# Thoma's theorem about extremal characters as a noncommutative de Finetti theorem

> Gregynog May 21-23, 2012

 $\mathbb{S}_{\infty}$  is the inductive limit of the symmetric groups  $\mathbb{S}_n$  as  $n \to \infty$ .

 $\mathbb{S}_{\infty}$  is the inductive limit of the symmetric groups  $\mathbb{S}_n$  as  $n \to \infty$ . A function  $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$  is a **character** if it is constant on conjugacy classes, positive definite and normalized.

 $\mathbb{S}_{\infty}$  is the inductive limit of the symmetric groups  $\mathbb{S}_n$  as  $n \to \infty$ . A function  $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$  is a **character** if it is constant on conjugacy classes, positive definite and normalized.

An extremal character of the group  $\mathbb{S}_{\infty}$  is of the form

$$\chi(\pi) = \prod_{k=2}^{\infty} \left( \sum_{i=1}^{\infty} a_i^k + (-1)^{k-1} \sum_{j=1}^{\infty} b_j^k \right)^{m_k(\pi)}.$$

Here  $m_k(\pi)$  is the number of disjoint k-cycles in the permutation  $\pi$  and the two sequences  $(a_i)_{i=1}^{\infty}, (b_j)_{j=1}^{\infty}$  satisfy

$$a_1 \geq a_2 \geq \cdots \geq 0,$$
  $b_1 \geq b_2 \geq \cdots \geq 0,$   $\sum_{i=1}^{\infty} a_i + \sum_{j=1}^{\infty} b_j \leq 1.$ 

 $\mathbb{S}_{\infty}$  is the inductive limit of the symmetric groups  $\mathbb{S}_n$  as  $n \to \infty$ . A function  $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$  is a **character** if it is constant on conjugacy classes, positive definite and normalized.

An extremal character of the group  $\mathbb{S}_{\infty}$  is of the form

$$\chi(\pi) = \prod_{k=2}^{\infty} \left( \sum_{i=1}^{\infty} a_i^k + (-1)^{k-1} \sum_{j=1}^{\infty} b_j^k \right)^{m_k(\pi)}.$$

Here  $m_k(\pi)$  is the number of disjoint k-cycles in the permutation  $\pi$  and the two sequences  $(a_i)_{i=1}^{\infty}, (b_j)_{j=1}^{\infty}$  satisfy

$$a_1 \geq a_2 \geq \cdots \geq 0,$$
  $b_1 \geq b_2 \geq \cdots \geq 0,$   $\sum_{i=1}^{\infty} a_i + \sum_{j=1}^{\infty} b_j \leq 1.$ 

 $\mathbb{S}_{\infty}$  is the inductive limit of the symmetric groups  $\mathbb{S}_n$  as  $n \to \infty$ . A function  $\chi \colon \mathbb{S}_{\infty} \to \mathbb{C}$  is a **character** if it is constant on conjugacy classes, positive definite and normalized.

Theorem (Thoma 64, Kerov & Vershik 81, Okounkov 99)

An extremal character of the group  $\mathbb{S}_{\infty}$  is of the form

$$\chi(\pi) = \prod_{k=2}^{\infty} \left( \sum_{i=1}^{\infty} a_i^k + (-1)^{k-1} \sum_{j=1}^{\infty} b_j^k \right)^{m_k(\pi)}.$$

Here  $m_k(\pi)$  is the number of disjoint k-cycles in the permutation  $\pi$  and the two sequences  $(a_i)_{i=1}^{\infty}, (b_j)_{j=1}^{\infty}$  satisfy

$$a_1 \geq a_2 \geq \cdots \geq 0,$$
  $b_1 \geq b_2 \geq \cdots \geq 0,$   $\sum_{i=1}^{\infty} a_i + \sum_{j=1}^{\infty} b_j \leq 1.$ 

 $\mathbb{S}_{\infty}$  is the inductive limit of the symmetric groups  $\mathbb{S}_n$  as  $n \to \infty$ . A function  $\chi: \mathbb{S}_{\infty} \to \mathbb{C}$  is a **character** if it is constant on conjugacy classes, positive definite and normalized.

Theorem (Thoma 64, Kerov & Vershik 81, Okounkov 99)

An **extremal character** of the group  $\mathbb{S}_{\infty}$  is of the form

$$\chi(\pi) = \prod_{k=2}^{\infty} \left( \sum_{i=1}^{\infty} a_i^k + (-1)^{k-1} \sum_{j=1}^{\infty} b_j^k \right)^{m_k(\pi)}.$$

Here  $m_k(\pi)$  is the number of disjoint k-cycles in the permutation  $\pi$  and the two sequences  $(a_i)_{i=1}^{\infty}, (b_i)_{i=1}^{\infty}$  satisfy

$$a_1 \geq a_2 \geq \cdots \geq 0,$$
  $b_1 \geq b_2 \geq \cdots \geq 0,$   $\sum_{i=1}^{\infty} a_i + \sum_{j=1}^{\infty} b_j \leq 1.$ 

Note: **Thoma multiplicativity** for disjoint cycle decomposition.



#### Noncommutative random variables

From quantum mechanics we learn:

noncommutative random variables

=

selfadjoint operators + expectation functional  $\phi$  (state)

(If they commute we are back in classical probability theory.)

#### Noncommutative random variables

From quantum mechanics we learn:

#### noncommutative random variables

=

selfadjoint operators + expectation functional  $\phi$  (state)

(If they commute we are back in classical probability theory.)

A sequence  $x_1, x_2, \ldots$  of (noncommutative) random variables is **exchangeable** 

if joint moments are invariant under permutations of the variables:

$$\phi(x_{i_1}\ldots x_{i_n})=\phi(x_{\pi(i_1)}\ldots x_{\pi(i_n)})$$



#### Claus Köstler's noncommutative de Finetti theorem

de Finetti: exchangeability  $\Rightarrow$  conditional independence Claus Köstler has shown (JFA 2010) that this idea also works for noncommutative random variables:

#### **Theorem**

Every exchangeable sequence  $x_1, x_2$  of (noncommutative) random variables is **conditionally independent** over the **tail algebra** 

$$\mathcal{A}^{\mathsf{tail}} := \bigcap_{n} \mathsf{vN}(x_n, x_{n+1}, \ldots).$$

#### Claus Köstler's noncommutative de Finetti theorem

de Finetti: exchangeability  $\Rightarrow$  conditional independence Claus Köstler has shown (JFA 2010) that this idea also works for noncommutative random variables:

#### **Theorem**

Every exchangeable sequence  $x_1, x_2$  of (noncommutative) random variables is **conditionally independent** over the **tail algebra** 

$$\mathcal{A}^{\mathsf{tail}} := \bigcap_{n} \mathsf{vN}(x_n, x_{n+1}, \ldots).$$

- vN means the generated von Neumann algebra (weak closure in GNS-rep with respect to the state).
- Conditional independence: factorization of the state-preserving conditional expectation E onto the tail algebra A<sup>tail</sup>:

$$E(xx') = E(x)E(x') \text{ if } x \in vN(x_i, i \in I), x' \in vN(x_j, j \in J), \ I \cap J = \emptyset$$

#### Characters and traces

Every character  $\chi$  of  $\mathbb{S}_{\infty}$  gives rise to a unitary representation

$$\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A}), \qquad \text{with } \mathcal{A} = \mathsf{vN}(\pi(\mathbb{S}_{\infty}))$$

such that there is a tracial state tr on A.

The converse is also true.

Notation: omit  $\pi$  from now on  $\Rightarrow$  tr =  $\chi$  on  $\mathbb{S}_{\infty}$ 



#### Characters and traces

Every character  $\chi$  of  $\mathbb{S}_{\infty}$  gives rise to a unitary representation

$$\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A}), \qquad \text{with } \mathcal{A} = \mathsf{vN}(\pi(\mathbb{S}_{\infty}))$$

such that there is a tracial state tr on A.

The converse is also true.

Notation: omit  $\pi$  from now on  $\Rightarrow$  tr =  $\chi$  on  $\mathbb{S}_{\infty}$ 

The character is extremal iff A is a factor.

#### Characters and traces

Every character  $\chi$  of  $\mathbb{S}_{\infty}$  gives rise to a unitary representation

$$\pi \colon \mathbb{S}_{\infty} \to \mathcal{U}(\mathcal{A}), \qquad \text{with } \mathcal{A} = \mathsf{vN}(\pi(\mathbb{S}_{\infty}))$$

such that there is a tracial state tr on A.

The converse is also true.

Notation: omit  $\pi$  from now on  $\Rightarrow$  tr =  $\chi$  on  $\mathbb{S}_{\infty}$ 

The character is extremal iff A is a factor.

Reformulation of Thoma's problem:

Characterize **factorial tracial states** on the group algebra of  $\mathbb{S}_{\infty}$ .



Find a natural exchangeable sequence of noncommutative random variables (=selfadjoint operators) which generate  $\mathcal{A}=vN(\mathbb{S}_{\infty})$ 

Find a natural exchangeable sequence of noncommutative random variables (=selfadjoint operators) which generate  $\mathcal{A}=vN(\mathbb{S}_{\infty})$ 

We think of  $\mathbb{S}_{\infty}$  as acting on  $\mathbb{N}_0 = \{0,1,2,\ldots\}$  by permutations.

Find a natural exchangeable sequence of noncommutative random variables (=selfadjoint operators) which generate  $\mathcal{A}=vN(\mathbb{S}_{\infty})$ 

We think of  $\mathbb{S}_{\infty}$  as acting on  $\mathbb{N}_0 = \{0,1,2,\ldots\}$  by permutations.

Observation:

**Transpositions** in  $\mathbb{S}_{\infty}$  go via  $\pi$  into idempotent unitaries.  $\Rightarrow$  selfadjoint with spectrum  $\{1,-1\}$ , coin tosses.

Find a natural exchangeable sequence of noncommutative random variables (=selfadjoint operators) which generate  $\mathcal{A}=vN(\mathbb{S}_{\infty})$ 

We think of  $\mathbb{S}_{\infty}$  as acting on  $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$  by permutations.

Observation:

**Transpositions** in  $\mathbb{S}_{\infty}$  go via  $\pi$  into idempotent unitaries.  $\Rightarrow$  selfadjoint with spectrum  $\{1,-1\}$ , coin tosses.

A generating sequence must be noncommutative. Classical probability is not enough.

Find a natural exchangeable sequence of noncommutative random variables (=selfadjoint operators) which generate  $\mathcal{A}=vN(\mathbb{S}_{\infty})$ 

We think of  $\mathbb{S}_{\infty}$  as acting on  $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$  by permutations.

Observation:

**Transpositions** in  $\mathbb{S}_{\infty}$  go via  $\pi$  into idempotent unitaries.  $\Rightarrow$  selfadjoint with spectrum  $\{1,-1\}$ , coin tosses.

A generating sequence must be noncommutative. Classical probability is not enough.

First try: the **Coxeter generators**  $\sigma_i = (i-1, i)$   $(i \in \mathbb{N})$ . Not exchangeable (in general).

# Star generators are exchangeable

Consider the star generators  $\gamma_i = (0, i)$   $(i \in \mathbb{N})$ .

# Star generators are exchangeable

Consider the star generators  $\gamma_i = (0, i) \ (i \in \mathbb{N})$ .

They are exchangeable:

$$\chi(\gamma_{i_1}\gamma_{i_2}\dots\gamma_{i_n})$$

$$= \chi(\pi\gamma_{i_1}\gamma_{i_2}\dots\gamma_{i_n}\pi^{-1})$$

$$= \chi((\pi\gamma_{i_1}\pi^{-1})(\pi\gamma_{i_2}\pi^{-1})\dots(\pi\gamma_{i_n}\pi^{-1}))$$

$$= \chi(\gamma_{\pi(i_1)}\gamma_{\pi(i_2)}\dots\gamma_{\pi(i_n)})$$

where  $\pi$  is any permutation with  $\pi(0) = 0$ .

# Star generators are exchangeable

Consider the star generators  $\gamma_i = (0, i) \ (i \in \mathbb{N})$ .

They are exchangeable:

$$\chi(\gamma_{i_1}\gamma_{i_2}\dots\gamma_{i_n})$$

$$= \chi(\pi\gamma_{i_1}\gamma_{i_2}\dots\gamma_{i_n}\pi^{-1})$$

$$= \chi((\pi\gamma_{i_1}\pi^{-1})(\pi\gamma_{i_2}\pi^{-1})\dots(\pi\gamma_{i_n}\pi^{-1}))$$

$$= \chi(\gamma_{\pi(i_1)}\gamma_{\pi(i_2)}\dots\gamma_{\pi(i_n)})$$

where  $\pi$  is any permutation with  $\pi(0) = 0$ . So this is a nice example of a noncommutative exchangeable sequence of coin tosses.

# Star generators and cycles

Another useful elementary fact:

A k-cycle  $\tau = (n_1 n_2 n_3 \dots n_k) \in \mathbb{S}_{\infty}$  can be written in the star generators  $\gamma_i$  as

$$\tau = \gamma_{n_1} \gamma_{n_2} \gamma_{n_3} \cdots \gamma_{n_{k-1}} \gamma_{n_k} \gamma_{n_1},$$

where in the case  $\tau(0) \neq 0$  we put  $n_1 = 0$  and define  $\gamma_0$  to be the unit element.

# Star generators and cycles

Another useful elementary fact:

A k-cycle  $\tau = (n_1 n_2 n_3 \dots n_k) \in \mathbb{S}_{\infty}$  can be written in the star generators  $\gamma_i$  as

$$\tau = \gamma_{n_1} \gamma_{n_2} \gamma_{n_3} \cdots \gamma_{n_{k-1}} \gamma_{n_k} \gamma_{n_1},$$

where in the case  $\tau(0) \neq 0$  we put  $n_1 = 0$  and define  $\gamma_0$  to be the unit element.

 $\Rightarrow$ 

disjoint cycles are supported by disjoint sets of star generators

# Star generators and cycles

Another useful elementary fact:

A k-cycle  $\tau = (n_1 n_2 n_3 \dots n_k) \in \mathbb{S}_{\infty}$  can be written in the star generators  $\gamma_i$  as

$$\tau = \gamma_{n_1} \gamma_{n_2} \gamma_{n_3} \cdots \gamma_{n_{k-1}} \gamma_{n_k} \gamma_{n_1},$$

where in the case  $\tau(0) \neq 0$  we put  $n_1 = 0$  and define  $\gamma_0$  to be the unit element.

 $\Rightarrow$ 

disjoint cycles are supported by disjoint sets of star generators And now we get

from the noncommutative de Finetti theorem:

$$E(\tau\,\tau')=E(\tau)E(\tau')$$

au and au' are disjoint cycles E is the conditional expectation onto the tail algebra of the sequence  $\gamma_1, \gamma_2 \ldots$  of star generators.

# Evaluation of the conditional expectation

What is  $E(\tau)$  for a k-cycle  $\tau$  ? In general the tail algebra  $\mathcal{A}^{\mathsf{tail}}$  is nontrivial.

# Evaluation of the conditional expectation

What is  $E(\tau)$  for a k-cycle  $\tau$  ? In general the tail algebra  $\mathcal{A}^{\mathsf{tail}}$  is nontrivial.

We need to introduce another key player:

$$A_0 := E(\gamma_1) \in \mathcal{A}^{\mathsf{tail}}$$

which is a selfadjoint contraction.

# Evaluation of the conditional expectation

What is  $E(\tau)$  for a k-cycle  $\tau$  ? In general the tail algebra  $\mathcal{A}^{\mathsf{tail}}$  is nontrivial.

We need to introduce another key player:

$$A_0 := E(\gamma_1) \in \mathcal{A}^{\mathsf{tail}}$$

which is a selfadjoint contraction.

Let us restrict to the case of an extremal character (factor trace) from now on.

**Key observation**: Let  $\tau$  be a k-cycle. Then

$$E(\tau) = \begin{cases} A_0^{k-1} & \text{if } \tau(0) \neq 0 \\ \operatorname{tr}(A_0^{k-1}) \, \mathbb{1} & \text{if } \tau(0) = 0 \end{cases}$$

# Thoma multiplicativity

For  $\pi \in \mathbb{S}_{\infty}$  let

$$\pi = \tau_1 \dots \tau_n$$

be the disjoint cycle decomposition.

At most one of the cycles, say  $\tau_1$ , moves the point 0.

$$\Rightarrow \chi(\pi) = \chi(\tau_{1} \dots \tau_{n})$$

$$= \operatorname{tr}(E(\tau_{1} \dots \tau_{n}))$$

$$= \operatorname{tr}(E(\tau_{1})E(\tau_{2}) \dots E(\tau_{n}))$$

$$= \operatorname{tr}(A_{0}^{k_{1}-1}\operatorname{tr}(A_{0}^{k_{2}-1}) \dots \operatorname{tr}(A_{0}^{k_{n}-1}))$$

$$= \operatorname{tr}(A_{0}^{k_{1}-1}\operatorname{tr}(A_{0}^{k_{2}-1}) \dots \operatorname{tr}(A_{0}^{k_{n}-1})$$

$$= \chi(\tau_{1})\chi(\tau_{2}) \dots \chi(\tau_{n})$$

# Thoma multiplicativity

For  $\pi \in \mathbb{S}_{\infty}$  let

$$\pi = \tau_1 \dots \tau_n$$

be the disjoint cycle decomposition.

At most one of the cycles, say  $\tau_1$ , moves the point 0.

$$\Rightarrow \chi(\pi) = \chi(\tau_{1} \dots \tau_{n})$$

$$= tr(E(\tau_{1} \dots \tau_{n}))$$

$$= tr(E(\tau_{1})E(\tau_{2}) \dots E(\tau_{n}))$$

$$= tr(A_{0}^{k_{1}-1} tr(A_{0}^{k_{2}-1}) \dots tr(A_{0}^{k_{n}-1}))$$

$$= tr(A_{0}^{k_{1}-1}) tr(A_{0}^{k_{2}-1}) \dots tr(A_{0}^{k_{n}-1})$$

$$= \chi(\tau_{1})\chi(\tau_{2}) \dots \chi(\tau_{n})$$

which means we have proved **Thoma multiplicativity** as a consequence of the noncommutative de Finetti theorem.



It also follows that the tail algebra for the sequence  $\gamma_1, \gamma_2, \ldots$  is generated by the selfadjoint contraction  $A_0$ :

$$\mathcal{A}^{\mathsf{tail}} = \mathsf{vN}(A_0)$$

So  $\mathcal{A}^{\text{tail}}$  is commutative.

It also follows that the tail algebra for the sequence  $\gamma_1, \gamma_2, \ldots$  is generated by the selfadjoint contraction  $A_0$ :

$$\mathcal{A}^{\mathsf{tail}} = \mathsf{vN}(A_0)$$

So  $\mathcal{A}^{\mathsf{tail}}$  is commutative. For a k-cycle au

$$\operatorname{tr}(\tau) = \operatorname{tr}(A_0^{k-1}) = \int_{-1}^1 t^{k-1} d\mu ,$$

where  $\mu$  is the spectral measure of  $A_0$ .

**Spectral analysis** completes the proof of Thoma's theorem.

It also follows that the tail algebra for the sequence  $\gamma_1, \gamma_2, \ldots$  is generated by the selfadjoint contraction  $A_0$ :

$$\mathcal{A}^{\mathsf{tail}} = \mathsf{vN}(A_0)$$

So  $\mathcal{A}^{\mathsf{tail}}$  is commutative. For a k-cycle au

$$\operatorname{tr}(\tau) = \operatorname{tr}(A_0^{k-1}) = \int_{-1}^1 t^{k-1} d\mu ,$$

where  $\mu$  is the spectral measure of  $A_0$ .

**Spectral analysis** completes the proof of Thoma's theorem. It turns out that the spectrum is **discrete** and the (positive) Thoma parameters provide positive eigenvalues  $a_i > 0$  and negative eigenvalues  $-b_i < 0$ .

It also follows that the tail algebra for the sequence  $\gamma_1, \gamma_2, \ldots$  is generated by the selfadjoint contraction  $A_0$ :

$$\mathcal{A}^{\mathsf{tail}} = \mathsf{vN}(A_0)$$

So  $\mathcal{A}^{\mathsf{tail}}$  is commutative. For a k-cycle au

$$\operatorname{tr}(\tau) = \operatorname{tr}(A_0^{k-1}) = \int_{-1}^1 t^{k-1} d\mu ,$$

where  $\mu$  is the spectral measure of  $A_0$ .

**Spectral analysis** completes the proof of Thoma's theorem.

It turns out that the spectrum is **discrete** and the (positive) Thoma parameters provide positive eigenvalues  $a_i > 0$  and negative eigenvalues  $-b_i < 0$ .

Noncommutative independence also helps to prove that.

But that is another talk!



#### References

- ▶ R. Gohm & C. Köstler, Noncommutative independence from characters of the symmetric group S<sub>∞</sub>. Preprint, 47 pages (2010). (arXiv:1005.5726v1)
- R. Gohm & C. Köstler, Noncommutative independence in the infinite braid and symmetric group. Preprint, 10 pages (2011). (arXiv:1102.0813v1)