞⊗
1

C

develop asymptotically into something of the form

1l⊗ c∞ ∈ A⊗
∞⊗
1

C.

I Hence in the Schrödinger picture, if the original state is
σ ⊗ ψ∞ then asymptotically we get the expectation values

σ ⊗ ψ∞(1l⊗ c∞) = ψ∞(c∞),

independent of σ.
So we should get universal preparability for all (normal) states
from asymptotic completeness.



Asymptotic Completeness
and Universal Preparability

I Modulo technicalities this is true:

Theorem.
Suppose that for a transition J : B(H)→ B(H)⊗ C there
exist faithful normal states ϕ on B(H) and ψ on C which yield
a stationary Markov process. TFAE

I J is asymptotically complete.
I All normal states of B(H) are universally J-preparable

and J is tight.

I Tightness is a technical condition (see later) which in many
cases is satisfied automatically. For example if A = B(H) and
J(a) = α(a⊗ 1l) with an automorphism α such that ϕ⊗ ψ is
α-invariant then tightness is automatic.

I This applies to the example of the generalized micromaser.
We conclude that the generalized micromaser without
trapping states is always asymptotically complete.



Purification

I An interesting technique used in rigorously proving these
results is the following purification method.
(Can it be used for solving other problems too?)

I GNS-constructions:

(A, ϕ) B (H, ξϕ)

(C, ψ) B (K, ηψ)

J : (A, ϕ)→ (A⊗C, ϕ⊗ψ) stationary B v : H → H⊗K isometry

Z ′ : B(H)→ B(H), x 7→ v∗ x ⊗ 1l v

is a unital completely positive map
on all bounded operators on the GNS-space



Extended transition

I We call the CP-map Z ′ the dual extended transition
operator. In fact it extends the dual transition operator
T ′ϕ : A′ → A′ for the commutant of the stationary Markov
process.

I Important property: While the original transition operator Tψ
has the invariant faithful state ϕ the dual extended transition
operator Z ′ has an invariant vector state, namely |ξϕ〉〈ξϕ|,
with the corresponding cyclic vector ξϕ.

Advantage: Correlations involving a vector state are easier to
handle than correlations involving a mixed state.
This makes the Z ′-technique so useful.



Asymptotic Completeness
and Extended Transition

I In fact, in our context the nice result is

Theorem. TFAE
1. J is asymptotically complete.
2. Z ′ is ergodic (no non-trivial fixed points)
3. Z ′ is mixing:

(Z ′)n(x)→ 〈ξϕ, x ξϕ〉 1l for all x and n→∞

I Definitely not true if we replace Z ′ by the original transition
operator Tϕ. In fact, transition operators T can have different
extensions in this sense, some ergodic and some not.
Z ′ contains additional information about the interaction.

I All the relevant information is in the spectrum of Z ′. This can
be a useful criterion. For example if A is finite-dimensional
then also Z ′ is a finite-dimensional object while the
statements about universal preparability and asymptotic
completeness used earlier all involve infinite dimension.



Tightness

I If A is infinite dimensional it is necessary to speak about
tightness. Our setting allows to develop this notion.

Tightness is a concept from classical probabilty theory. A
family of probability measures on a Borel σ-algebra is tight if
for all ε > 0 there is a compact set such that the probability of
its complement is at most ε for all members of the family. For
discrete spaces we can talk of finite instead of compact sets.

This is technically essential in dealing with limits: In fact a
well-known theorem of Prokhorov says that for Polish spaces
tightness is equivalent to weak relative compactness of the
family of probability measures.



Noncommutative Prokhorov theorem

I An important technical step to achieve rigorous proofs for our
results above is the following noncommutative version of
Prokhorov’s theorem:

Theorem.
A sequence of normal states on B(H) is tight (in the sense
that for any ε > 0 there exists a finite dimensional projection
such that the expectations of its complement are all at most
ε) if and only if it is relatively compact in the norm topology.

I Note that B(H) is an atomic von Neumann algebra and we
should think of the result above as generalizing the classical
Prokhorov theorem for discrete spaces. I am not aware of a
worked out generalization of Prokhorov’s theorem for general
von Neumann algebras. This is one of the reasons why some
of our main results are stated for A = B(H).



Postscript: Tightness of a Transition

I Tightness of the transition J (appearing in one of our
theorems) can be defined in terms of the dual transition
operator Z ′:

We require that for all normal states σ the sequences(
σ ◦ (Z ′)n

)
are tight.

This is a necessary condition for asymptotic completeness
because in this case Z ′ has an absorbing state.



Conclusion and Outlook

Final Remarks:

I I hope to have convinced you that the study of asymptotic
completeness and of related criteria is relevant for the
development of a control theory for open quantum
systems and that the corresponding functional analytic and
operator algebraic tools deserve further development.

I One example of further development: In control theory we
have for controllability the dual notion of observability,
meaning here that we can find out about the state of the
system A by only measuring the environment (the C-systems).

We have a result that in the setting of stationary Markov
processes, as introduced above, this corresponds to
asymptotic completeness of the time-reversed system.

Work on refinements of this is going on.

I Thank you !


