
A Rough Set-Aided System for

Sorting WWW Bookmarks

Richard Jensen

MSc in Arti�cial Intelligence
Division of Informatics

The University of Edinburgh
2000

Abstract

Most people store `bookmarks' to web pages. These allow the user to re-

turn to a web page later on, without having to remember the exact URI/URL

address. People attempt to organise their bookmark databases by �ling book-

marks under categories, themselves arranged in a hierarchical fashion. As the

maintainence of such large repositories is diÆcult and time-consuming, a tool

that automatically categorises bookmarks is required.

This thesis investigates how well rough set theory (RS) can extract infor-

mation out of this domain, for use in an experimental automatic bookmark

classi�cation system. A comparison is made between this approach to data

reduction and a new approach proposed by the author.

The results show that for this domain, RS is successful in reducing datasets

whilst retaining their information content. The new approach performs even

better than RS for the classi�cation of new bookmarks.

i

Acknowledgements

I would like to thank my supervisor, Qiang Shen, for helping and guiding

me through this project. Additional thanks go to the EPSRC for providing

�nancial support for the year (studentship no: 99407338).

ii

Contents

1 Introduction 1
1.1 Bookmarking . 2
1.2 Dimensionality Reduction . 3
1.3 Aims and Objectives . 4
1.4 Structure . 5

2 Background 6
2.1 Text Categorisation . 6

2.1.1 Rule-Based . 7
2.1.2 Vector-Based . 8
2.1.3 Probabilistic . 8
2.1.4 Latent Semantic Indexing 10
2.1.5 Dimensionality Reduction 11

2.2 Rough Sets . 13
2.2.1 Theory . 14
2.2.2 Indiscernibility . 15
2.2.3 Approximation . 15
2.2.4 Dependency Discovery 17
2.2.5 Attribute Signi�cance 17
2.2.6 Attribute Reduction 18

2.3 ID3 and Entropy . 20
2.4 Existing Systems . 22

2.4.1 Bookmark Organiser 22
2.4.2 PowerBookmarks . 24

2.5 Related Work . 26
2.5.1 Email Classi�cation . 26
2.5.2 Web Page Classi�cation 26

2.6 Summary . 28

iii

3 Theoretical Aspects 29
3.1 Design . 29

3.1.1 Keyword Acquisition 31
3.1.2 Rough Set Data Reduction 32
3.1.3 Entropy-Based Reduction 33
3.1.4 Classi�cation Modules 35

3.2 Available Information . 37
3.3 Summary . 39

4 Software Speci�cation 40
4.1 Choice of Language . 40
4.2 System Implementation . 41

4.2.1 Datasets . 41
4.2.2 Keyword Acquisition 41
4.2.3 Data Reduction . 43
4.2.4 Classi�cation . 45

4.3 User Interface . 46
4.4 Summary . 48

5 Experimentation 49
5.1 Experiments . 49

5.1.1 Performance Measure 49
5.1.2 A Problem . 50
5.1.3 Testing the Goal . 50
5.1.4 EBR vs Rough Sets . 52

5.2 Sample Run . 55
5.2.1 Training . 55
5.2.2 Testing . 58

5.3 Comparison with Existing Systems 61
5.3.1 Bookmark Organiser 61
5.3.2 PowerBookmarks . 62

6 Conclusion 64
6.1 Project Evaluation . 64

6.1.1 Limitations . 65
6.1.2 Achievements . 66

6.2 Future Work . 66

Appendices 73

iv

A Further EBR investigations 74
A.1 Conclusion . 77

v

List of Figures

2.1 A BO-categorised bookmark hierarchy 24

2.2 PowerBookmark hierarchy . 25

3.1 The Proposed System . 30

4.1 Examining Explorer Favorites with Rob 47

5.1 An example bookmark �le . 59

5.2 Sorted bookmarks . 60

5.3 Exploration of classi�cations 60

vi

List of Tables

1.1 The position of RSDA in Soft Computing 4

2.1 An example dataset . 14

2.2 Reduced dataset . 20

2.3 Example Dataset . 21

5.1 Comparison of Unreduced and RS-reduced classi�cation accu-

racy . 51

5.2 Comparison of EBR-reduced and RR-reduced classi�cation ac-

curacy . 52

5.3 Comparison of reduction strategies with unreduced dataset . . 53

5.4 Comparison of reduction strategies 54

vii

Chapter 1

Introduction

As the use of the Web becomes more prevalent and the size of personal

repositories grows, adequately organising and managing bookmarks becomes

crucial, somewhat analogous to the need to organise �les in a private disk.

Several years ago, in recognition of this problem, web browsers included

support for tree-like folder structures for organising bookmarks. These enable

the user to browse through their repository to �nd the necessary information.

However manual URL classi�cation and organisation can be diÆcult and

tedious when there are more than a few bookmarks to classify - something

that goes against the grain of the whole concept of bookmarking.

The purpose of this project is to investigate how well rough set theory can

help extract information from a relatively information-poor domain, namely

the databases of `bookmarks' or `favorites' saved by WWW browsers. This

project aims to implement a rough set-aided system that will automatically

sort Web bookmarks, to investigate how successful it is and compare its

performance with that of an alternative data reduction technique.

1

1.1 Bookmarking

An empirical study on users' World Wide Web page revisitation patterns

(carried out by (Tauscher and Greenberg 1997)) found that 58% of pages

viewed are revisits. So over half of the instances where a user accesses a

page, they are revisiting it (probably via their bookmark database). Another

survey was carried out by the GVU's WWW Surveying Team (GVU 1997)

to determine which bookmarking activities are performed by di�erent people

groups. Most respondents create entries (86%), delete entries (74%), create

folders (70%) and rearrange entries (63%), with only 4% saying that they

don't use them at all. Those creating sub-folders, however, was comparatively

low.

This suggests that although people spend time creating and rearranging

their bookmarks, the hierarchy tends to have a shallow tree-like structure.

This could be for the following reasons:

� Many usability studies, for example (Larson and Czerwinski 1998), in-

dicate that a deep hierarchy results in less eÆcient information retrieval

as many traversal steps are required, so users are more likely to make

mistakes.

2

� Users don't have the time/patience to arrange their collection into a

well-ordered hierarchy. Also, if the tree has been ordered and is quite

deep, it can take too long to traverse the sub-folders to reach the desired

bookmark.

It seems then that there is a need for a tool that can automatically create

folders and sub-folders and classify bookmarks into them. The tool should

not create deep trees, and so avoid falling prey to the pitfalls outlined above,

but should provide quick and easy access to all bookmarks in the database.

1.2 Dimensionality Reduction

The datasets generated in Information Retreival systems tend to be extremely

large, rendering most classi�ers intractable. This results in the need for

a mechanism that will greatly reduce the dimensionality of these datasets,

whilst retaining the important information. This project investigates the

e�ectiveness of the rough set approach for this task.

The theory of rough sets was originated by Zdzislaw Pawlak in the late

1970's and is concerned with the classi�catory analysis of imprecise, uncertain

or incomplete information expressed in terms of data tables (EBRSC 1993).

The data can be acquired from measurements or human experts, although it

must be discrete.

Rough set theory has already been successfully applied to many areas,

including text categorisation (Chouchoulas 1999), but has yet to be applied

to the bookmark classi�cation domain. It o�ers an eÆcient and useful tool

for extracting information from this domain. The technique of Rough Set

Data Reduction (RSDR) selects those attributes from a large dataset that

contribute most to the classi�cation task at hand, in other words it removes

redundancy.

3

Microscopic Macroscopic

primarily numeric descriptive and numeric

Deductive Chaos Theory Fuzzy methods

Inductive Neural Networks, genetic algorithms RSDA

Table 1.1: The position of RSDA in Soft Computing

Rough Set Data Analysis (RSDA) is considered to be part of the \soft

computing" paradigm. In (Munakata 1998) it is treated as one of the �ve

key non traditional AI areas (1.1). It di�ers from the other soft methods

in that it does not require additional model assumptions (for example, prior

probabilities, fuzzy functions etc), i.e. it only uses the information given by

the operationalised data.

1.3 Aims and Objectives

The aim of this project is to investigate how well rough set theory can help

extract information from the bookmark domain (a relatively information-

poor domain). This has been extended to include the comparison of the rough

set approach with an alternative reduction mechanism. This alternative is a

new technique developed by the author.

� This project will attempt to apply the rough set concept to the auto-

matic classi�cation of bookmarks.

� It will investigate how well RSDR performs in reducing datasets whilst

retaining their information content.

� It will compare the RSDR technique with that of a completely new

data reduction technique implemented by the author.

4

� The design of the system will be modular, allowing components to be

replaced with an alternative implementation.

� Various classi�cation techniques will be implemented and experimen-

tation carried out.

� This approach will be analysed and compared with other similar sys-

tems.

1.4 Structure

Chapter 2 provides some background to the subjects covered in this project.

A brief summary of text classi�cation techniques is given, as well as an

overview of Rough Set Theory and ID3/Entropy. Finally, existing systems

that are related to this topic are examined and evaluated.

Chapter 3 discusses the theoretical aspects involved. The design of the

system is outlined and additional information on the sub-systems is pre-

sented. Other issues related to the theory of the project are included.

Based on the previous chapter, this thesis goes on to discuss the imple-

mentation of the software and how the theoretical issues inuence this in

chapter 4. The choice of language used is defended, and the implementation

details of each module is given.

Chapter 5 then presents the results obtained from experimentation, and

analyses the di�erence in performance when di�erent techniques are used

both in data reduction and in classi�cation. This system is then compared

and contrasted with existing systems. This chapter ends with a sample run

of the program.

Finally, conclusions are made in chapter 6. The success of the system is

assessed, with future improvements and extensions proposed.

5

Chapter 2

Background

This project employs strategies from various �elds to achieve its goals. The

main techniques involved are from the Text Categorisation and Data Reduc-

tion areas. These are discussed in detail in this chapter.

The automated categorisation of text has been the subject of a large

amount of research over the years, dating back to the early 1960s. It is used

in many contexts, such as automatic document indexing, automated metdata

generation and word sense disambiguation.

Data Reduction is a topic generating a great deal of interest nowadays,

particularly with the explosive growth of the internet and accordingly, the

amount of available information.

2.1 Text Categorisation

Text categorisation (TC) has often been de�ned as the content-based assign-

ment of one or more prede�ned categories to text. As Moulinier (Moulinier 1996)

states, it has become important from two points of view. Firstly, it is im-

portant from the Information Retrieval (IR) viewpoint because of the rapid

growth of textual information sources. These require a greater amount of

information processing, so TC can be used to aid IR for this task. Secondly,

6

it is important from the Machine Learning viewpoint (ML) as text categori-

sation provides ML with an application �eld. The approach that ML takes

in automatic classi�cation is to generate a means of classi�cation by the use

of induction over examples that have been categorised previously (a form of

supervised learning).

The classi�cation of textual documents involves two main phases: train-

ing and classi�cation.The training phase involves examining the document

and retrieving those keywords deemed important. These sets of keywords are

large, rendering most text classi�ers intractable, so a dimensionality reduc-

tion step is performed. Induction is carried out, and a means of classifying

future data is the output. The classi�cation phase uses the classi�cation

means from the training process to classify new documents.

There are many text classi�cation strategies, the most common ones being

rule-based, vector-based and probabilistic techniques.

2.1.1 Rule-Based

For rule-based approaches to classi�cation, a set of rules and an appropriate

classi�er are required. Each individual rule has a set of preconditions and

an associated decision. If a document matches the preconditions, then it is

classi�ed according to the decision value.

A simple form of this is the Boolean Exact Model which employs ex-

act boolean existential rules. This project uses a variant of this called the

Boolean Inexact Model (described in the next chapter). A more complex

approach is the Fuzzy Rule-Based technique which uses fuzzy production

rules and fuzzy reasoning to classify documents.

7

2.1.2 Vector-Based

The Vector Space Model (VSM) considers document representatives as bi-

nary vectors embedded in an n-dimensional Euclidean space (n is the total

number of keywords). As there tends to be a large number of keywords

involved, the dimensionality is also very high.

Each document and query is represented as a point in the space. To

obtain the document vector, the keywords contained in the document are

obtained and ranked according to their weight in the document. They are

then converted to a vector by ordering them in some �xed way. Any missing

keywords (according to the universal keyword set) are marked as absent. The

similarity between a query vector and a document term vector can then be

computed as the scalar product of the two.

There are a number of disadvantages with the VSM. There is the lack

of justi�cation for some of the vector operations (for example, the choice of

similarity function and the choice of term weights). It is barely a retrieval

model as it doesn't explicitly model relevance. There is also the assumption

that a query and a document can be treated the same.

However, the simplicity of the model is attractive - probably why it is the

most popular retrieval model today. It can also measure similarities between

almost anything (e.g. documents and queries, documents and documents,

etc).

2.1.3 Probabilistic

Another classic retrieval and classi�cation method is the probabilistic re-

trieval technique (Fuhr 1992), where the probability that a speci�c document

will be judged relevant to a speci�c query, is based on the assumption that

the terms are distributed di�erently in relevant and non relevant documents.

The probability formula is usually derived from Bayes' theorem. Given a

8

particular document x and a set of categories, the probability of x belonging

to each category in the category set is calculated. The document is classi�ed

into the category that produced the highest probability. The basic model is

illustrated below (taken from (van Rijsbergen 1979)):

Any document x can be represented as a binary vector as they are as-

sumed to be described by the presence/absence of index terms.

x = (x1; x2; :::; xn)

Each xn can be 0 or 1 depending on whether the ith index term is present.

An additional assumption is that w1 and w2 are mutually exclusive events,

such that:

w1 = document is relevant

w2 = document is non-relevant

We want to calculate P (w1jx) and P (w2jx) for each document to decide

which is relevant and which is not. To estimate these we can use Bayes'

Theorem, that tells us for discrete distributions:

P (wijx) = P (xjwi)P (wi)

P (x)
i = 1; 2 (2.1)

Here P (w1) is the prior probability of relevance, P (w2) the prior proba-

bility of non-relevance. P (xjwi) is proportional to the likelihood of relevance

or non-relevance given x. From this we can say that if P (w1) > P (w2), then

the document is relevant. This is summed up in the decision rule:

P (w1jx) > P (w2jx)) x is relevant, x is non-relevant D1

which can be rewritten (using Bayes' Theorem) as:

[P (xjw1) P (w1) > P (xjw2) P (w2)) x is relevant, x is non-relevant] D1*

The basis for this rule is simply that it minimises the average probability

of error. Note that for any document x the probability of error is:

9

P (errorjx) =
8><
>:
P (w1jx) if we decide w2

P (w2jx) if we decide w1

(2.2)

This is not the only factor worth minimising. We can assign each type

of error an associated cost in order to provide a means by which we can

minimise risk. We de�ne a cost function lij , which is the loss incurred for

deciding wi when wj is the case. The conditional risk (the expected loss when

deciding wi) can now be de�ned as:

R(wijx) = li1P (w1jx) + li2P (w2jx) i = 1; 2 (2.3)

this results in the decision rule:

interpreted[R(w1jx) < R(w2jx)) x is relevant, x is non-relevant] D2

D2 and D1* can be combined, resulting in the �nal decision rule:

[R(w1jx) < R(w2jx)] , [(l21 - l11) P (xjw1) P (w1) > (l12 - l22) P (xjw2)

P (w2)]

The relevance or non-relevance of document x can now be decided. Given

a category set, this process can decide which category document x belongs

to.

2.1.4 Latent Semantic Indexing

A brief mention of Latent Semantic Indexing (LSI) is given here. LSI is a vari-

ant of the vector retrieval model outlined previously which takes into account

the dependencies between terms (Dumais 1996; Deerwester et al 1990). Un-

like other models, LSI treats words as if they are not independent of each

10

other; it attempts to automatically derive and model inter-relationships be-

tween them.

The term-document matrix can be considered to be a \bag of documents"

and is split into a set of k orthogonal factors. Similarity is computed in the

following way (from (Oard 1999)):

1. Choose k. (not greater than the number of terms or documents)

2. Add the weighted vectors for each term - multiply each vector by term

weight - sum each element separately

3. Repeat for query or second document

4. Compute inner product - Multiply corresponding elements and add.

An advantage that LSI has is that it reduces the original number of

dimensions. Vectors that are similar are assigned to similar terms. This

composite term is then mapped to a single dimension. However, as with

most retrieval models, words with similar meanings confound LSI. Also, the

computations required are expensive (but a lot f computation is carried out

in advance).

2.1.5 Dimensionality Reduction

In text categorisation, the high dimensionality of the term space can be

problematic, so some form of dimensionality reduction is employed. This

can also be bene�cial as it tends to reduce overfitting, where a classi�er is

tuned also to the contingent, rather than just the necessary characteristics of

the training data (Sebastiani 1999). The classic symptom of this is displayed

when classi�ers that are very good at classifying their training examples are

notably worse at classifying new data.

Dimensionality reduction by term selection is the approach adopted in

both of the reduction implementations. The techniques attempt to select a

11

subset r0 from the original set of r terms such that the reduction in e�ective-

ness is minimal when compared to the original representations. A number of

techniques exist:

� Document Frequency. This is a simple and e�ective reduction strat-

egy [Apt�e et al 1994]. It has been shown that the most informative

terms are those with low to medium document frequency. By remov-

ing those attributes that occur the most (and to some extent those that

occur rarely), the dimensionality of the document is reduced with no or

little loss in information. To make this e�ective stop words should be

removed beforehand, otherwise only topic-neutral words may remain

after reduction.

� Stop Word Removal. Again, this is a simple technique for remov-

ing very information-poor terms. Stop words are connectives such as

articles and contribute very little (if anything) to the classi�cation of

documents. Care must be taken when adopting this approach as it is

feasible that some information-rich words might be mis- as stop words.

� Word Stemming. Word suÆxes are removed, leaving only the root of

the word. This is an attempt to reduce words with similar meanings

to the same root, for example retailing and retailer both contain the

same root, namely retail. This is not guaranteed to work, however, as

many words with di�erent meanings share a common root.

� Other Term Selection Functions. There has been much research into

using sophisticated information-theoretic term selection functions, such

as chi�square (Sh�utze et al. 1995), correlation coeÆcient (Ng et al. 1997)

and relevancy score [Wiener et al. 1995]. These functions have been

shown to produce better results than document frequency.

Of course, there are many more techniques in this area. A fuller discussion

12

of these can be found in (Sebastiani 1999). Relating this to the bookmark

domain, some strategies are more appropriate than others. Word stemming is

not applicable when considering URLs as they contain very few recognisable

words (such as \http"). The words that do exist in the URL tend to be the

root words anyway. Removal of stop words can be applied to the title part

of a bookmark as these contain more natural language style text.

The main dimensionality reduction methods are introduced in the follow-

ing sections.

2.2 Rough Sets

Rough set theory is a tool for studying imprecision, vagueness, and uncer-

tainty in data analysis. Zdzislaw Pawlak (Pawlak 1982) originated the theory

in the 1970s - the end result of a long term program of fundamental research

on logical properties of information systems carried out by him and a group of

logicians from the Polish Academy of Sciences and the University of Warsaw,

Poland.

The rough set itself is the approximation of a vague concept (set) by a pair

of precise concepts, called lower and upper approximations (which are a clas-

si�cation of the domain of interest into disjoint categories). The classi�cation

(attributes) formally represents our knowledge about the domain. Objects

belonging to the same category (same attributes) are not distinguishable.

In this project, rough set theory is used as a tool for data reduction. It

is used to discover data dependencies and reduce the number of attributes by

purely structural methods. The following example (taken from (Slowinski 1992)

and (Pawlak 1991)) should clarify the main concepts involved.

13

2.2.1 Theory

A dataset can be viewed in the form of a table, where columns are labelled

by attributes and rows are labelled by objects. Let U be the universe (the

set of all objects in the dataset), let A denote the set of all attributes in the

dataset, C the set of condition attributes andD the set of decision attributes,

so that C � A, C � A, C [D = A, and C \ D = �. The entry in column

q and row x has the value f(x,q), so f(x,q) de�nes an equivalence relation over

U. Given q, the universe can be partitioned into a set of disjoint subsets:

Rq = fx : x�U ^ f(x; q) = f(x0; q) 8x0�Ug (2.4)

x�U a b c d) e

0 1 0 2 2 0

1 0 1 1 1 2

2 2 0 0 1 1

3 1 1 0 2 2

4 1 0 2 0 1

5 2 2 0 1 1

6 2 1 1 1 2

7 0 1 1 0 1

Table 2.1: An example dataset

Using the example dataset in table (2.1), we have U = f0,1,2,3,4,5,6,7g,
A= fa,b,c,d,eg,C= fa,b,c,dg,D = feg, resulting in the following partitions:

Ra = ff1; 7g; f0; 3; 4g; f2; 5; 6gg
Rb = ff0; 2; 4g; f1; 3; 6; 7g; f5gg
Rc = ff2; 3; 5g; f1; 6; 7g; f0; 4gg

14

Rd = ff4; 7g; f1; 2; 5; 6g; f0; 3gg
Re = ff0g; f2; 4; 5; 7g; f1; 3; 6gg

2.2.2 Indiscernibility

Central to Rough Set theory is the concept of discernibility. For two objects

with di�erent decision attribute values, we would like to be able to discern

between them, based on the values of the condition attributes. Let P � A,

then two objects x,y � U are indiscernible by the set of attributes P in our

table if and only if f(x,q) = f(y,q) 8 q � P. For every P � A we have an

indiscernibility relation IND(P). The equivalence classes, or partition of U,

generated by IND(P) is denoted U/IND(P) and can be calculated as follows:

U=IND(P) =
fq�P : U=IND(q)g; where (2.5)

A
 B = fX \ Y : 8X�A; 8Y �B;X \ Y 6= �g (2.6)

If P = fb,cg, then objects 1, 6 and 7 are indiscernible; as are objects 0

and 4. IND(P) creates the following partition of U :

U=IND(P) = U=IND(b)
U=IND(c)

= ff0; 2; 4g; f1; 3; 6; 7g; f5gg
 ff2; 3; 5g; f1; 6; 7g; f0; 4gg
= ff0; 2; 4g \ f2; 3; 5g; f0; 2; 4g \ f1; 6; 7g; f0; 2; 4g \ f0; 4g;
f1; 3; 6; 7g \ f2; 3; 5g; f1; 3; 6; 7g \ f1; 6; 7g; f1; 3; 6; 7g \ f0; 4g
f5g \ f2; 3; 5g; f5g \ f1; 6; 7g; f5g \ f0; 4gg

= ff2g; f0; 4g; f3g; f1; 6; 7g; f5gg

2.2.3 Approximation

As mentioned earlier, a rough set is a set de�ned by its upper and lower

approximations. Given a set P � U, these are de�ned as:

15

P =
[fX : X � U=IND(P); X � Y g (2.7)

P =
[fX : X � U=IND(P); X \ Y 6= �g (2.8)

For example if Y = f2,4,5,7g and P = fb,cg then

P = f2; 5g
P = f0; 1; 2; 4; 5; 6; 7g

Let P and Q be equivalence relations over U, then the positive, negative

and boundary regions can be de�ned as:

POSP (Q) =
S
X�Q PX

NEGP (Q) = U� SX�Q PX

BNDP (Q) =
S
X�Q PX �

S
X�Q PX

The positive region, POSP (Q), contains all objects of U that can be clas-

si�ed to classes of U/Q using the knowledge in attributes P. The boundary

region, BNDP (Q), is the set of objects that can possibly, but not certainly,

be classi�ed in this way. The negative region, NEGP (Q), is the set of objects

that cannot be classi�ed to classes of U/Q.

For example, let P = fb,cg and Q = feg, then

POSIND(P)(IND(Q)) =
Sf�; f2; 5g; f3gg = f2; 3; 5g

NEGIND(P)(IND(Q)) = U� Sff0; 4g; f2; 0; 4; 1; 6; 7; 5g; f3; 1; 6; 7gg= �

BNDIND(P)(IND(Q)) = U� f2; 3; 5g = f0; 1; 4; 6; 7g

This means that objects 2, 3 and 5 can certainly be classi�ed as belonging

to a class in attribute e, when considering attributes b and c. The rest of

the objects cannot be classi�ed as the information that would make them

discernible is absent.

16

2.2.4 Dependency Discovery

An important issue in data analysis is discovering dependencies between at-

tributes. Intuitively, a set of attributes Q depends totally on a set of at-

tributes P, denoted P) Q, if all attribute values from Q are uniquely deter-

mined by values of attributes from P. If there exists a functional dependency

between values of Q and P, then Q depends totally on P. Dependency can

be de�ned in the following way:

For P,Q � A, we say that Q depends on P in a degree k (0 � k � 1),

denoted P)k Q, if

k = P (Q) =
jPOSP (Q)j
jUj (2.9)

If k = 1 we say that Q depends totally on P, and if k < 1 we say that Q

depends partially (in a degree k) on P. For example, the degree of dependency

of attribute feg from the attributes fb,cg is:

fb;cg(feg) = jPOSfb;cg(feg)j

jUj

= jf2;3;5gj
jf0;1;2;3;4;5;6;7gj

= 3
8
= 0:375

Thus P)0:375 Q. The complement of gives a measure of the contra-

dictions in the knowledge. In the example, the measure of contradiction is

0.625, so �ve objects represent contradictions whilst the remaining three can

be classi�ed into the decision attribute e.

2.2.5 Attribute Signi�cance

By calculating the change in dependency when an attribute is removed from

the set of considered conditional attributes, we can get a measure of the

signi�cance of the attribute. The higher the change in dependency, the more

17

signi�cant the attribute is. If the signi�cance is 0, then the attribute is

dispensible. More formally, given P,Q and an attribute x � P,

�P (Q; x) = P (Q)� P�fxg(Q) (2.10)

For example, if P = fa,b,cg and Q = e then

fa;b;cg(feg) = jf2; 3; 5; 6gj=8 = 4=8

fa;bg(feg) = jf2; 3; 5; 6gj=8 = 4=8

fb;cg(feg) = jf2; 3; 5gj=8 = 3=8

fa;cg(feg) = jf2; 3; 5; 6gj=8 = 4=8

And calculating the signi�cance of the three attributes gives:

�P (Q; a) = fa;b;cg(feg)� fb;cg(feg) = 1=8

�P (Q; b) = fa;b;cg(feg)� fa;cg(feg) = 0

�P (Q; c) = fa;b;cg(feg)� fa;bg(feg) = 0

From this we can conclude that attribute a is indispensible, but attributes

b and c can be dispensed with.

2.2.6 Attribute Reduction

The reduction of attributes is achieved by comparing equivalence relations

generated by sets of attributes. Attributes are removed so that the reduced

set provides the same quality of classi�cation as the original. A reduct is

de�ned as a subset R of the conditional attribute set C such that R(D) =

C(D). A given dataset may have many attribute reduct sets, so the set R of

all reducts is de�ned as:

R = fX : X � C; X(D) = C(D)g (2.11)

18

The intersection of all the sets in R is called the core, the elements of

which are those attributes that cannot be eliminated without introducing

more contradictions to the dataset. In Rough Set Dimensionality Reduction

(RSDR), a reduct with minimum cardinality is searched for, in other words

an attempt is made to locate a single element of the minimal reduct set Rmin

� R :

Rmin = fX : X� R; 8Y � R; jXj � jY jg (2.12)

Using the example, the dependencies for all possible subsets of C can be

calculated:

fa;b;c;dg(feg) = 8=8 fb;cg(feg) = 3=8

fa;b;cg(feg) = 4=8 fb;dg(feg) = 8=8

fa;b;dg(feg) = 8=8 fc;dg(feg) = 8=8

fa;c;dg(feg) = 8=8 fag(feg) = 0=8

fb;c;dg(feg) = 8=8 fbg(feg) = 1=8

fa;bg(feg) = 4=8 fcg(feg) = 0=8

fa;cg(feg) = 4=8 fdg(feg) = 2=8

fa;dg(feg) = 3=8

The dataset is consistent since fa;b;c;dg(feg) = 1. The reduct and minimal

reduct sets for this example are:

R = fa; b; dg; fa; c; dg; fb; c; dg; fb; dg; fc; dg
Rmin = ffb; dg; fc; dgg

If fb,dg is chosen, then the dataset can be reduced accordingly:

A method for �nding a reduct of minimal cardinality is available and is

discussed in chapter 3.

19

x�U b d) e

0 0 2 0

1 1 1 2

2 0 1 1

3 1 2 2

4 0 0 1

5 2 1 1

6 1 1 2

7 1 0 1

Table 2.2: Reduced dataset

2.3 ID3 and Entropy

Developed by Quinlan in 1979, the Iterative Dichotomiser version 3 (Quinlan 1986)

is a decision-tree building algorithmwhich adopts a divide-and-conquer strat-

egy for object classi�cation. Originally it divided examples into two classes

only (hence the name), but many modern implementations now operate with

many-valued classes. However, it is not the algorithm that is of interest here,

instead it is the heuristic that ID3 employs for determining which attribute

provides the most gain in information.

The entropy of attribute A (which can take values a1...am) with respect

to the conclusion C (values c1...cn) is de�ned as:

E(A) = �
mX
j=1

p(aj)
nX
i=1

p(cijaj) log2 p(cijaj)

The attribute with the lowest entropy is the one that has the highest

information gain, and so is the most useful determiner. An example will help

clarify the process (from (Baltzersen 1995)).

20

Day of week Time of day Weather Sickness Mood

Monday morning rainy no good

Wednesday evening rainy no bad

Saturday evening snowy no good

Sunday morning rainy no bad

Sunday morning sunny no good

Wednesday afternoon sunny yes bad

Saturday evening snowy yes bad

Wednesday evening sunny yes bad

Table 2.3: Example Dataset

The attributes here are day, time, weather, and sickness, with mood as

the decision attribute. Using the entropy function de�ned above we can

calculate the entropy for attribute sickness:

p(goodjno) = 3=5

p(badjno) = 2=5

p(no) = 5=8

p(goodjyes) = 0=3

p(badjyes) = 3=3

p(yes) = 3=8

E(sickness) = 5=8(3=5log(3=5) + 2=5log(2=5))

+ 3=8(0=3log(0=3) + 3=3log(3=3))

= 0:60684

Repeating this process for the remaining attributes gives:

E(day) = 0:5

E(time) = 0:75

E(weather) = 0:93872

21

The attribute selected is day as it has the lowest entropy. The set

of examples is then partitioned according to the possible values for day.

This process is repeated on each subset. In this example we discover that

attribute time is irrelevant. In rough set terms this gives us the reduct

fday; weather; sickness;moodg.
Using this process, it is possible to generate an alternative data reduct

for datasets. By limiting the number of attributes the algorithm returns, a

reduced set of the \best" attributes can be obtained. The original dataset

can now be reduced by removing those attributes not present in the reduced

dataset.

It is a variant of this technique called Entropy-Based Reduction that is

implemented and investigated in this project and compared with RSDR.

2.4 Existing Systems

As this area of research is relatively new, there are very few papers on this

topic. Most bookmark utilities provide no means of automatic classi�cation;

the systems outlined here are the only ones with such functionality.

2.4.1 Bookmark Organiser

Bookmark Organiser (BO) by (Maarek and Shaul 1996) , is an application

that attempts to provide automatic assistance in organising bookmark repos-

itories by their conceptual categories. It can operate in two modes:

1. Fully Automatic: If the user does not know which category the

bookmark belongs to, they can request BO to insert it in the relevant

folder by applying an automatic clustering technique to the document

to which it refers.

22

2. Semi Automatic: In this case, the user speci�es the node into which

to insert the new bookmark. They can now request the bookmarks to

be re-organised automatically.

Bookmarks are organised by applying sophisticated clustering techniques

to the text contained in the referred-to document. The clustering method

most used in IR applications (and used for the BO application) is the Hier-

archical Agglomerative Clustering (HAC) technique. This is outlined below:

� Start with a set of singleton clusters, each contains one object

� Repeat the following steps iteratively until there is only one cluster

{ Identify the two clusters that are the most similar

{ Merge them together into a single cluster

This system is a reasonable attempt at automatic categorisation; it con-

structs folders based on the text in the document (which should give a clear

indication as to the category to which it belongs), and also enables automatic

and semi-automatic classi�cation (a useful feature).

However, it has many limitations. As seen from the screenshot of the

bookmarks database after BO has executed (Figure 2.1), the automatically-

generated folder titles are quite unclear and often meaningless to the user.

Another signi�cant limitation is that classi�cation accuracy is highly de-

pendent on the number of documents. Running BO on a small number of

bookmarks will generate folders containing loosely-related documents, so a

large bookmark database is required to achieve any useful results. This links

with the next point - there is no indication of the time it takes BO to run

through the database and categorise accordingly. The program must exam-

ine those documents that each URL refers to and execute its IR process on

23

Figure 2.1: A BO-categorised bookmark hierarchy

the document text. For large databases this could be too slow for the pa-

tience of any user, but as stated previously, large databases are required if

satisfactory categories are to be constructed.

2.4.2 PowerBookmarks

This semi-structured database application (developed by (Li et al 1999)) aims

to provide personalised organisation and management of bookmarks in a

multi-user environment.

PowerBookmarks automatically classi�es documents by contents; it

parses metadata from bookmarked URLs to index and classify them. It

avoids the verbose labelling problem encountered in BO by using existing

classi�ers with manually selected labels (for example \Sports/Football").

Signi�cant keywords are extracted from documents according to the word

frequency analysis. Queries are then issued to an external classi�er, the re-

sults of which are processed by a classi�cation tree maintainence algorithm

to stabilise the tree structure.

The idea of sharing bookmarks is a good one. The bookmark collections

24

Figure 2.2: PowerBookmark hierarchy

of other people provide a potentially valuable information resource. Instead

of using a search engine to locate information, a user can browse the hierarchy

to locate any relevant documents. Having bookmarks on the web means that

they can be accessed from anywhere in the world, not just at the users' home

terminal. The categorisation process used is quite accurate as it uses the

text contained in the document. The process also results in clear and concise

folder titles.

As this is designed for a shared, web-based environment, it is not par-

ticularly useful for the ordinary user who does not have permanent internet

access. Every time they wish to browse through their bookmark collection

they have to be connected. However, the ideas and strategies implemented

are quite successful.

25

2.5 Related Work

2.5.1 Email Classi�cation

This project is based on research carried out previously by Chouchoulas

(Chouchoulas 1999) . He investigates the applicability of rough set theory to

the information retrieval and �ltering domain, and then exempli�es this by

means of an email categorisation application.

The implemented system is modular to address the problem of dimension-

ality (a typical text categorisation problem). During the training phase, the

system acquires keywords from a subset of the total collated email messages

and reduces this dataset using rough set theory. This reduced dataset is used

as a set of rules by the classi�er module for categorising new messages in the

testing phase.

The results of this research show that rough set theory is very much

applicable to the domain of text categorisation. A classi�cation accuracy of

90% - 100% was obtained for the email categorisation application, showing

that precision in classi�cation is only slightly reduced.

The design of this project is based on his system, using a modular ap-

proach to allow alternative modules to be tested. However, no comparison of

alternative reduction techniques was attempted - an interesting topic worthy

of much more research. It is well known that rough sets is a useful tool for

data reduction, but how does it compare with other techniques? This project

has been extended to address this question.

2.5.2 Web Page Classi�cation

Very recently, research has been carried out into the area of Web page classi-

�cation. In fact, it has given rise to speci�c techniques for problems such as

indexing, term selection etc as Web pages can be considered to be a special

26

kind of document. Web pages contain text much like any other document,

but the fact that they contain pointers to other documents makes them an

interesting area for research.

An indexing technique speci�c to these documents has been proposed by

(Atardi et al. 1999). A Web page tends to have many other pages pointing

towards it. Atardi et al. reason that these documents can be combined

forming an arti�cial document which can be considered to be a compilation

of \short reviews" of the Web page. It is this compilation that is used in

classi�cation, not the original document.

Another indexing technique has been put forward by (Fuhr et al 1998),

where a document representation is obtained by the combined indexing of

both the original document and its children (the documents that it points

to). This is of interest for Web site classi�cation, as often the children of a

document contain relevant information for the site as a whole.

The topic of indexing is not the only one to have been investigated -

di�erent methods of classi�er induction have been proposed. Chakrabarti

et al. (Chakrabarti et al 1998) base their Web page categorisation approach

on the hypothesis that for each document-classi�cation pair (d; c), two val-

ues can be associated; the authority a(d; c) and the hub value h(d; c). The

authority value is a measure of the \authoritativeness" of d on c in terms

of the number of c-related pages pointing to it. The hub value measures

the \informativeness" of d on c in terms of how many c-related documents

it points to. Therefore, the purpose of this system is to identify the n most

authoritative and the n most informative documents that are associated with

the document, given a classi�cation c. By issuing a query c to AltaVista,

an initial set of relevant documents is obtained, giving a starting point for

the induction algorithm.

Ruiz and Srinivasan (Ruiz and Srinivasan 1999) have developed a method

for the induction of classi�ers for hierarchical category sets, using neural

27

networks to achieve this.

Web page classi�cation is a closely-related topic to bookmark classi�ca-

tion. Both are concerned with classifying web pages, but using quite di�erent

information for the task. It is possible that areas of research involved in Web

page classi�cation can be modi�ed for the bookmark domain, such as ex-

amining the links that a document contains. The URLs and titles of these

documents could be combined with those belonging to the original document

for a more accurate classi�cation.

2.6 Summary

This chapter has covered the main areas involved in the bookmark classi�ca-

tion process. Several techniques for classi�cation have been outlined for this

task. For these techniques to be usable, a data reduction step must be taken

beforehand. The two proposed methods to achieve this are Rough Set Data

Reduction and a new technique called Entropy-Based Reduction. Both of

these can be used to reduce any dataset, but are thought to be pontentially

very useful for this particular domain.

Related systems have been examined, although there are only a few as

this topic is relatively new. This project intends to build on the advantages

and disadvantages present in these systems.

28

Chapter 3

Theoretical Aspects

As mentioned in the previous chapter, the application of rough sets to the

text classi�cation domain has been successful, but has never been applied to

the domain of bookmark classi�cation. Bookmark databases are a relatively

information-poor domain, however, so steps must be taken to ensure that all

relevant information is used in the classi�cation process, with any misleading

or useless data removed.

This chapter addresses the issues involved in constructing a system that

will classify bookmarks. Some of the theory involved in the reduction of data

has already been discussed in chapter 2; their function is described here in

more detail.

3.1 Design

The system is modular, to allow various components to be replaced with

other components to compare and contrast their operation. It may well be

the case that rough set theory is not the best way to reduce the datasets

involved, so an alternative reduction technique can replace it. In the future,

there may be a quicker way to discover a minimal reduct for a dataset than

the QuickReduct algorithm - this can then be placed into the system with

29

Keyword
Dataset
(training)

Keyword
Dataset
(testing)

����
����
����
����
����
����

����
����
����
����
����
����

Data

Reduced
Keyword
Dataset

Reduced
Keyword
Dataset

Reduction Set of Keywords
Reduced Keyword

Filtering

Classified Bookmarks

Classifier

Bookmark
Database

Acquisition

Keyword Keyword

Acquisition

Figure 3.1: The Proposed System

almost no changes to existing parts required.

� Training and Testing Split A large dataset of bookmarks was collected

from various sources and used in the training phase, while other smaller

datasets were used for testing. The format of both datasets is identical.

� Keyword Acquisition Given the input from the previous module, key-

word sets are acquired and weight-term pairs are produced as output.

Section 3.1.1 discusses this module further.

30

� Dimensionality Reduction This module reads the dataset, �nds a

reduct and outputs the new reduced dataset. There are two imple-

mented mechanisms to achieve this: rough set data reduction and

entropy-based reduction. The operation of both have been highlighted

in chapter 2.

� Keyword F iltering This uses the list of keywords generated by the di-

mensionality reduction stage to �lter the keywords from the acquisition

module.

� Classification The classi�er uses the reduced dataset and the results

from the previous module to classify the test data.

3.1.1 Keyword Acquisition

This module produces weight-term pairs given a dataset. All keywords are

compared with the case ignored (e.g. `house' equals 'HouSe'). Each of these

keywords is assigned a weight according to its importance in the document,

as determined by the following weighting methods:

� Boolean Existential Metric. All keywords that exist in the document

are given a weight of 1, those that are absent are assigned 0.

� Frequency Count Metric. The frequency of the keywords in the doc-

ument is used as the weight.

� Term Frequency-Inverse Document Frequency Metric. This assigns

higher weights to those keywords that occur frequently in the current

document but not in most others. It is calculated using the formula:

w(t; i) = Fi(t) � log N
Nt

where Fi(t) is the frequency of term t in docu-

ment i, N is the number of documents in the collection, and Nt is the

total number of documents that contain t.

31

3.1.2 Rough Set Data Reduction

To be able to reduce a given dataset to its smallest possible dimensional-

ity, a minimal reduct must be calculated somehow. The problem of �nding

such a reduct of minimal cardinality is, in general, NP-hard, and �nding all

reducts has exponential complexity. The following algorithm generates such

a minimal reduct and is called the QuickReduct algorithm:

R �

do

T R

8x�(C� R)

ifR[fxg(D) > T (D)

T R [fxg
R T

until R(D) = C(D)

return R

(This algorithm is similar to the one presented in (Jelonek et al. 1995),

but they use the calculated core as the initial R). At the start, R contains no

attributes. The algorithm tries all the condition attributes not in R and adds

to R the one that causes the largest increase in discernibility. The process

is repeated until R(D) = C(D). It can be proven that the QuickReduct

algorithm is monotonic, so it always locates a minimal reduct. The operation

of the algorithm is best illustrated by returning to the example dataset in

section 2.2. It calculates the dependency change after an attribute is added

to R (initially empty):

R[fag(feg) = 0=8

R[fbg(feg) = 1=8

R[fcg(feg) = 0=8

R[fdg(feg) = 2=8

32

Attribute d is added to R as it provides the highest increase in discerni-

bility. The algorithm then repeats this previous step, but with R = fdg:

R[fag(feg) = 3=8

R[fbg(feg) = 8=8

R[fcg(feg) = 8=8

By adding either b or c to R results in maximum discernibility. The

algorithm will choose to add b to R as it always selects the left-most attribute

when faced with two or more alternatives. So the reduct generated by the

QuickReduct algorithm is fb,dg.
This method can be applied to any dataset. Once a minimal reduct is

found, those attributes that are absent can be removed from the original

dataset.

3.1.3 Entropy-Based Reduction

The rough set data reduction technique is reasonably well established and

any alternative implementations of �nding a minimal reduct are beyond the

scope of this project. However the entropy-based approach has not been

attempted before and so very little is known as to its applicability to this (or

any other) domain.

Entropy-Based Reduction (EBR) is based on ID3 and was originally much

closer to the ID3 approach than it is now. It followed the standard ID3

algorithm:

ID3(Examples, Target, Attributes)

1. Create a root node

2. If all Examples have the same Target value, give the root this label

3. Else if Attributes is empty, label the root according to the most common

value

33

4. Else

(a) Calculate the information gain for each attribute (using the en-

tropy formula).

(b) Select the attribute with the lowest entropy (call this A). Make

A the tested attribute at the root

(c) For each value v of A:

Add a new branch below the root, corresponding to A = v

Let Examples(v) be those examples with A = v

If Examples(v) is empty, make the new branch a leaf node labelled

with the most common value in the Examples

Else let the new branch be the tree created by

ID3(Examples(v), Target, Attributes - A)

The tree was constructed and then a breadth-�rst search was executed

on the completed tree, returning an ordered list of the attributes. For large

datasets, this required a lot of time (although not nearly as much as RSDR).

In the example in section 2.3, the �nal solution determined that a par-

ticular attribute was unnecessary. However, it is usually the case that all

attributes appear in the �nal solution (but are ordered according to impor-

tance), so it is necessary to include an arbitrary threshold - some point at

which the algorithm should halt and return those attributes that have been

chosen so far. This can be adjusted to allow comparison with the RSDR

approach.

It was found that by adopting a simpler approach to reduct generation,

EBR could produce similar results to this old method. No tree construction

occurs - it simply calculates the information gain for each attribute in the

dataset. The attributes are then ordered accordingly, and the �rst threshold

34

percent of them are considered to be the reduct. Returning to the example

dataset in the previous chapter, the operation of ID3 was illustrated using

table 2.3, and the following values were obtained:

E(sickness) = 0:60684

E(day) = 0:5

E(time) = 0:75

E(weather) = 0:93872

Using EBR, a di�erent reduct is obtained. The attributes are ordered

by the algorithm into: fday; sickness; time; weatherg. With a threshold

of 3/4 (we want three out of the four conditional attributes) the reduct

fday; sickness; time;moodg is produced. Using this method, a reduct of any

length can be generated for any dataset.

3.1.4 Classi�cation Modules

A number of di�erent techniques were used to classify the test data:

Boolean Inexact Model

The problem with the Boolean Exact Model (described in section 2.1.1) is

that it is inexible - only documents for which the rule returns true match

the rule. The Boolean Inexact Model (BIM) (Salton 1982) bypasses this

problem by providing a scoring mechanism so that the rule with the highest

score classi�es the document. If there is more than one rule that �res then

all rules must agree on the classi�cation. If there is a conict, then the

classi�cation is undecidable (and is classi�ed into the 'Unclassi�ed' category).

The main advantage of BIM is that it is fast (the computations involved

are simple). It can also be quite accurate. A drawback is that words can

have many meanings - something that the BIM cannot di�erentiate.

35

Vector Space Model

As mentioned in section 2.1.2, of all the TC techniques, the VSM is the most

popular (Moukas and Maes 1998),(Salton et al 1975),(van Rijsbergen 1979).

The vector space model procedure can be divided in to three stages. The �rst

stage is the document indexing where content bearing terms are extracted

from the document text. The second stage is the weighting of the indexed

terms to enhance retrieval of documents relevant to the user. The last stage

ranks the document with respect to the query according to a similarity mea-

sure.

Document Indexing : It is obvious that many of the words in a docu-

ment do not describe the content, words like the, is, etc. By using automatic

document indexing those non signi�cant words (function words) are removed

from the document vector, so the document will only be represented by

content bearing words (Salton 1983). This indexing can be based on term

frequency, where terms that have both high and low frequency within a doc-

ument are considered to be function words

TermWeighting : Term weighting has been explained by controlling the

exhaustivity and speci�city of the search, where the exhaustivity is related

to recall and speci�city to precision. The term weighting for the vector space

model has entirely been based on single term statistics. The three main

factors in term weighting are term frequency, collection frequency and

length normalization. These are multiplied together to make the resulting

term weight.

Similarity CoeÆcients: The similarity in vector space models is de-

termined by using associative coeÆcients based on the inner product of the

document vector and query vector, where word overlap indicates similar-

ity. The inner product is usually normalised. The most popular similarity

measure (and the one used in this project) is the cosine coeÆcient, which

measures the angle between the document vector and the query vector, and

36

is de�ned as (taken from (Meadow 1992)):

Sim(X; Y) = jX\Y jp
jXj
p

jY j

Fuzzy Reasoner

The previous chapter introduced the fuzzy rule-based technique for text cat-

egorisation. A document is classi�ed using fuzzy rules with fuzzy reasoning

(Zadeh 1965; Kasabov 1996; Cox 1994). All precondition memberships are

evaluated, the fuzzy 'and' operator applied, and the rule with the highest

score classi�es the document (unless other rules match). Again, a set of �r-

ing rules is used and any inconsistencies are treated in the same way as the

BIM .

3.2 Available Information

With the problems mentioned in the previous chapter in mind, we consider

the classi�cation of the data contained in the bookmark. An individual

bookmark consists of many parts. In Netscape, a bookmark contains the

following information:

� URL - the location of the document

� ADD DATE - an integer that represents the number of seconds elapsed

since midnight January 1, 1970

� LAST VISIT - an integer that represents when the document was

last visited.

� LAST MODIFIED - an integer that represents when the document

was modi�ed last.

� title - the title of this document

37

In Internet Explorer, favorites are stored in directories, whose struc-

ture is the classi�cation of those favorites. For example, favorites stored in

\/favorites/Sport and Leisure/Football/" have the classi�cation \/Sport

and Leisure/Football/". The favorites themselves are saved as individual

�les (whose name is the title of the referred-to document) and contain the

following information:

� URL - the location of the document

� Modi�ed (optional)- when the document was last modi�ed

� DEFAULT(optional) - the base URL of this document.

Having looked at the information that is available for both Internet Ex-

plorer favorites and Netscape bookmarks, it can be seen that not all compo-

nents of a bookmark/favorite are useful in the classi�cation process. In fact

only the URL and title contain helpful information, as the other components

are time-related (except for DEFAULT which contains the same informa-

tion as the URL). It is also bene�cial to remove these attributes from the

classi�cation task to reduce the time taken for data reduction.

So the classi�cation of bookmarks is carried out using only the informa-

tion in the URL and title components. However, using a combination of

these �elds might produce an incorrect classi�cation. For example \ed" in

the URL part (referring to Edinburgh University) may well have a di�erent

meaning in the title part (probably a page belonging to a person named

\Ed"). Classi�cation, then, is performed on the URL and title �elds sep-

arately, with the two results combined in some way to produce an overall

category.

There are other problems when classifying a bookmark. First of all, the

information in the URL or title �elds can be minimal and not particularly

informative. An example of this is \http://www.cnn.com" (with the imagi-

native title \CNN.com") which is a news site, but there is nothing to suggest

38

this in the URL or title �elds. There is also the frequent tendency for web

sites to have the title \Home Page" for both commercial and personal sites.

There is also the problem of ambiguous information contained within the

title �elds. A page entitled \Java" could be talking about the programming

language, the island, or a fern. Certainly the URL could be helpful in deter-

mining the context, but it is not guaranteed that any more information can

be discovered as to what category the page belongs to.

3.3 Summary

In this chapter, the theoretical aspects integral to the system have been put

forward. The system's design is modular, allowing components to be changed

easily for experimentation purposes and for future development. Two di�er-

ent methods for reducing datasets have been presented as have three di�erent

classi�cation models. Such variety is necessary as one approach may be par-

ticularly suited to this domain; a key factor if the system is to perform well,

given the small amount of information that is available.

39

Chapter 4

Software Speci�cation

The details of the implementation of this system are presented here and

defended. Many implementational decisions were enforced as a result of the

language chosen and the application domain. This chapter seeks to relate

the theory previously discussed with these decisions.

4.1 Choice of Language

It was decided from early on to implement the system in the Java program-

ming language (Java 2000). Java was chosen as it is designed to operate on

any platform (hence its slogan \write once, run anywhere"), and a bookmark

utility such as this project can be used on any computer that has web access

and a browser. Additionally, it is secure and enforces object-oriented design,

leading to robust, well-structured and reusable code.

This project is based on earlier work carried out by Olve Maudal (Maudal 1996)

and Alexios Chouchoulas (Chouchoulas 1999). The work was written origi-

nally in C++ due to its eÆciency and modularity, and then additional code

written in Perl. Part of the task of this project was to port some of the

existing code from these languages to Java.

However, for all the advantages of the Java language it remains much

40

slower than C++ at present (although in a few years time it is conceivable

that Java could out-perform C++). The only time-consuming part of this

system is the rough set reduction module which takes place during the train-

ing phase anyway (where time is not a problem). Almost all of the system

is implemented in Java, with just one data-ow co-ordinating sub-system

implemented in Perl (which is also portable).

4.2 System Implementation

4.2.1 Datasets

A large training database of bookmarks was required to ensure that the classi-

�ers generated reasonable results. Fortunately, there are many sites on the in-

ternet where personal bookmarks are available to download (Web Wizards 2000;

Dolphin 2000). The collection of individual bookmarks were standardised so

that there were no duplicates and all equivalent categories had the same ti-

tle. These were then combined to form a large bookmark hierarchy covering

popular categories (such as \Arts", \News" etc). A maximum tree depth of 3

was chosen, as a deep hierarchy results in less eÆcient information retrieval.

4.2.2 Keyword Acquisition

Given a bookmark hierarchy (whether Internet Explorer favorites or Netscape

bookmarks), this module acquires and weights the keywords present. As

mentioned earlier, the URL and title are treated separately:

� URL: Keywords in a URL are those terms separated by white space

characters or any of f- +":/.()g. The case of each item is ignored.

� title: In a title, keywords are de�ned to be those terms separated

by white space characters or any of f-+":;,.-[]fg()?/!@#$%&̂*= `' g.

41

Common words such as 'the', 'is', 'and' etc are not considered. Again,

the case of each item is ignored.

For each of these terms a weight is calculated and assigned to it ac-

cording to the weighting method used. The three options are: Boolean

Existential, Frequency Count and Term Frequency-Inverse Document

Frequency metrics. These are de�ned in the previous chapter.

In the email categorisation system (Chouchoulas 1999), keyword weights

were multiplied by a number depending on the �eld they were found in (i.e.

words found in the \from" part of the message are considered more important

than those found in the message body). It was decided that this was not

appropriate for the bookmark categorisation system, as no real distiction of

importance can be made between the terms. However, it can be seen that

the title of a bookmark usually contains more classi�catory information than

the URL. This distinction is used in the classi�cation phase (section 4.2.4).

The output produced by this module (in the training stage) is:

1. Attribute Lists - two lists (one for the URLs and one for the titles) of

keywords and their corresponding weights as calculated by the weight-

ing method. These lists also represent the column labels for the two

tables of rules.

2. Rule Tables - two tables (one for the URLs and one for the titles) that

can be used to classify data, but are not yet reduced. Each URL/title

in the training database maps onto one row in the table. Each element

at (row i,column j) indicates the weight of the keyword j in URL/title

i. The very last column is an integer representing the classi�cation.

3. Classification List - a list of the classi�cations with their correspond-

ing integer representation. This list is neccessary, as the current im-

plementation of the RSDR module only allows oating point numbers

and not strings in the datasets.

42

4.2.3 Data Reduction

This module takes the rule tables resulting from the keyword acquisition

module, �nds a reduct (a list of column numbers considered to be the most

useful for classi�cation), reduces the rule tables accordingly, and sorts the

keywords and corresponding table columns in order of weight (largest weighted

keyword is the �rst column). Two data reduction approaches have been im-

plemented:

Rough Set Data Reduction

The algorithm used to determine the minimal reduct is the QuickReduct

algorithm (outlined in section 3.1.2). Maudal's (Maudal 1996) C++ imple-

mentation of this (called Haig) has been converted to Java. However, as

expected, the Java version is considerably slower than its C++ equivalent

for large datasets. For this reason, the original program Haig was used to

speed up the process. In the future, the Java version may become preferrable,

but at the moment it takes too long. Due to the modularity of the system,

it is possible to include di�erent implementations of the RSDR mechanism

in di�erent languages (so long as the computer supports the language), so it

is quite simple to switch between the Java or C++ versions.

The Haig program itself is not the most eÆcient implementation of

QuickReduct. It requires a lot of memory (something that the Java im-

plementation struggles with) and has a fairly high complexity. A highly

optimised version of the RSDR mechanism has been implemented by Alexios

(Chouchoulas 1999), but has not been converted to Java due to lack of time

(it has not been fully tested yet either).

43

Entropy-Based Reduction

The operation of the Entropy-Based Reduction (EBR) technique has been

outlined in chapter 3. It calculates and outputs a 'reduct' in a similar format

to the RSDR approach. Given a dataset, EBR calculates the information

gain for each attribute in the dataset and orders them, with the attribute

that provides the most gain in information �rst. The �rst threshold percent

of these attributes are returned as the data reduct.

In terms of speed, this approach is signi�cantly faster at �nding a reduc-

tion for datasets - it completes in a couple of minutes what it takes C++

Haig several hours. Of course, this is a minor issue compared to the issue

of classi�cation precision. This is discussed in the next chapter.

Reducing the Datasets

As two rule tables have been generated, two reducts are generated by the

reduction mechanism. These reducts are then used to reduce their corre-

sponding rule tables. For both the URL and title tables, the following is the

resultant output of this module:

� Reduced Attribute List - the same list generated by the keyword ac-

quisition module, but with those keywords not present in the reduct

removed. If the reduct f3,20,330,597,1200g was obtained, only the key-
words representing columns 3, 20, 330 and 597 would be present (the

�nal value is the decision column). Additionally, this list is sorted in

order of decreasing weight.

� Reduced Rule Table - those columns of the original rule table not

speci�ed in the reduct are removed (in the example above the table

would have only �ve columns). The columns are ordered according to

the sorted reduced attribute list.

44

4.2.4 Classi�cation

This module attempts to classify a given bookmark or bookmarks using the

reduced rule tables and attribute lists. Each bookmark is examined and

the URL and title determined. Each of these is then transformed using the

keyword acquisition process de�ned earlier, but only those keywords present

in the reduced attribute list are considered. Once converted, they are then

classi�ed individually and the results compared. Three di�erent inference

techniques were implemented:

� Boolean Inexact Model - this uses Boolean matching and scoring tech-

niques. If a term exists in the URL/title and also exists in the corre-

sponding rule table, then the score is increased. Also, if a term is absent

from the URL/title and is also absent in the rule table, the score is in-

creased. The rule with the highest score classi�es the URL/title.

� V ector Space Model - this computes the similarity of a URL/title by

calculating the angle between URL/title vectors.

� Fuzzy Reasoner - this follows the usual approach for the construction

of fuzzy rule-based systems (Kasabov 1996). Reasoning is carried out

by the fuzzy classi�er using the rule table generated previously.

The operation of these models is de�ned in section 3.1.4.

To improve accuracy, it was decided that two classi�ers should be used

and the results merged. This leads to a total of four classi�cations for one

bookmark as the classi�ers operate on both the URL and title. For example,

given a bookmark:

URL : http : ==news:bbc:co:uk= title : BBCNewsjFrontPagejfrontpage
One classi�er might classify the URL as =News and the title as =News=Newspapers,

while the other classi�er might have the URL as =Recreational=TV and the

45

title classi�ed as =Computers=. The algorithm for deriving a �nal classi�ca-

tion is very simple:

1. If at least two classi�cations match, then that is the classi�cation of

the bookmark.

2. Else �nd the lowest classi�cation directory where at least two classi�-

cations are the same. In the example this would be =News as =News

and =News=Newspapers have this as a common directory.

3. Else the bookmark is unclassi�ed.

4.3 User Interface

To show that the system is viable as a utility to manage and automatically

classify a users' bookmark collection, a simple user interface was constructed.

This system is experimental - there are many features missing that should be

present in a proper application. The idea here is to demonstrate that such

an application can be constructed. The working title of this application is

Rob - Roughly Ordered Bookmarks.

Bookmarks are displayed in an expandable tree structure similar to that

used in Netscape itself. The program can read and display both Internet

Explorer favorites or Netscape bookmarks. It can also save to either format,

allowing the user to automatically organise their collection and keep the

results. For simplicity, only those bookmarks at the top level in a user

speci�ed folder are automatically classi�ed. An example of this system in

action can be found in chapter 5.

Features that a complete application should have are:

� Drag and Drop - the user should be able to click and drag bookmarks

into or out of folders, folders into or out of other folders, etc.

46

Figure 4.1: Examining Explorer Favorites with Rob

� Classify Individual Bookmarks - the system at present classi�es all

bookmarks at the top level of a folder, but not individual ones. This

is quite straight-forward to code, but due to lack of time it was not

implemented.

� User-Defined Categories - the user should be able to rename the

exisitng categories into di�erent ones more relevant to the user.

� Learning - the ideal system should be able to learn new classi�cations.

This is discussed in the �nal chapter.

47

4.4 Summary

The choice of Java as the implementational language has provided many

bene�ts (it is robust, secure and portable), but has also brought with it a

disadvantage - it takes too long to calculate a reduct in comparison with

C++. This is not seen as too problematic, as machines are getting faster,

and the Java programming language is being developed further and becoming

more eÆcient.

Various implementational details have been discussed, relating to the in-

dividual processes involved. The Keyword Acquisition phase obtains sets

of weight-term pairs for each bookmark, converting this to two table from

which bookmarks can be classi�ed. The Data Reduction module reduces

these tables whilst attempting to retain classi�cation precision. Finally, the

classi�ers attempt to produce accurate classi�cations of new bookmarks using

these reduced datasets.

48

Chapter 5

Experimentation

The original aim was to investigate how well RSDR can extract information

from the bookmark domain. The experiments presented here attempt to

test whether RSDR is a useful tool for reducing data whilst retaining the

information content. Additionally, experiments are carried out that compare

the performance of RSDR with that of an alternative approach, EBR. The

classi�cation models are combined in order to classify the bookmarks, each

combination is investigated here also.

5.1 Experiments

5.1.1 Performance Measure

As mentioned in (Chouchoulas 1999), Information Filtering and Information

Retrieval systems are compared using the concepts of precision (the number

of relevant retrieved documents out of the total number retrieved) and recall

(the number of relevant documents retrieved out of the total number of rel-

evant documents known to the system). However in this system, documents

are not considered to be relevant or irrelevant, but may be classi�ed into a

number of classes. For this reason, performance is measured by how well the

49

system classi�es bookmarks (i.e. if the categories suggested by the system

are appropriate).

5.1.2 A Problem

Before the results are given, a problem encountered during this phase needs

to be highlighted. The collation of results has to be undertaken manually as

bookmarks may have many valid but di�ering classi�cations. For instance

a bookmark about sports news can be classi�ed either as belonging to the

sports category or the news category. A large number of bookmarks exhibit

this problem and there is no automatic way of di�erentiating between an

incorrect classi�cation and an unexpected, but correct one. So, all classi�ca-

tions have to be manually veri�ed.

A much greater amount of experimentation is required, but due to its

time-consuming nature, has not been carried out yet.

5.1.3 Testing the Goal

The principle goal of this project was to demonstrate the e�ectiveness of using

rough sets to reduce dataset dimensionality, while retaining the information

content. To test this, a comparison of classi�cation precision between rough

set reduced datasets and unreduced datasets was set up. The unreduced

method simply used the generated rule tables from the stage before the data

reduction module. There has been some reduction though, as stop words have

been removed. The RS-reduced method used the reduced datasets from the

RSDR process.

For the test data, a subset of the original training bookmark examples

were randomly selected, covering all categories. If the RS-reduced dataset

contains the same information content as the unreduced dataset, then the

classi�cation of this set of bookmarks should be identical (or close to it). As

50

mentioned before, the use of just one classi�er method proved too inaccurate,

so pairs of classi�ers were used to classify the test data. The results are

displayed in table 5.1. (V SM is the Vector Space Model, BIM is the Boolean

Inexact Model, and FR is the Fuzzy Reasoner).

Attributes Attributes

Dataset (URL) (Title) VSM + BIM VSM + FR FR + BIM

Unreduced 1397 1283 98.1% 96.8% 98.7%

RS-reduced 514 424 94.3% 94.9% 98.1%

Table 5.1: Comparison of Unreduced and RS-reduced classi�cation accuracy

From the table we can see that using rough set theory, the amount of

attributes was reduced to around 35%. For email classi�cation, the average

reduction of attributes was 3.5 orders of magnitude. This demonstrates that

there is much less redundancy in the original datasets for the bookmark

domain, which is intuitive as there is much less information in a bookmark

than a document.

The greatest drop in classi�cation precision was 4% for the combination

of the Vector Space Model and the Boolean Inexact Model. Even this loss of

precision is acceptable when considering the increase in speed gained from a

reduced dataset. The combination of the Fuzzy Reasoner and the Boolean

Inexact Model give the best results here, perhaps because of their quite dif-

ferent approaches. The Vector Space Model was observed to produce similar

classi�cations as the FR before these experiments were carried out, so it was

expected to perform similarly. This appears to be the case.

It was expected that the unreduced datasets would produce perfect results

(i.e. 100% precision), but this was not the case. An explanation for this

might be that other rules produce the same score as the correct rule, but the

conict resolution strategy chooses the wrong rule to classify the bookmark.

There is also a degree of variance between the classi�ers themselves - some

51

appear to better than others for this task. Having said this, most of those

classi�cations deemed \incorrect" are acceptable alternatives from a users'

point of view.

The same dataset was used for two other approaches: entropy-based re-

duction and random-reduct reduction (RR). RR generates a random reduct

given the total number of attributes present in the unreduced table. The size

of the reduct is constrained to be equal to the size of the rough set reduct.

Using this reduct, the dataset is reduced and used for experimentation. The

results of these two approaches can be found in table 5.2.

Attributes Attributes

Dataset (URL) (Title) VSM + BIM VSM + FR FR + BIM

EBR-reduced 514 424 72.8% 72.8% 74.7%

RR-reduced 514 424 49.4% 50.0% 52.5%

Table 5.2: Comparison of EBR-reduced and RR-reduced classi�cation accu-

racy

The RR-reduced dataset performs as expected, with an accuracy of around

50%. The EBR-reduced dataset didn't perform as well as the rough set al-

ternative, with a comparative drop in accuracy of around 20%. EBR and

RSDR are compared more thoroughly in the next section.

5.1.4 EBR vs Rough Sets

Several datasets have been obtained from the internet. Each bookmark

dataset is someone's personal collection that has not been used in the training

phase and have not been modi�ed in any way except to remove any duplicate

entries. They have been chosen to simulate how this system would cope with

a user's real bookmark database.

The collections contain a at list of bookmarks, the contents of which are

52

�ltered using the reduct generated by the data reduction module. The re-

sulting keyword set is then used by the classi�ers to generate a classi�cation.

The overall results are displayed in table 5.3.

Dataset VSM + BIM VSM + FR FR + BIM

Unreduced 55.6% 49.7% 45.0%

RS-reduced 49.1% 47.3% 42.0%

EBR-reduced 50.9% 52.7% 43.2%

RR-reduced 37.3% 34.9% 26.3%

Table 5.3: Comparison of reduction strategies with unreduced dataset

We have seen that in table 5.1, the combination of the FR and BIM

classi�ers produced the most accurate classi�cation of the training data. In

table 5.3, however, we see that they are the least accurate classi�ers for new

data and in fact VSM/BIM was the most successful combination. The BIM

immediately notices the existence of any known keywords and classi�es them

accordingly; for instance, if the title contained the word \java", the BIM

would recognise this as belonging to the \Java" category. As titles tend to

have only the important keywords present, the BIM was expected to perform

well. The results obtained are inconclusive on this issue.

The table shows that the overall accuracy is poor (obviously, the random

reduction gives weak results). The main point to make here is that the ability

of the datasets to classify new data depends entirely on the quality (and to

a certain extent the quantity) of the training data. It can't be expected that

the RS-reduced or the EBR-reduced experiments should perform better than

the unreduced dataset.

Performance of all the methods employed could be improved by reducing

the number of sub-categories (thus reducing the chance of mis-classifying a

bookmark). For example, categories such as =Computers=Reference=Perl

could become just =Computer. For large bookmark databases this is unac-

53

ceptable as each category will contain a huge list of bookmarks, defeating

the whole point of having an automatic bookmark classi�cation system.

In light of the fact that bookmarks contain very little useful information,

the results are unsurprising and perhaps a little better than anticipated. As

stated earlier, the goal of this project is to investigate how useful rough set

theory is in reducing the training dataset. For this, we need to compare how

well the rough set-reduced approach fares against the unreduced dataset. If

we consider the unreduced dataset results to be the optimum, the table can

be rewritten (shown in table 5.4).

Dataset VSM + BIM VSM + FR FR + BIM

RS-reduced 88.3% 95.2% 93.3%

EBR-reduced 91.5% 106% 96.0%

RR-reduced 67.1% 70.2% 58.4%

Table 5.4: Comparison of reduction strategies

Viewed this way, we can see that EBR has the best results for each clas-

si�er pair, and is in fact better than the unreduced dataset in one instance.

The performance of the RS-reduced dataset is almost as good. From this we

can conclude that a very small amount of important information has been

lost in the rough set reduction approach, but not enough to reduce classi�-

cation accuracy signi�cantly. The results appear to show that EBR works

best for unseen data, but RSDR is best for known examples.

The question now asked is: why should EBR perform better than the

\optimum" for new data? EBR selects those attributes that provide the

largest gain in information. This process might ignore otherwise misleading

attributes that the unreduced dataset contains. The RS-reduced dataset can

be thought of as a smaller version of the original dataset, and so this will fall

prey to the same mistakes.

A more thorough investigation into the performance of EBR compared to

54

RSDR would have been desirable, to ensure that these results were accurate,

but there was not enough time for this. It might possibly be that EBR

is particularly suited to the bookmark domain for some reason that is not

obvious. Appendix A contains some results from using EBR on datasets from

other domains, and results are presented alongside those from RSDR.

5.2 Sample Run

5.2.1 Training

This section details the actions required to convert the input data (in the

form of bookmarks) into a reduced training dataset that can be used by the

classi�ers.

A Perl script has been written that takes a database of bookmarks, con-

verts them to a format usable by the data reduction phase, �nds a reduct

and then reduces the dataset accordingly. To produce the rule tables for the

bookmark collection in the �le \bookmarks.html", the following command is

used:

perl run.pl bookmarks.html training -f -n

which stores the necessary data in the speci�ed directory \training", using

the frequency count metric. The �nal argument (\-n") indicates that this is

a Netscape bookmark collection; with the option \-e", a directory of favorites

needs to be speci�ed instead of the �lename \bookmarks.html", for example:

perl run.pl /windows/favorites training -f -e

The script then enters the following phases in order:

Bookmark Conversion

The bookmark �le is examined and the following information is obtained and

saved to separate �les:

55

� Classifications: The classi�cation of each URL is stored. In Netscape

the classi�cation is equivalent to where the URL is in the HTML di-

rectory structure, whereas in Explorer the classi�cation corresponds to

the path from the root directory to the URL.

� List of T itle Keywords: A list of all the text contained in the title

�elds. Each line in this �le contains the string of words determined by

the module to be useful. The set of words on line 1 corresponds to the

text in the �rst bookmark, etc.

� List of URL Keywords: Similar to the list above, this contains all the

keywords found in the URLs.

Acquisition of Keywords

Both the keyword �les generated by the previous phase are processed here.

An additional parameter is required to specify which of the weighting meth-

ods to use (Boolean Existential, Frequency Count, or TF -IDF). The

program then reads each �le individually and generates the following:

� Keyword-V alue Pairs: A list of all the keywords present and the

number of times it occurs in the database. Each line corresponds to a

separate keyword. This is saved as the �le p attr.txt or p attr.url.

� Partial Dataset: This is a table whose columns map to the keywords

in the keyword-value pair list (�rst column = �rst keyword), and whose

rows are generated by each bookmark (�rst row = �rst bookmark in

the database). The value at (row i,column j) is the weight for key-

word i in bookmark j calculated using the speci�ed weighting method.

This table is incomplete as it does not yet contain the corresponding

classi�cations. This is saved as the �le p table.txt or p table.url.

56

Finalising

The �nal phase examines the classi�cation �le and constructs a new �le

(called table.classes), which contains each distinct classi�cation and an

associated identifying number. Using this, the classi�cations (in numerical

form) are added to the partial tables, resulting in the complete tables (called

t.txt and t.url). These tend to be very large in size (around 3.5 Megabytes

for a decent training database). It is these tables that can now be reduced

by the data reduction mechanism.

Data Reduction

The datasets generated previously are reduced in this phase. There are two

implemented data reduction mechanisms: RSDR and EBR.

� RSDR: To �nd a reduct using rough set theory, the program Haig

needs to be executed (on both the URL and title tables) as follows:

java haig <dataset>

where < dataset > in this example will be training/t.txt for the

title table and training/t.url for the URLs.

� EBR: To discover a reduct by means of the entropy-based reduction

technique, the program ebr should be executed on both tables:

java ebr <dataset> <threshold>

In this example, the speci�ed dataset is training/t.txt or training/t.url.

The oating-point number < threshold > can be speci�ed (if not, the

default value is 0.4 corresponding to 40%). This value represents how

many attributes (as a percentage of the total number of attributes in

the dataset) should appear in the reduct. In order to compare EBR

with RSDR, the proportion of attributes in the RSDR reduct was

calculated and used as the threshold value; this enforced EBR to pro-

duce a reduct of identical cardinality. For large datasets (more than

57

about 50 attributes) it was observed that the reduct size for RSDR

was between 30% and 40% of the original number of attributes, hence

the default threshold value of 40%.

The result of both of these processes is a list of attributes that are con-

sidered to be vital for the classi�cation task at hand. An example reduct

calculated from the iris dataset (ML 2000) is:

java haig iris.dat = f0,1,2,4g
java ebr iris.dat 0.8 = f0,2,3,4g (also a viable reduct)

Using RSDR, column 3 would not appear in the �nal table. If EBR is

used, column 1 would be removed instead.

Those attributes not appearing in this list are then removed from the

tables by a separate program named reducer, which produces the following

�les:

table txt.rea, table url.rea - the reduced list of attributes for the URL

and title tables.

table txt.red, table url.red - the actual reduced datasets.

These �les can now be used by the classi�cation module to classify new

bookmarks.

5.2.2 Testing

This section seeks to illustrate the process of classi�cation by going through

a typical example using the user interface and then detailing the modules

involved.

The user starts up Rob and selects their Netscape bookmark �le (any �le

can be chosen if it contains bookmarks), and the expandable tree structure

58

Figure 5.1: An example bookmark �le

representing the hierarchy is displayed. As mentioned previously, the user

speci�es a folder and clicks on Classify to automatically re-categorise the

top-level bookmarks in that folder. In this example, they have selected the

top folder (the root of the tree). The user clicks on Classify and then waits

for the program to automatically categorise the top-level bookmarks. The

tree has now changed:

From further examination, the user can locate where each bookmark has

been reclassi�ed:

Classi�cation

For a bookmark to be classi�ed, it must �rst be converted into a format that

can be manipulated and used by the classi�ers. Using the selected folder from

59

Figure 5.2: Sorted bookmarks

Figure 5.3: Exploration of classi�cations

the user interface, each top-level bookmark is retrieved and the URL and title

�elds are examined. Keywords are acquired from these �elds and weighted

according to the weighting method (if they exist in the reduct generated by

the data reduction module). The document is now represented as an array

of oating-point numbers where document[ind] returns the weight of the

keyword with index ind. This is now in a format that can be used to classify

the bookmark.

The bookmark arrays (for the URL and title independently) are com-

pared to every rule in the rule table. A score is calculated according to the

classi�cation model used, and the rule with the highest score returns its as-

sociated classi�cation number. This value is used to locate the string version

60

of the classi�cation.

As mentioned in chapter 4, two classi�ers are used to make the �nal deci-

sion by comparing the results of their URL and title classi�cations. Although

this slows the process down, it makes for greater classi�cation accuracy, which

is essential when attempting to classify something as information-poor as a

bookmark.

After all classi�cations are obtained, the tree is updated accordingly. The

user is free to traverse the hierarchy and classify other bookmarks.

5.3 Comparison with Existing Systems

This system aims to incorporate most of the advantages of existing automatic

organisers of bookmark, whilst avoiding the disadvantages they possess.

5.3.1 Bookmark Organiser

The �rst system looked at was the Bookmark Organiser, which classi�ed

bookmarks by the text in the documents that they referred to. This is obvi-

ously going to be more accurate, as the document itself contains considerably

more information than its associated bookmark.

Bookmark Organiser generated a reasonably shallow folder hierarchy.

This is important for quickly locating bookmarks and not making mistakes

�nding them. This feature is present in Rob, where the depth of the hierar-

chy is limited to a maximum of three folders (e.g. \/Computers/Reference/Java").

The other useful feature in BO is the fact that it allows fully-automatic

and semi-automatic classi�cation. A user can use the tool to manually put

bookmarks into the appropriate categories, or can request BO to do this

for them. In Rob, fully-automatic classi�cation has been implemented but

there was not enough time to implement a drag-and-drop semi-automatic

facility. This is just a side issue, however, as the project is experimental

61

and concerned with the usefulness of rough set theory, not the design of the

interface.

The main limitation of the Bookmark Organiser was that the automat-

ically generated categories had unclear names. This is quite a fundamental

aw for a system that is designed to facilitate the maintainence of a mean-

ingful bookmark hierarchy. A user with no formal background in computer

science will not be able to make sense of the folder titles. In Rob, all clas-

si�cations have meaningful titles, with the top-level categories covering the

main topics (such as \Art", \Business", \Health", etc). These were based

on such internet directories as AltaVista and Yahoo (Altavista 2000;

Yahoo 2000).

It would have been interesting to compare the speed and accuracy of BO

and Rob for identical testing datasets, but there has been no analysis to

this e�ect in BO, nor is there a downloadable version available with which

experimentation can be carried out.

5.3.2 PowerBookmarks

It must �rst be pointed out that PowerBookmarks was intended for a

di�erent environment, where multiple users have their own bookmarks and

additionally can share them. This results in di�erent requirements and design

decisions than those of a single-user application.

The classi�cation process used by PowerBookmarks is similar in some

ways to BO as the referred-to document is examined instead of the bookmark

itself. Metadata is derived from the document based on keyword frequency

analysis. This metadata is used by external classi�ers (such as an Inter-

net search engine) to generate the classi�cation. Like Rob, the categories

produced are limited to a certain depth and have manually-selected labels.

The problem with PowerBookmarks is that all a user's bookmark

operations must be carried out online. This is not practical for the ordinary

62

home-based user. Rob was designed as a utility for such a user, and can be

run on any machine (due to its Java implementation) to automatically sort

bookmarks.

63

Chapter 6

Conclusion

The initial aim of this project was to investigate how well rough set the-

ory can help extract information from a relatively information-poor domain;

the databases of `bookmarks' or `favorites' saved by WWW browsers. This

chapter evaluates the success of this system in achieving this aim as well

as discussing the implemented extensions. Finally, it concludes with some

suggestions for future work.

6.1 Project Evaluation

Results clearly show that rough set theory can be used to signi�cantly reduce

the dimensionality of the training dataset without much loss in information

content. The measured drop in classi�cation accuracy was between 0.6% and

4% for the training dataset, which is within acceptable bounds.

The system is modular, allowing di�erent implementations of various

components to be inserted and tested. An alternative data reduction mecha-

nism, EBR, was constructed and compared with the RSDR approach. EBR

looks promising in this area (it betters RSDR in classifying unseen data), but

further experimentation is required to ensure the validity of these results. Al-

ternative classi�cation models were implemented - the best one for classifying

64

unseen data was the vector space model combined with the boolean inexact

model.

6.1.1 Limitations

The system compares well with other existing systems, improving on their

limitations and building on their advantages. As an overall application, the

system is far from ideal though. A classi�cation accuracy of around 50%

means that half of all new bookmark classi�cations are incorrect - which is

not good enough for a commercially-viable system. This system has always

been considered an experimental one, mainly due to the near impossible

nature of classifying a bookmark from such little information as its URL and

title. In this respect, a classi�cation accuracy of 50% is about as successful

as such a system is ever going to be.

The main limitation of this system is that it will only be as good as the

training dataset itself. Ideally, a much larger database of bookmarks would

have been used, but this would have taken many more weeks of collation.

It is not known how long it would take the QuickReduct algorithm to �nd

a reduct for such a large dataset as it takes many hours to �nd one for the

existing training dataset.

Another limitation is that only pre-de�ned categories can be generated by

the system. If a user becomes interested in a new topic, then there is no way

of creating a suitable category for these bookmarks and then automatically

classifying similar bookmarks to this new category. Linked in with this is

the fact that the system cannot learn, given new classi�cations. An option

would be to keep the training database and add new classi�cation rules to it

whenever a user informs the system of this new classi�cation. Every day or

so, the training process could run, reducing the dataset for the classi�ers to

utilise.

65

6.1.2 Achievements

The main goal has been achieved - it has been shown that rough set the-

ory is a useful tool for extracting information out of the bookmark domain.

Classi�cation accuracy is retained after the datasets have been reduced.

The success of EBR in generating useful reducts is a little surprising, due

to its straightforward approach. As an alternative data reduction technique,

it fares well against RSDR as shown in appendix A. However, with EBR a

threshold needs to be speci�ed beforehand. With no RSDR reducts to esti-

mate this value, there is no method available for discovering the appropriate

number of attributes that should appear. From experimentation with larger

datasets, it appears that a value of around 35% of the total number of at-

tributes is a reasonable estimate though. Another drawback with EBR is that

it can never �nd more than one possible reduct, which is perfectly �ne for

applications such as this, but may not be for more theoretical investigations.

6.2 Future Work

As mentioned earlier in this chapter, the main problem posed is one of achiev-

ing acceptable accuracy. It has been shown through experimentation that

there is not enough information in a bookmark to classify it with any degree

of certainty. A better strategy would be to locate the document that the

bookmark represents and use TC techniques on the text contained in that

document (which is quite straightforward to do using Java). This would

provide a more accurate classi�cation, which could be compared with the

classi�cation of the URL and title to make a �nal decision. This would

require access to the internet every time automatic classi�cation is desired

(unless the bookmarked web pages were stored locally).

Learning is a desirable feature that could be achieved in a laborious man-

ner by adding new classi�cations to the training dataset. A new bookmark

66

would be converted into the table format and inserted at the end of the ta-

ble. The dataset could then be reduced using EBR for use by the classi�ers

(that should now be able to classify similar bookmarks correctly). There

may be many other feasible ways of approaching this topic, such as using

neural networks trained on the pre-classi�ed data, reduced by RSDR. An-

other possibility could be an RSDR algorithm that incorporates training into

its operation.

At the implementational level, further work could be carried out onHaig.

At the moment it requires too much memory and is quite slow for large

datasets. A highly streamlined version of Haig would be desirable, reducing

the amount of time required in producing the training datasets. Many im-

provements need to be made to the user interface - its purpose was only to

demonstrate that such a system is possible. It lacks some of the features nec-

essary for a �nished application, and these have been mentioned in chapter

4.

EBR has proven to be very successful in this domain (and others - see

Appendix A). Therefore, further investigation into it's applicability to new

domains should be carried out. Existing systems that employ a data reduc-

tion step could be tested, with EBR providing this functionality. Providing

the system is reasonably modular, it should require very little e�ort to in-

tegrate EBR into the overall architecture. It is important to research this

further as it is much faster than RSDR (for all the datasets investigated here)

and appears to produce competitive results. The theory behind EBR should

be developed also, as there may well be many improvements and additions

that could be made to produce even better results.

67

Bibliography

[Altavista 2000] Altavista. A WWW-based Information Retrieval System or

Search Engine: http://www.altavista.com/

[Apt�e et al 1994] Chidnand Apt�e, Fred Damerau, and Sholom M. Weiss.

Automated learning of decision rules for text categorization. ACM

Transactions on Information Systems, 12(3):233-251, 1994.

[Atardi et al. 1999] Giuseppe Attardi and Antonio Gull�� and Fabrizio Se-

bastiani. Automatic Web Page Categorization by Link and Con-

text Analysis. Proceedings of THAI-99, 1st European Symposium

on Telematics, Hypermedia and Arti�cial Intelligence, 1999.

[Baltzersen 1995] Jorn Kristian Baltzersen. Quinlan's Algorithms and the

Rough Sets Approach. Project Report, Department of Computer

Systems and Telematics, University of Trondheim, 1995.

[Callan 2000] Jamie Callan. Vector Space Retrieval Model: Introduction.

http://ciir.cs.umass.edu/cmpsci646/

[Chakrabarti et al 1998] Chakrabarti, S., Dom, B., Raghaven, P., Ra-

jagopalan, S., Gibson, D., and Kleinberg, J. Automatic resource

compilation by analyzing hyperlink structure and associated text.

Computer Networks and ISDN Systems 30, 1-7, 65-74.

68

[Chouchoulas 1999] Alexios Chouchoulas and Qiang Shen. A Rough Set Ap-

proach to Text Classi�cation, Proceedings of the Seventh Interna-

tional Workshop on Rough Sets (Lecture Notes in Arti�cial Intelli-

gence, No. 1711), pp. 118-127, 1999.

[Cox 1994] Earl Cox. The Fuzzy Systems Handbook: a Practitioner's Guide

to Building, Using and Maintaining Fuzzy Systems. Academic Press,

Inc., 1994. ISBN 0-121-94270-8.

[Deerwester et al 1990] S. Deerwester, S.T. Dumais, T.K. Landauer, G.W.

Furnas, R.A. Harshman. Indexing by latent semantic analysis. Jour-

nal of the Society for Information Science, 1990.

[Dolphin 2000] Dolphin Systems Ltd. - \My Personal Bookmarks"

http://www.dolphinsystems.co.uk/bookmark.htm

[Dumais 1996] Susan T. Dumais. Combining evidence for e�ective informa-

tion �ltering. AAAI Spring Symposium on Machine Learning in In-

formation Access Technical Papers, 1996.

[EBRSC 1993] A Brief Introduction to Rough Sets, Copyright 1993, EBRSC.

Information available at: http://cs.uregina.ca/~roughset/rs.intro.txt

[Fuhr 1992] Norbert Fuhr. Probabilistic Models in Information Retrieval.

Computer Journal. 35 (3) , p. 243-55, 1992.

[Fuhr et al 1998] Fuhr, N., G�overt, N., Lalmas, M., and Sebastiani, F. Cat-

egorisation tool: Final prototype. Deliverable 4.3, Project LE4-

8303 \EUROSEARCH", Commission of the European Communities,

1999.

[GVU 1997] Georgia Tech Research Corporation, GVU's 8th WWW User

Survey, 1997, information available at:

http://www.gvu.gatech.edu/user surveys/survey-1997-10/

69

[Java 2000] The Java home page: http://java.sun.com.

[Jelonek et al. 1995] Jacek Jelonek, Krzysztof Krawiek, and Roman Slowin-

ski. Rough set reduction of attributes and their domains for neural

networks. Computational Intelligence, 11(2): 339-347, 1995.

[Kasabov 1996] Nikola K. Kasabov. Foundations of Neural Networks, Fuzzy

Systems and Knowledge Engineering. The MIT Press, 1996. ISBN

0-262-11212-4.

[Larson and Czerwinski 1998] K. Larson and M. Czerwinski, Web page de-

sign: implications of memory, structure and scent for information

retrieval, in: Proc. 1998 ACM SIGCHI Conf. on Human Factors in

Computing Systems, Los Angeles, CA, April 1998, pp. 25-32.

[Li et al 1999] Wen-Syan Li, Quoc Vu, Divakant Agrawal, Yoshinori Hara,

Hajime Takano. PowerBookmarks: a system for personalizable Web

information organization, sharing, and management. Proceedings

of the Eighth International World Wide Web Conference, Toronto,

Canada, 11-14 May 1999, ISBN 0-444-50264-5.

[Maarek and Shaul 1996] Yoelle S. Maarek, Israel Z. Ben Shaul. Au-

tomatically Organizing Bookmarks per Contents. Fifth Inter-

national World Wide Web Conference 1996, Paris, France.

http://www5conf.inria.fr/�ch html/papers/P37/Overview.html

[Maudal 1996] Olve Maudal. Preprocessing data for Neural Network based

Classi�ers: Rough Sets vs Principal Component Analysis. Project

Report, Department of Arti�cial Intelligence, The University of Ed-

inburgh, 1996.

[Meadow 1992] Meadow, Charles T. Text Information Retrieval Systems.

Academic Press, 1992.

70

[ML 2000] Blake, C.L. & Merz, C.J. (1998). UCI Repository of machine

learning databases. Irvine, CA: University of California, Department

of Information and Computer Science:

http://www.ics.uci.edu/ ~mlearn/MLRepository.html.

[Moukas and Maes 1998] Alexandros Moukas and Pattie Maes. Amalthaea:

An evolving Multi-Agent Information Filtering and Discovery Sys-

tem for the WWW. Journal of Autonomous Agents and Multi-Agent

Systems, 1(1):59-88, 1998.

[Moulinier 1996] Isabelle Moulinier. A Framework for Comparing Text Cat-

egorization Approaches, Universite Paris, 1996. Proceedings of the

1996 AAAI Spring Symposium on Machine Learning in Information

Access, 1996.

[Munakata 1998] Munakata, T. (1998). Fundamentals of the new arti�cial

intelligence: Beyond traditional paradigms. Springer-Verlag.

[Ng et al. 1997] Ng, H. T., Goh, W. B., and Low, K. L. Feature selec-

tion, perceptron learning, and a usability case study for text cat-

egorisation. In Proceedings of SIGIR-97, 20th ACM International

Conference on Research and Development in Information Retrieval

(Philadelphia, US, 1997), pp 67-73.

[Oard 1999] Douglas W Oard. The Vector Space Model, 1999.

http://www.clis.umd.edu/academics/courses/708a/summer99/notes/

[Pawlak 1982] Zdzislaw Pawlak. Rough Sets: International Journal of Com-

puter and Information Sciences, 11(5); 341-356, 1982.

[Pawlak 1991] Zdzislaw Pawlak. Rough Sets: Theoretical Aspects of Reason-

ing About Data. Kluwer Academic Publishing, Dordrecht, 1991.

71

[Quinlan 1986] J.R. Quinlan. Induction of Decision Trees. Machine Learning

1(1), pp. 81-106. 1986.

[Ruiz and Srinivasan 1999] Ruiz, M. E. and Srinivasan, P. Hierarchical neu-

ral networks for text categorization. In Proceedings of SIGIR-99,

22nd ACM International Conference on Research and Development

in Information Retrieval (Berkeley, US, 1999), pp 281-282.

[Salton et al 1975] G. Salton, A. Wong, and C.S. Yang. A vector space model

for automatic indexing. Communications of the ACM, 18(11):613-

620, 1975.

[Salton 1982] Salton, Gerard, Fox, Edward A. and Wu, Harry, (Cornell Tech-

nical Report TR82-511) Extended Boolean Information Retrieval.

Cornell University. August 1982.

[Salton 1983] Salton, Gerard. Introduction to Modern Information Retrieval.

McGraw-Hill, 1983.

[Sebastiani 1999] Fabrizio Sebastiani. Machine learning in Automated Text

Categorisation: a survey. Istituto di Elaborazione dell'Informazione,

Consiglio Nazionale delle Ricerche, 1999.

http://faure.iei.pi.cnr.it/~fabrizio/Publications/ACMCS00/ACMCS00.pdf

[Sh�utze et al. 1995] Sh�utze, H., Hull, D. A., and Pederson, J. O. A compari-

son of classi�ers and document representations for the routing prob-

lem. In Proceedings of SIGIR-95, 18th ACM International Confer-

ence on Research and Development in Information Retrieval (Seattle,

US, 1995), pp 229-237.

[Slowinski 1992] Roman Slowinski, editor. Intelligent Decision Support.

Kluwer Academic Publishers, Dordrecht, 1992.

72

[Tauscher and Greenberg 1997] L. Tauscher and S. Greenberg, Revisitation

patterns in World Wide Web navigation, in: Proc. 1997 ACM CHI

Conference, Atlanta, GA, March 1997.

[van Rijsbergen 1979] C.J. van Rijsbergen. Information Retrieval. Butter-

worths, London, United Kingdom, 1979.

http://www.dcs.gla.ac.uk/Keith/Preface.html

[Web Wizards 2000] Useful Bookmarks - Content-rich web sites for everyday

use: http://www.webwizards.net/useful/

[Yahoo 2000] Yahoo Web Directory and Search Engine.

http://www.yahoo.com/

[Zadeh 1965] Lofti A. Zadeh. Fuzzy sets. Information and Control, 8:338-353,

1965.

73

Appendix A

Further EBR investigations

In this appendix we look at how EBR reduces datasets from domains other

than the bookmark domain. Reducts for the datasets are generated with

EBR and then compared with those produced by RSDR. As RSDR takes a

large amount of time to discover all reducts, only small datasets are being

investigated here.

All datasets mentioned are available from the UCI ML Repository (ML 2000),

except the Fruit and Mood datasets. To avoid over-complicating the results,

individual details of each dataset are omitted - descriptions can be found at

the ML Repository. Some dataset values were strings, so these were altered

to a corresponding numeric value.

Reducts labelled \a reduct" indicate that this is one of many possible

RS minimal reducts. Those labelled \EBR <number>" have been generated

by the EBR method, with threshold set to <number>. Those labelled \only"

reduct indicate that this is the only minimal reduct for the dataset.

Iris Dataset

a reduct = f0,2,3,4g
EBR 0.8 = f0,2,3,4g

74

Solar Flare Dataset

only reduct = f0,1,2,4,5,6,10,11,12g
EBR 0.7 = f0,1,2,4,6,9,10,11,12g
EBR 0.75 = f0,1,2,4,5,6,9,10,11,12g

Soybean Dataset (small)

a reduct = f20,21,35g
EBR = f20,21,35g

Shuttle Landing Control Database

reducts = f0,1,6g
f0; 2; 6g
f0; 5; 6g
f1; 5; 6g

EBR 0.4 = f1,2,6g
EBR 0.5 = f1,2,5,6g

Congressional Voting Records Database

reducts (all) = f0,1,2,3,4,8,10,12,15,16g
f0; 1; 2; 3; 5; 8; 10; 12; 15; 16g
f0; 1; 2; 3; 6; 8; 10; 12; 15; 16g
f0; 1; 2; 3; 7; 8; 10; 12; 15; 16g
f0; 1; 2; 3; 8; 9; 10; 12; 15; 16g
f0; 1; 2; 3; 8; 10; 11; 12; 15; 16g
f0; 1; 2; 3; 8; 10; 12; 13; 15; 16g
f0; 1; 2; 3; 8; 10; 12; 14; 15; 16g

EBR 0.6 = f2,3,4,7,8,11,12,13,14,16g

75

Liver-disorders Database

a reduct = f1,2,4,6g
EBR 0.5 = f1,2,4,6g

Lung Cancer Database

some reducts = f0,8,13,26,56g
f0; 8; 13; 42; 56g

EBR 0.072727 = f0,8,13,44,56g

Pima Indians Diabetes Database (small)

(reduced to the �rst 300 instances) only reduct = f1,6,8g
EBR 0.3 = f5,6,8g
EBR 0.4 = f1,5,6,8g

Teaching Assistant Evaluation

a reduct = f1,2,4,5g
EBR 0.6 = f1,2,4,5g

Mood Dataset

This is the same dataset as used in this thesis to illustrate ID3/Entropy.

only reduct = f0,2,3,4g
EBR 0.8 = f0,1,3,4g
(ID3 = f0,2,3,4g)

Fruit Dataset

only reduct = f0,1,2,4g
EBR 0.8 = f0,1,3,4g
(ID3 = f0,1,2,4g)

76

A.1 Conclusion

For small datasets, EBR produces very similar (and in some cases identical)

reducts to RSDR. However, only small datasets have been investigated here,

further investigation into larger dataset reduction is required.

77

