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Abstract

Many rule induction algorithms are un-
able to cope with high dimensional de-
scriptions of input features. To en-
able such techniques to be effective, a
redundancy-removing step is usually car-
ried out beforehand. Rough Set Theory
(RST) has been used as such a dataset
pre-processor with much success, however
it is reliant upon a crisp dataset; import-
ant information may be lost as a result
of quantization. By using fuzzy-rough
sets this loss is avoided, allowing the re-
duction of noisy, real-valued attributes.
This paper demonstrates the applicabil-
ity of fuzzy-rough attribute reduction to
the problem of learning classifiers, result-
ing in simpler rules with little loss in clas-
sification accuracy.

1 Introduction

The knowledge acquisition bottleneck is a prob-
lem in the building of intelligent reasoning sys-
tems for complex applications, especially when
experts are not readily available. High dimen-
sionality of the domain attributes presents a fur-
ther obstacle for a number of rule induction al-
gorithms which would otherwise have the poten-
tial for automating knowledge acquisition. It is
therefore not surprising that much research has
been carried out on dimensionality reduction.
However, existing work tends to destroy the un-
derlying semantics of the features after reduction
(e.g. transformation-based approaches [12]) or
require additional information about the given
data set for thresholding (e.g. entropy-based ap-
proaches [10]). A technique that can reduce di-
mensionality using information contained within
the data set and preserving the meaning of the
features is clearly desirable.

Fuzzy-rough sets [3] can be used as a tool to
discover data dependencies and reduce the num-

ber of attributes contained in a dataset by purely
structural methods. The Fuzzy-Rough Attrib-
ute Reduction (FRAR) technique [7] can be ap-
plied to datasets where conditional and decision
attribute values are crisp or fuzzy. Of particular
interest here is the case where both the condi-
tional and decision values are fuzzy. To show
the utility of the approach, it is applied as a
pre-processor to an existing fuzzy rule induction
method [2].

The rest of this paper is structured as follows.
Section 2 introduces the fuzzy rule induction al-
gorithm used, illustrating its operation with an
example. Section 3 discusses the fundament-
als of rough set theory, in particular focusing
on dimensionality reduction. The fourth section
builds on these definitions to outline a procedure
for fuzzy-rough attribute reduction. The modu-
lar design of the system is described in section 5,
with experimental results presented in the sixth
section. Section 7 concludes the paper, and pro-
poses further work in this area.

2 Fuzzy Rule Induction

To show the potential utility of fuzzy-rough at-
tribute reduction, the method is applied as a
pre-processor to an existing fuzzy rule induction
algorithm. The algorithm used is a recent one
as described in [2]. The original dataset used
to outline this induction procedure can be seen
in table 1. There are three attributes each with
corresponding linguistic terms, e.g. A has terms
A1, A2 and A3. The decision attribute Plan
is also fuzzy, separated into three linguistic de-
cisions X , Y and Z.

The algorithm begins by organising the data-
set objects into subgroups according to their
highest decision value. Within each sub-
group, the fuzzy subsethood [8, 15] is calculated
between the decisions of the subgroup and each
attribute term. Fuzzy subsethood is defined as
follows:



Case A B C Plan
A1 A2 A3 B1 B2 B3 C1 C2 X Y Z

1 0.3 0.7 0.0 0.2 0.7 0.1 0.3 0.7 0.1 0.9 0.0
2 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.8 0.2 0.0
3 0.0 0.3 0.7 0.0 0.7 0.3 0.6 0.4 0.0 0.2 0.8
4 0.8 0.2 0.0 0.0 0.7 0.3 0.2 0.8 0.6 0.3 0.1
5 0.5 0.5 0.0 1.0 0.0 0.0 0.0 1.0 0.6 0.8 0.0
6 0.0 0.2 0.8 0.0 1.0 0.0 0.0 1.0 0.0 0.7 0.3
7 1.0 0.0 0.0 0.7 0.3 0.0 0.2 0.8 0.7 0.4 0.0
8 0.1 0.8 0.1 0.0 0.9 0.1 0.7 0.3 0.0 0.0 1.0
9 0.3 0.7 0.0 0.9 0.1 0.0 1.0 0.0 0.0 0.0 1.0

Table 1: Original dataset

S(A, B) =
M(A ∩B)

M(A)
=

∑
u∈U

min(µA(u), µB(u))∑
u∈U

µA(u)
(1)

For example, taking the subgroup of objects that
belong to the decision X , the subsethood of the
first term, A1, may be calculated as follows:

M(X) = 0.8 + 0.6 + 0.7 = 2.1
M(X ∩ A1) = min(0.8, 1) + min(0.6, 0.8)

+ min(0.7, 1)
= 0.8 + 0.6 + 0.7
= 2.1

hence S(X, A1) = 2.1/2.1 = 1

From table 1, the following subsethood values
can be obtained:

Subgroup1(X):
A:
S(X, A1) = 1, S(X, A2) = 0.1, S(X, A3) = 0
B:
S(X, B1) = 0.71, S(X, B2) = 0.43, S(X, B3) = 0.14
C:
S(X, C1) = 0.52, S(X, C2) = 0.76

Subgroup2(Y):
A:
S(Y, A1) = 0.33, S(Y, A2) = 0.58, S(Y, A3) = 0.29
B:
S(Y, B1) = 0.42, S(Y, B2) = 0.58, S(Y, B3) = 0.04
C:
S(Y, C1) = 0.13, S(Y, C2) = 0.92

Subgroup3(Z):
A:
S(Z, A1) = 0.14, S(Z, A2) = 0.64, S(Z, A3) = 0.29
B:
S(Z, B1) = 0.32, S(Z, B2) = 0.61, S(Z, B3) = 0.14
C:
S(Z, C1) = 0.82, S(Z, C2) = 0.25

These values are an indication of the related-
ness of the individual terms to the decisions.
A suitable level threshold, α ∈ [0,1], must
be chosen beforehand in order to determine
whether terms are close enough or not. At
most, one term is selected per attribute. For
example, setting α = 0.9 means that the
term with the highest fuzzy subsethood value
(or its negation) above this threshold will
be chosen. Applying this process to the first
two decision values X and Y generates the rules:

Rule 1: IF A is A1 THEN Plan is X
Rule 2: IF B is NOT B3 AND C is C2 THEN
Plan is Y

A problem is encountered here when there
are no suitably representative terms for a
decision (as is the case for decision Z). In
this situation, a rule is produced that classifies
cases to the decision value if the other rules
do not produce reasonable classifications. This
introduces another threshold value, β ∈ [0,1],
which determines whether a classification is
reasonable or not. For decision Z, the following
rule is produced:

Rule 3: IF MF (Rule1) < β AND
MF (Rule2) < β THEN Plan is Z

where MF(Rule i) = MF(condition part of Rule
i) and MF means the membership function
value. The classification results when using
these rules on the example dataset can be found
in the results section.

This technique has been shown to produce
highly competitive results [2] in terms of both
classification accuracy and number of rules gen-
erated. However, for most rule induction al-
gorithms, the resultant rules may be unnecessar-
ily complex due to the presence of redundant or



misleading attributes. Fuzzy-Rough Attribute
Reduction may be used here to significantly re-
duce dataset dimensionality, removing redund-
ant attributes that would otherwise increase rule
complexity and reducing the time for the induc-
tion process itself. This technique is based on
Rough Set Attribute Reduction, which is out-
lined in the next section.

3 Rough Set Attribute Reduction

A rough set [11] is an approximation of a vague
concept by a pair of precise concepts, called
lower and upper approximations (which are in-
formally a classification of the domain of interest
into disjoint categories). Objects belonging to
the same category characterised by the same at-
tributes (or features) are not distinguishable.

Rough sets have been employed to remove
redundant conditional attributes from discrete-
valued datasets, while retaining their informa-
tion content. A successful example of this is the
Rough Set Attribute Reduction (RSAR) method
[13]. Central to RSAR is the concept of in-
discernibility. Let I = (U, A) be an inform-
ation system, where U is a non-empty set of
finite objects (the universe of discourse); A is
a non-empty finite set of attributes such that
a : U → Va ∀a ∈ A, Va being the value set of
attribute a. In a decision system, A = {C ∪D}
where C is the set of conditional attributes and
D is the set of decision attributes. With any
P ⊆ A there is an associated equivalence rela-
tion IND(P ):

IND(P ) = {(x, y) ∈ U
2 | ∀ a ∈ P, a(x) = a(y)}

(2)
The partition of U, generated by IND(P) is de-
noted U/P and calculated as follows:

U/P = ⊗{a ∈ P : U/IND({a})}, (3)

where

A⊗B = {X ∩Y : ∀X ∈ A, ∀Y ∈ B, X ∩Y 6= Ø}
(4)

If (x, y) ∈ IND(P ), then x and y are indis-
cernible by attributes from P . The equivalence
classes of the P -indiscernibility relation are de-
noted [x]P . Let X ⊆ U, the P-lower and P-upper
approximations of a set can now be defined as:

PX = {x | [x]P ⊆ X} (5)

PX = {x | [x]P ∩X 6= ∅} (6)

Let P and Q be equivalence relations over U,
then the positive region can be defined as:

POSP (Q) =
⋃

X∈U/Q

PX (7)

In terms of classification, the positive region con-
tains all objects of U that can be classified to
classes of U/Q using the knowledge in attributes
P.

An important issue in data analysis is dis-
covering dependencies between attributes. Intu-
itively, a set of attributes Q depends totally on
a set of attributes P, denoted P ⇒ Q, if all at-
tribute values from Q are uniquely determined
by values of attributes from P. Dependency can
be measured in the following way:

For P,Q ⊆ A, Q depends on P in a degree k
(0 ≤ k ≤ 1), denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|
|U| (8)

where |S| stands for the cardinality of set S.
If k = 1 Q depends totally on P, if 0 < k < 1 Q
depends partially (in a degree k) on P, and if k
= 0 Q does not depend on P.

By calculating the change in dependency
when an attribute is removed from the set of
considered conditional attributes, an estimate of
the significance of the attribute can be obtained.
The higher the change in dependency, the more
significant the attribute is. If the significance is
0, then the attribute is dispensible. More form-
ally, given P,Q and an attribute x ∈ P, the sig-
nificance of attribute x upon Q is defined by

σP (Q, x) = γP (Q)− γP−{x}(Q) (9)

3.1 Reducts

The reduction of attributes is achieved by com-
paring equivalence relations generated by sets of
attributes. Attributes are removed so that the
reduced set provides the same quality of classi-
fication as the original. In the context of de-
cision systems, a reduct is formally defined as a
subset R of the conditional attribute set C such
that γR(D) = γC(D). A given dataset may have
many attribute reduct sets, and the collection of
all reducts is denoted by

R = {X : X ⊆ C, γX(D) = γC(D)} (10)

The intersection of all the sets in R is called
the core, the elements of which are those attrib-
utes that cannot be eliminated without intro-
ducing more contradictions to the dataset. In



RSAR, a reduct with minimum cardinality is
searched for; in other words an attempt is made
to locate a single element of the minimal reduct
set Rmin ⊆ R :

Rmin = {X : X ∈ R, ∀Y ∈ R, |X | ≤ |Y |}
(11)

A basic way of achieving this is to calculate
the dependencies of all possible subsets of C.
Any subset X with γX(D) = 1 is a reduct; the
smallest subset with this property is a minimal
reduct. However, for large datasets this method
is impractical and an alternative strategy is re-
quired.

1. R← {}
2. do
3. T ← R
4. ∀x ∈ (C −R)
5. if γR∪{x}(D) > γT (D)
6. T ← R ∪ {x}
7. R← T
8. until γR(D) = γC(D)
9. return R

Figure 1: The QuickReduct Algorithm

The QuickReduct algorithm given in figure
1, borrowed from [6, 13], attempts to calculate
a minimal reduct without exhaustively generat-
ing all possible subsets. It starts off with an
empty set and adds in turn, one at a time, those
attributes that result in the greatest increase in
γP (Q), until this produces its maximum possible
value for the dataset (usually 1). However, it has
been proved that this method does not always
generate a minimal reduct, as γP (Q) is not a
perfect heuristic. It does result in a close-to-
minimal reduct, though, which is still useful in
greatly reducing dataset dimensionality. An in-
tuitive understanding of QuickReduct implies
that, for a dimensionality of n, n! evaluations of
the dependency function may be performed for
the worst-case dataset. From experimentation,
the average complexity has been determined to
be approximately O(n) [13].

4 Fuzzy-Rough Attribute
Reduction

The RSAR process described previously can
only operate effectively with datasets contain-
ing discrete values. As most datasets contain
real-valued attributes, it is necessary to perform
a discretization step beforehand. This is typic-

ally implemented by standard fuzzification tech-
niques [13]. However, membership degrees of at-
tribute values to fuzzy sets are not exploited in
the process of RSAR. By using fuzzy-rough sets
[3], it is possible to use this information to better
guide attribute selection.

4.1 Fuzzy Equivalence Classes

In the same way that crisp equivalence classes
are central to rough sets, fuzzy equivalence
classes are central to the fuzzy-rough set ap-
proach [3]. For typical RSAR applications, this
means that the decision values and the condi-
tional values may all be fuzzy. The concept of
crisp equivalence classes can be extended by the
inclusion of a fuzzy similarity relation S on the
universe, which determines the extent to which
two elements are similar in S. The usual prop-
erties of reflexivity (µS(x, x) = 1), symmetry
(µS(x, y) = µS(y, x) ) and transitivity (µS(x, z)
≥ µS(x, y) ∧ µS(y, z)) hold.

Using the fuzzy similarity relation, the fuzzy
equivalence class [x]S for objects close to x is
defined by:

µ[x]S(y) = µS(x, y) (12)

The following axioms hold for a fuzzy equival-
ence class F [5]:

• ∃x, µF (x) = 1

• µF (x) ∧ µS(x, y) ≤ µF (y)

• µF (x) ∧ µF (y) ≤ µS(x, y)

The first axiom corresponds to the require-
ment that an equivalence class is non-empty.
The second axiom states that elements in y’s
neighbourhood are in the equivalence class of y.
The final axiom states that any two elements in
F are related via S. Obviously, this definition
degenerates to the normal definition of equival-
ence classes when S is non-fuzzy.

The family of normal fuzzy sets produced
by a fuzzy partitioning of the universe of dis-
course can play the role of fuzzy equivalence
classes [3]. Consider the crisp partitioning U/Q
= {{1,3,6},{2,4,5}}. This contains two equi-
valence classes ({1,3,6} and {2,4,5}) that can
be thought of as degenerated fuzzy sets, with
those elements belonging to the class possessing
a membership of one, zero otherwise. For the
first class, for instance, the objects 2, 4 and 5
have a membership of zero. Extending this to
the case of fuzzy equivalence classes is straight-
forward: objects can be allowed to assume mem-
bership values, with respect to any given class, in



the interval [0,1]. U/Q is not restricted to crisp
partitions only; fuzzy partitions are equally ac-
ceptable.

4.2 Fuzzy Lower and Upper
Approximations

From the literature, the fuzzy P -lower and P -
upper approximations are defined as [3]:

µPX(Fi) = infxmax{1− µFi(x), µX(x)} ∀i
(13)

µPX(Fi) = supxmin{µFi(x), µX(x)} ∀i (14)

where Fi denotes a fuzzy equivalence class be-
longing to U/P . Note that although the uni-
verse of discourse in attribute reduction is finite,
this is not the case in general, hence the use of
sup and inf . These definitions diverge a little
from the crisp upper and lower approximations,
as the memberships of individual objects to the
approximations are not explicitly available. As
a result of this, the fuzzy lower and upper ap-
proximations are herein redefined as:

µPX(x) = sup
F∈U/P

min(µF (x),

inf
y∈U

max{1− µF (y), µX(y)})
(15)

µPX(x) = sup
F∈U/P

min(µF (x),

sup
y∈U

min{µF (y), µX(y)})

(16)

In implementation, not all y ∈ U are needed
to be considered - only those where µF (y) is
non-zero, i.e. where object y is a fuzzy mem-
ber of (fuzzy) equivalence class F . The tuple
< PX, PX > is called a fuzzy-rough set. It can
be seen that these definitions degenerate to tra-
ditional rough sets when all equivalence classes
are crisp.

4.3 Fuzzy-Rough Reduction Process

Fuzzy RSAR builds on the notion of the fuzzy
lower approximation to enable reduction of data-
sets containing real-valued attributes. As will
be shown, the process becomes identical to the
traditional approach when dealing with nominal
well-defined attributes.

The crisp positive region in traditional rough
set theory is defined as the union of the lower
approximations. By the extension principle, the
membership of an object x ∈ U, belonging to
the fuzzy positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (17)

Object x will not belong to the positive region
only if the equivalence class it belongs to is not a
constituent of the positive region. This is equi-
valent to the crisp version where objects belong
to the positive region only if their underlying
equivalence class does so.

Using the definition of the fuzzy positive
region, the new dependency function can be
defined as follows

γ′P (Q) =
|µPOSP (Q)(x)|

|U| =
∑

x∈U
µPOSP (Q)(x)
|U|

(18)
As with crisp rough sets, the dependency

of Q on P is the proportion of objects that
are discernible out of the entire dataset. In
the present approach, this corresponds to de-
termining |µPOSP (Q)(x)|, the fuzzy cardinality
of µPOSP (Q)(x), divided by the total number of
objects in the universe. The definition of de-
pendency degree covers the crisp case as its spe-
cific instance.

If the fuzzy-rough reduction process is to be
useful, it must be able to deal with multiple at-
tributes, finding the dependency between vari-
ous subsets of the original attribute set. For
example, it may be necessary to be able to de-
termine the degree of dependency of the de-
cision attribute(s) with respect to P = {a, b}.
In the crisp case, U/P contains sets of objects
grouped together that are indiscernible accord-
ing to both attributes a and b. In the fuzzy
case, objects may belong to many equivalence
classes, so the cartesian product of U/IND({a})
and U/IND({b}) must be considered in determ-
ining U/P . In general,

U/P = ⊗{a ∈ P : U/IND({a})} (19)

Each set in U/P denotes an equivalence class.
For example, if P = {a, b}, U/IND({a}) =
{Na, Za} and U/IND({b}) = {Nb, Zb}, then

U/P = {Na ∩Nb, Na ∩ Zb, Za ∩Nb, Za ∩ Zb}

The extent to which an object belongs to such an
equivalence class is therefore calculated by using
the conjunction of constituent fuzzy equivalence



classes, say Fi, i = 1, 2, ..., n:

µF1∩...∩Fn(x) = min(µF1(x), µF2 (x), ..., µFn(x))
(20)

4.4 Reduct Computation

A problem may arise when this approach is com-
pared to the original crisp one. In RSAR, a re-
duct is defined as a subset R of the attributes
which have the same information content as the
full attribute set A. In terms of the dependency
function this means that the values γ(R) and
γ(A) are identical and equal to 1 if the data-
set is consistent. However, in the fuzzy-rough
approach this is not necessarily the case as the
uncertainty encountered when objects belong to
many fuzzy equivalence classes results in a re-
duced total dependency.

1. R← {}, γ′best ← 0, γ′prev ← 0
2. do
3. T ← R
4. γ′prev ← γ′best

5. ∀x ∈ (C −R)
6. if γ′R∪{x}(D) > γ′T (D)
7. T ← R ∪ {x}
8. γ′best ← γ′T (D)
9. R← T
10. until γ′best = γ′prev

11. return R

Figure 2: The fuzzy-rough QuickReduct al-
gorithm

A possible way of combatting this would be
to determine the degree of dependency of the
full attribute set and use this as the denomin-
ator, allowing γ′ to reach 1. With these issues
in mind, a new QuickReduct algorithm has
been developed as given in figure 2. It employs
the new dependency function γ′ to choose which
attributes to add to the current reduct candid-
ate in the same way as the original QuickRe-
duct process. The algorithm terminates when
the addition of any remaining attribute does
not increase the dependency (such a criterion
could be used with the original QuickReduct
algorithm). For a dimensionality of n, the worst
case dataset will still result in n! evaluations
of the dependency function. However, as fuzzy
RSAR is used for dimensionality reduction prior
to any involvement of the system which will em-
ploy those attributes belonging to the resultant
reduct, this potentially costly operation has no
negative impact upon the run-time efficiency of
the system.

Using the fuzzy-rough QuickReduct al-
gorithm, table 1 can be reduced in size. Firstly,
the initial reduct candidate is the empty set and
the dependency of each individual conditional
attribute is calculated:

γ′{A}({Plan}) = 3.7/9
γ′{B}({Plan}) = 1.3/9
γ′{C}({Plan}) = 2.4/9

As attribute A causes the greatest increase in
dependency degree, it is added to the reduct
candidate and the search progresses:

γ′{A,B}({Plan}) = 3.7/9,

γ′{A,C}({Plan}) = 4.7/9

Here, C is added to the reduct candidate as
the dependency is increased. There is only one
attribute addition to be checked at the next
stage, namely

γ′{A,B,C}({Plan}) = 4.7/9

This causes no dependency increase, resulting
in the algorithm terminating and outputting the
reduct {A, C}. Hence, the original dataset can
be reduced to these attributes with minimal in-
formation loss (according to the algorithm). The
resulting fuzzy rules using the smaller dataset
can be found in the section 6.

5 Overview of the
Implementation

The system implemented to demonstrate the
ideas is herein comprised of several modules (fig-
ure 3), allowing various sub-components to be
replaced with alternative techniques. Firstly,
the dataset from which rules are to be gener-
ated is input into the system. Depending on the
attribute format of the dataset, an additional
fuzzification step may need to be carried out.

The Fuzzy Rough Attribute Reduction
(FRAR) module takes as input any dataset con-
taining real-valued or crisp attributes, or at-
tributes defined entirely by their fuzzy member-
ship degrees. Using this information only (no
thresholds are required), the dataset is reduced
if it involves redundant attributes. When no at-
tribute reduction is desired, the FRAR module
is bypassed and the unprocessed dataset is sent
directly to the Rule Induction Algorithm (RIA).

Given the dataset (either reduced or unre-
duced), the RIA extracts fuzzy rules for use in
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Figure 3: Block diagram of the implemented sys-
tem

the classification phase. Due to the modular-
ity of the system, different RIAs other than the
one outlined previously may be used here. Us-
ing these fuzzy rules, data may then be classified
into the categories present in the training data-
set.

6 Results

The original rules produced using table 1 and
the fuzzy rule induction procedure outlined in
section 2 can be seen in figure 4. These rules are
generated using the entire dataset, with α = 0.9
and β = 0.6. Using these rules, the dataset
may be classified and the generated classifica-
tions compared with the original dataset’s plan.

Rule 1: IF A is A1 THEN Plan is X
Rule 2: IF B is NOT B3 AND C is C2 THEN
Plan is Y
Rule 3: IF MF (Rule1) < β AND
MF (Rule2) < β THEN Plan is Z

Figure 4: Original rules

As has been shown in section 4, the data-
set may be reduced by the removal of attribute
B with little reduction in classification accuracy
(according to FRAR). Using this reduced data-
set, the rule induction algorithm generates the
rules given in figure 5. From this, it can be seen
that rule 2 has been simplified due to the re-
dundancy of attribute B. Although the extent
of simplification is small in this case, with larger

datasets the effect can be expected to be greater.

Rule 1: IF A is A1 THEN Plan is X
Rule 2: IF C is C2 THEN Plan is Y
Rule 3: IF MF (Rule1) < β AND
MF (Rule2) < β THEN Plan is Z

Figure 5: Generated rules using the reduced
dataset

Table 2 shows the membership degrees of
the cases to each classification for the calculated
plan and the actual plan present in the dataset.
It can be seen that the resulting classifications
are the same when the min operator is used.

Case Calc. Actual
X Y Z X Y Z

1 0.3 0.7 0.0 0.1 0.9 0.0
2 1.0 0.3 0.0 0.8 0.2 0.0
3 0.0 0.4 1.0 0.0 0.2 0.8
4 0.8 0.7 0.0 0.6 0.3 0.1
5 0.5 1.0 0.0 0.6 0.8 0.0
6 0.0 1.0 0.0 0.0 0.7 0.3
7 1.0 0.8 0.0 0.7 0.4 0.0
8 0.1 0.3 1.0 0.0 0.0 1.0
9 0.3 0.0 1.0 0.0 0.0 1.0

Table 2: Resulting plan with all attributes

The results using the FRAR-reduced dataset
are provided in table 3. The differences between
the classifications of the reduced and unreduced
approaches have been highlighted (cases 4 and
7). In case 4, only the membership degree for Y
has changed. This value has increased from 0.7
to 0.8, resulting in an ambiguous classification.
Again, for case 7, the membership degree for Y
is the only value to have changed; this time it
more closely resembles the classification present
in the training dataset.

Case Calc. Actual
X Y Z X Y Z

1 0.3 0.7 0.0 0.1 0.9 0.0
2 1.0 0.3 0.0 0.8 0.2 0.0
3 0.0 0.4 1.0 0.0 0.2 0.8
4 0.8 0.8 0.0 0.6 0.3 0.1
5 0.5 1.0 0.0 0.6 0.8 0.0
6 0.0 1.0 0.0 0.0 0.7 0.3
7 1.0 0.3 0.0 0.7 0.4 0.0
8 0.1 0.3 1.0 0.0 0.0 1.0
9 0.3 0.0 1.0 0.0 0.0 1.0

Table 3: Resulting plan with reduced attributes



7 Conclusion

This paper has shown the potential utility of em-
ploying Fuzzy Rough Attribute Reduction as a
pre-processor to fuzzy rule induction. Not only
are the runtimes of the induction and classifica-
tion processes improved by this step (which for
some systems are important factors), but the
resulting rules are less complex. The resulting
loss in classification accuracy for the presented
example is small. Indeed, for one case the accur-
acy has been improved. Further experimentation
is required to investigate the impact of the at-
tribute reduction on runtime and rule complex-
ity for larger datasets.

Currently, work is being carried out on a
fuzzified dependency function. Ordinarily, the
dependency function returns values for sets of
attributes in the range [0,1]; the fuzzy depend-
ency function will return qualitative fuzzy labels
for use in the new QuickReduct algorithm.
Additionally, research is being carried out into
the potential utility of fuzzy reducts, which
would allow attributes to have a varying pos-
sibility of becoming a member of the resultant
reduct.
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