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S~ is the inductive limit of the symmetric groups S, as n — oo.
A function x: Soo — C is a character if it is constant on
conjugacy classes, positive definite and normalized.
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Here my () is the number of disjoint k-cycles in the permutation

7 and the two sequences (a;)?2,, (bj)72; satisfy

oo o0
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Note: Thoma multiplicativity for disjoint cycle decomposition.
[m] = = =




From quantum mechanics we learn:

noncommutative random variables

selfadjoint operators + expectation functional ¢ (state)

(If they commute we are back in classical probability theory.)



From quantum mechanics we learn:

noncommutative random variables

selfadjoint operators + expectation functional ¢ (state)

(If they commute we are back in classical probability theory.)
A sequence xi, Xo,

. of (noncommutative) random variables is

exchangeable

¢(Xi1 . X,'n)

if joint moments are invariant under permutations of the variables:

A(Xn(i) - - Xn(in))



de Finetti: exchangeability = conditional independence
Claus Kostler has shown (JFA 2010) that this idea also works for
noncommutative random variables:

Theorem

Every exchangeable sequence x1, x2 of (noncommutative) random
variables is conditionally independent over the tail algebra

Al — ﬂ VN (Xp, Xpt1, - - -) -

n
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de Finetti: exchangeability = conditional independence
Claus Kostler has shown (JFA 2010) that this idea also works for
noncommutative random variables:

Theorem
Every exchangeable sequence x1, x2 of (noncommutative) random
variables is conditionally independent over the tail algebra

Al — ﬂ VN (Xp, Xpt1, - - -) -

n

> vN means the generated von Neumann algebra
(weak closure in GNS-rep with respect to the state).
» Conditional independence:
factorization of the state-preserving conditional expectation E
onto the tail algebra At
E(xx") = E(x)E(X) if x € vN(x;,i € 1), X" € vN(x;,j € J),
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Every character x of Sy gives rise to a
unitary representation

71 Seo — U(A), with A = vN(7(Sx))
such that there is a tracial state tr on A.

The converse is also true.

Notation: omit m from now on

= tr = x on Sy
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Every character x of S, gives rise to a
unitary representation

T Seo = U(A),  with A= vN(7(Sx))

such that there is a tracial state tr on A.
The converse is also true.
Notation: omit w from now on = tr = x on Sy

The character is extremal iff A is a factor.

Reformulation of Thoma's problem:
Characterize factorial tracial states on the group algebra of S.
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random variables (=selfadjoint operators) which generate
A =vVN(Sw)
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Transpositions in S, go via 7 into idempotent unitaries.
= selfadjoint with spectrum {1, —1}, coin tosses.
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Find a natural exchangeable sequence of noncommutative
random variables (=selfadjoint operators) which generate
A =vVN(Sw)

We think of S, as acting on No ={0,1,2,...}

by permutations.

Observation:

Transpositions in S, go via 7 into idempotent unitaries.
= selfadjoint with spectrum {1, —1}, coin tosses.

A generating sequence must be noncommutative.
Classical probability is not enough.

First try: the Coxeter generators o, = (i — 1,i) (i € N).
Not exchangeable (in general).
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Consider the star generators v; = (0,/) (i € N).



Consider the star generators v; = (0,/) (i € N).

They are exchangeable:

x(ViViz - - - Vi)
= X(™iYp - - Yig® )
X((mypm ) (mvm ) (v, m )
= X(Vr(i)Vr(iz) - - - Ve(in))

where 7 is any permutation with 7(0) = 0.
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Consider the star generators v; = (0,/) (i € N).

They are exchangeable:

X(ViYis - - - Vi)
= X(™in Vi Y)
= X((mam (). ()
= X(Va(i)Vn(in) -+ V(i)
where 7 is any permutation with 7(0) = 0.

So this is a nice example of a

noncommutative exchangeable sequence of coin tosses.
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Another useful elementary fact:

A k-cycle 7 = (n1na2ns3...nk) € Seo can be written in the
star generators ; as

T ="TmYnVn3 " Vn_1VnVny»

where in the case 7(0) # 0 we put n; = 0 and define g to be
the unit element.
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=
disjoint cycles are supported by disjoint sets of star generators
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Another useful elementary fact:

A k-cycle 7 = (ny np n3...ng) € Se can be written in the
star generators ~; as

T = 7’11’)’!127!73 T ’Ynk_l’Ynk’Ynla

where in the case 7(0) # 0 we put n; = 0 and define g to be
the unit element.

=

disjoint cycles are supported by disjoint sets of star generators
And now we get

from the noncommutative de Finetti theorem:

E(r7") = E(r)E(T)

7 and 7/ are disjoint cycles
E is the conditional expectation onto the tail algebra of the

sequence 1,72 . . . of star generators.
[m] = = =
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What is E(7) for a k-cycle 7 ?

In general the tail algebra A% is nontrivial.
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which is a selfadjoint contraction.



What is E(7) for a k-cycle 7 ?

In general the tail algebra A% is nontrivial.

We need to introduce another key player:
Ay = E(71) € A%

which is a selfadjoint contraction.

Let us restrict to the case of an extremal character
(factor trace) from now on.

Key observation: Let 7 be a k-cycle. Then

AR if 7(0) #0
Flr) = {tr(EAgl)]l if 7(0) =0
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For m € Sy let
T=T1...Tph

be the disjoint cycle decomposition.
At most one of the cycles, say 71, moves the point 0.

= x(m) = x(n...7)
= tIr(E( 7n))
= tr(E(n) (Tz) - E(7a))
= (AT (AT (APTY)
= (A8 (A ) (A7)

x(m1)x(72) - - - x(7n)
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For m € Sy let
T=T1...Th
be the disjoint cycle decomposition.
At most one of the cycles, say 71, moves the point 0.

= x(m) = x(m1...7h)

= tr(E( Tn))

r(E(n) (Tz) . E(7n))
(AR er(ARTY) . tr(ARTLY)
= tr(AZ (AR (AR

x(m1)x(72) - - - x(7n)

=

I
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which means we have proved Thoma multiplicativity

as a consequence of the noncommutative de Finetti theorem
[m] = =
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It also follows that the tail algebra for the sequence v1, 2,
is generated by the selfadjoint contraction Ag:

A" = yN(Ao)
So At is commutative.



It also follows that the tail algebra for the sequence v1, 2,
is generated by the selfadjoint contraction Ag:

Atail _ VN(Ao)
So A% is commutative.  For a k-cycle 7

1
tr(r) = tr(Ah 1) = /

tk*l dlj/ 7
-1
where i is the spectral measure of Ap.

Spectral analysis completes the proof of Thoma’s theorem.



It also follows that the tail algebra for the sequence 1,72, ...
is generated by the selfadjoint contraction Ag:

Atail _ VN(Ao)

So A% is commutative.  For a k-cycle 7

1

tr(7) = tr(AL) = / 1y
-1

where i is the spectral measure of Ap.
Spectral analysis completes the proof of Thoma’s theorem.

It turns out that the spectrum is discrete and the (positive)
Thoma parameters provide positive eigenvalues a; > 0 and
negative eigenvalues —b; < 0.
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It also follows that the tail algebra for the sequence 1,72, ...
is generated by the selfadjoint contraction Ag:

Atail _ VN(Ao)

So A% is commutative.  For a k-cycle 7

1

tr(7) = tr(AL) = / 1y
-1

where i is the spectral measure of Ap.

Spectral analysis completes the proof of Thoma’s theorem.

It turns out that the spectrum is discrete and the (positive)
Thoma parameters provide positive eigenvalues a; > 0 and
negative eigenvalues —b; < 0.

Noncommutative independence also helps to prove that.
But that is another talk!
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